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THE DIAGONALIZATION PROCEDURE FOR THE FINITE
DIMENSIONAL DIFFERENTIAL OPERATOR EQUATIONS
SYSTEM OVER THE m-DIMENSIONAL COMPLEX SPACE
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Abstract. The present article is a generalization of the author’s former results
concerning the partial differential operator analog to the well known algebraic
Gauss method.
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1. INTRODUCTION

The present results came up from recent engineering problems that appear
in the classical Maxwell field theory and concern signal transmissions in various
kinds of media (see [1, 2]).

If the investigator encounters physical or industrial problems that are deal-
ing with the study of some vector field, then in the majority of cases its
mathematical model is represented as a finite dimensional system of PDEs, in
other words, matrix or vector PDEs. The sought for a vector function which
is responsible for all investigated vector field properties is “hidden inside” of
the above mentioned system as the corresponding finite set of the unknown
co-ordinate components that describe the appropriate scalar fields and form
the initially sought for vector field function.

Therefore, the diagonalization problem of the arbitrary finite dimensional
system of PDEs appears. As usual, it means the reduction of the original
n-dimensional vector/matrix equation to the system of the corresponding n
scalar equations where each of them depends on the only one of the studied
vector function’s components. It is obvious that the final diagonalized matrix
equation must be equivalent to the initial one.

These approaches that have become almost classical in the diagonalization
problems of the finite dimensional PDEs’ systems [3, p. 127-261] have not
changed much until now. Mostly, they use the generalized function theory
even in the case of the first order linear systems of PDEs over Rn and in every
functional class the respective scalar equations are obtained in their specific
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different way. Such methods as presented, for instance in [3, 4], though math-
ematically very elegant, remain difficult and rather often even unattainable
for engineers and other non-mathematicians. Moreover, all well-known pro-
cedures for the applied diagonalization problem before the reduction to the
respective system of scalar equations take into account either the initial and
boundary conditions or the original matrix structure and sometimes even the
fixed space dimension over which the vector field function is given.

Hence, this paper presents an obvious and simple idea which occurs natu-
rally. We extend the well-known Gauss method to arbitrary finite dimensional
systems of PDEs. This was done first for the so called “symmetrical” general-
ized Maxwell systems in two stages “by blocks and by coordinates” (see [5]).
Further, this method was generalized in the case of arbitrary n × n systems
of partial differential operator equations over the finite dimensional real space
(see [6]). Here, the additional real parameters in comparison with the classi-
cal Maxwell space (x, y, z, t) describe the appropriate physical features of the
considered medium (temperature, density etc.). In both papers [5] and [6], all
partial differential operators obey only the requirement of the commutativ-
ity in pairs. It was proved in these papers that the proposed diagonalization
procedure is independent both of the original matrix structure and of the
boundary and initial conditions. Thus the vector field function was found in
a simple algorithmic and correct mathematical way.

The present paper shows how the partial differential operator analog of
the Gauss method [5, 6] can be improved in the case of the finite dimensional
complex space and, additionally, when the given matrix elements represent the
arbitrary bounded invertible operators that are assumed to be even nonlinear.

2. PRELIMINARIES

We consider the following n×n system of arbitrary operator equations over
the “mixed” m + 1-dimensional complex-real space (z1, . . . , zm, t) = (z, t),
where z = (z1, . . . , zm) ∈ Cm and t is the time argument

(1)

n∑
i=1

AjiFi = fj (j = 1, n).

In (1), the functions
−→
F =

−→
F (z, t) = {Fi(z, t)}ni=1 and

−→
f =

−→
f (z, t) =

{fj(z, t)}nj=1 are, respectively, the unknown and the given vector functions

from the same class K. All known matrix operator elements Aji (j, i =
1, n) from (1) can be utterly arbitrary (nonlinear, in general) but obligatory
bounded, invertible, and commutative in pairs, i.e.,

(2) AjiAkl = AklAji (j, i, k, l = 1, n).

The evident drawback of [5] and [6] was the concrete definition of the space

and its dimension over which the vector functions
−→
F and

−→
f from (1) were

considered. In reality, from the algorithmic mathematical point of view, the
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features of the space over which (1) and (2) are given have no significance.
The only important requirement is its finite dimensionality.

On the other hand, regarding the physical and industrial applications, the
needed space model can be sufficiently accepted as the “mixed” complex-real
space whose points have the similar structure to (1). Namely, (z, t) where
t is the time variable and z = (z1, . . . , zm) ∈ Rm or Cm etc. is the spatial
coordinate vector.

It is also obvious that in these circumstances the demands of the study of
the mathematical and applied characters in the classical field theory can not
and must not be restricted only by the cases of the operator PDEs systems.
Even if it does not seem expedient, the author has objective reasons not to
refer directly to the majority of current industrial problems that deal with the
field theory and various questions of the signal transmissions as its corollary.

Visually, the current diagonalization procedure is completely identical to
the case treated in [6]. Nevertheless, it has to be shown that the given process
acts in the proposed situation (1), (2) as well. Trying not to be tiresome and
avoiding the needless references to [5] and [6], the author reserves the right to
neglect all unnecessary insignificant details of the considered diagonalization
method and to describe only its main general algorithmic steps.

3. THE “UPWARD” DIAGONALIZATION STAGE

From the very beginning, we raise the problem of obtaining the scalar equa-
tion with respect to one of the unknown components {Fi}ni=1. Not breaking
the common character of our results, we assume that the sought function is
F1.

The following first algorithmic steps reflects clearly the main idea of the
given procedure. Therefore, at the first step we separate the last equation
of system (1) and isolate the item with the scalar Fn in all n equations of the
considered system.

(3)


n−1∑
i=1

AjiFi + AjnFn = fj (j = 1, n− 1)

n−1∑
i=1

Ani + AnnFn = fn.

Then we apply to the last equation of (3) the operator

(3′) Ajn (j = 1, n− 1)

consistently for all j from (3′) and to the rest n − 1 equations of the same
system the operator

(3′′) Ann

is applied. Afterwards, we summarize consistently the transformed nth equa-
tion and the other n− 1 (also transformed) equations for all j = 1, n− 1. We
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obtain the following system which is equivalent to (3)

(4)


n−1∑
i=1

(AnnAji −AjnAni)Fi = Annfj −Ajnfn (j = 1, n− 1)

n−1∑
i=1

AniFi + AnnFn = fn,

where in all equations, excepting the last one, the scalar function Fn does
no longer appear. Such equations that close the appropriate system at each
diagonalization step as in [6] are called “single”.

Introducing the auxiliary notation for the known operators and functions

(5) AnnAji −AjnAni = B
(1)
ji , Annfj −Ajnfn = gj1, (j, i = 1, n− 1),

we consider now the following subsystem of (4)

(6)

n−1∑
i=1

B
(1)
ji Fi = gj1 (j, i = 1, n− 1),

which consists of all equations from (4) without the single one.
Continuing this process, we can consider the general step number k + 1

(k = 1, n− 1) with its respective initial system

(7)


n−k−1∑
i=1

B
(k)
ji Fi + B

(k)
j,n−kFn−k = gjk (j = 1, n− k − 1)

n−k−1∑
i=1

B
(k)
n−k,iFi + B

(k)
n−k,n−kFn−kFn−k = gn−k,k (k = 1, n− 1),

whose (n− k)th equation we transform by the operator

(7′)
(
−B(k)

j,n−k

)
(j = 1, n− k − 1)

for all j from (7′) and to the other n− k − 1 equations of (7) the operator

(7′′) B
(k)
n−k,n−k

is applied.
Again we next summarize the (n−k)th and the other n−k−1 transformed

equations from (7) for all j = 1, n− k − 1. We get the equivalent system

(8)



n−k−1∑
i=1

(B
(k)
n−k,n−kB

(k)
ji −B

(k)
j,n−kB

(k)
n−k,i)Fi = B

(k)
n−k,n−kgjk

−B(k)
j,n−kgn−k,k (j = 1, n− k − 1)

n−k−1∑
i=1

B
(k)
n−k,iFi + B

(k)
n−k,n−kFn−k = gn−k,k.

The first n − k − 1 equations of (8) have now more scalar components Fi

(i = 1, n− k − 1) and no Fi (i = n− k, n). The last equation in (8) is single.
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Simplifying the visual algorithmic features, we put into (7), (8) the following
designations

(9)
B

(k)
n−k,n−kB

(k)
ji −B

(k)
j,n−kB

(k)
n−k,i = B

(k+1)
ji

B
(k)
n−k,n−kgjk −B

(k)
j,n−kgn−k,k = gj,k+1.

(j, i = 1, n− k − 1)

Taking into account formula (9), the final step, for k = n− 1, leads to the
sought for scalar equation with respect to the component F1

(10) B
(n−1)
11 F1 = g1,n−1,

while the other n− 1 non scalar equations are single

(11)
n−k∑
i=1

B
(k)
ji Fi = gjk (j = 2, n− k; k =

←−−−−−
0, n− 2)

and

(12) B
(0)
ni = Ani (i = 1, n), gn0 = fn.

The arrow-direction for the index k from (11) will describe in the next section
the backward count, from the right to the left.

It is clear that the system (10), (11) is equivalent to the original system
(1)≡(3) and completes the “upward” diagonalization stage.

In conclusion, it should be noted that in this section the upper index in the
round brackets of the given operator B . . . and the second lower index of the
known function g . . . mean the step number of the diagonalization procedure
in the “upward” direction.

4. THE “DOWNWARD” DIAGONALIZATION STAGE

Now we pass to to the second diagonalization stage that works in the op-
posite, i.e., “downward” direction.

At the first step (k = n−2) we isolate the first equation from the subsystem
(11) and write it together with the first obtained scalar equation (10) that has

the component F1. Here we neglect the other k =
←−−−−−
0, n− 3 equations from (11)

considering them as single ones

(13)

 B
(n−1)
11 F1 = g1,n−1
2∑

i=1
B

(n−2)
ji Fi = gj,n−2 (j = 2).

We separate the item with the scalar F2 in the last equation of (13), apply to
the second and first system of equations the appropriate operators

(13′) B
(n−1)
11 ,

(13′′)
(
−B(n−2)

21

)
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and sum up these both transformed objects. We get the following system
that is equivalent to (13) and whose second equation has become scalar with
respect to the component F2

(14)

{
B

(n−1)
11 F1 = g1,n−1

B
(n−1)
11 B

(n−2)
22 F2 = h1,

where

(15) h1 = B
(n−1)
11 g2,n−2 −B

(n−2)
21 g1,n−1.

It is evident that at this moment the subsystem (11) has lessened by one

equation and j = 3, n− k, k =
←−−−−−
0, n− 3.

Further we generalize the “downward” diagonalization stage in the case of
the arbitrary step number l (l = 1, n− 1). To this purpose we take into
account the subsystem of the previous step number l − 1

(16)
n−k∑
i=1

B
(k)
ji Fi = gik (j = l + 1, n− k; k =

←−−−−−−−
0, n− l − 1),

separate there the first equation and attach it to the concluding system of the
obtained scalar equations from the preceding step l − 1. Simultaneously the

rest k =
←−−−−−−−
0, n− l − 2 equations from (16) remain single.

Hence, the present system whose last equation must become scalar is written
below

(17)


p+1∏
q=1

B
(n−q)
qq Fp+1 = hp (p = 0, l − 1; h0 = g1,n−1)

l+1∑
i=1

B
(n−l−1)
ji Fi = gj,n−l−1 (j = l)

and the symbol of the finite operator product here, as later in this section, im-
plies the usual consequent operator application from the inner to the external,
i.e., from “the right to the left direction”.

Then we isolate the item with the component Fl+1 in the last equation of
(17) and apply to this (l + 1)th equation the operator

(17′)
l∏

q=1

B(n−q)
qq .

To the other equations in (17), from the first to the (l − 1)th one, we apply
the appropriate operators

(17′′)

−B(n−l−1)
l+1,r

l∏
q=r+1

B(n−q)
qq

 (r = 1, l − 1),
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while the lth equation of the same system is transformed by the operator

(17′′′)
(
−B(n−l−1)

l+1,l

)
.

Then we sum up all these l+1 transformed equations and obtain a system that
is equivalent to (17). This will be the final “scalar” system for the arbitrary
step l (l = 1, n− 2)

(18)

p+1∏
q=1

B(n−q)
qq Fp+1 = hp (p = 0, l; h0 = g1,n−1),

where

(19)
hl =

l∏
q=1

B
(n−q)
qq gl+1,n−l−1 −

l−1∑
r=1; (l 6=1)

B
(n−l−1)
l+1,r

l∏
q=r+1

B
(n−q)
qq hn−1

−B(n−l−1)
l+1,l hl−1 (l = 1, n− 2)

and the second item from the right-hand side of (19) equals zero when l = 1.
The recurrent formula (18), (19) can be easily verified even for the simplest

step l = 1.
After continuation of this “downward” diagonalization stage, including the

final step l = n − 1, we get a system of scalar equations with all wanted
components Fi (i = 1, n) (see (18) when l = n− 1)

(20)

p+1∏
q=1

B(n−q)
qq Fp+1 = hp (p = 0, n− 1; h0 = g1,n−1),

where the definite operators and functions are described by (9) and (19).
It is not difficult to notice that the final system (20) is equivalent to the

interim system (10), (11) and therefore, to the original system (1)≡(3), too.
This fact follows directly from the proposed diagonalization procedure and
completes it.

Thus we have proved the existence of the solution of the initial system by
means of the diagonalization method, so the main purpose of the paper is
attained. In other words, we have proved the following theorem by means of
the described explicit algorithm.

Theorem 1. The explicit solution of the system (1)≡(3) in terms of the
diagonalization procedure exists and can be obtained algorithmically.

5. REMARKS

In conclusion, it should be noted again that the given diagonalization pro-
cedure is irrespective of the initial and boundary conditions which become
necessary only after the diagonalization completion, when the corresponding
obtained scalar equations have to be solved. Moreover, the proposed method
can be applied to the matrices of the arbitrary block structure. In this situa-
tion, the diagonalization process acts consistently from the external blocks to
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the inner ones, until the scalar equations with respect to the original vector
function’s components are found.

Since the present diagonalizing algorithm is the operator analog to the
method for solving algebraic systems, it deals only with the matrix elements
whose explicit operator expressions are given and the procedure own course
of action “knows” in advance what kind of operator and when it is applied.
Additionally, the initial system of operators can be even nonlinear, but it has
obligatory to be bounded, invertible, and commutative in pairs (2).

The author presents apologies for the deliberate enumeration of all obvious
simple merits of the described method, because we completely understand
that its (algorithm) positive feature is more of the applied than of the pure
mathematical character.
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