THE RELATIONSHIP BETWEEN DIFFERENT SEPARATION NOTIONS ON L-TOPOLOGICAL SPACES

BAYAZ DARABY

Abstract. In the present paper we study the smooth topology and its equivalent L-topology, the corresponding L-continuous, L-open, and homeomorphism maps. We also study the concept of several separation axioms (like ST_{\circ} , ST_1 , ST_2 , and their strong and weak forms on the mentioned topology). Finally we investigate some of their properties and the relations between them.

MSC 2010. 39B72, 47H09.

Key words. L-topological space, smooth topology, separation axioms.

1. INTRODUCTION

The concept of fuzzy topology, introduced in 1968 by Chang, has been redefined in a somewhat different way by Hutton, Reilly and others. Some new definitions have been proposed by Badard in [1] and Ramadan in [3].

In the present work we study the concept of separation axioms as strong ST_{\circ} , ST_{\circ} , weak ST_{\circ} , strong ST_{1} , ST_{1} , weak ST_{1} , strong ST_{2} , ST_{2} , weak ST_{2} on an *L*-topological space that is equal to the smooth topological space. Also we investigate some of their properties and the relations between them in *L*-topological spaces.

2. PRELIMINARIES

Throughout this paper L and L' represent two completely distributive lattices with smallest element 0 (or \perp) and greatest element 1 (or \top), where $0 \neq 1$. We define M(L) to be the set of all non-zero \lor -irreducible (or coprime) elements in L such that $a \in M(L)$ if and only if $a \leq b \lor c$ implies $a \leq b$ or $a \leq c$. Let X be a non-empty set, and L^X be the set of all L-fuzzy sets on X. For each $a \in L$, let \underline{a} denote the constant-valued L-fuzzy set with a as its value. Let $\underline{0}$ and $\underline{1}$ be the smallest element and the greatest element in L^X , respectively. For the empty set $\emptyset \subset L$, we define $\land \emptyset = 1$ and $\lor \emptyset = 0$.

DEFINITION 1. An *L*-fuzzy topology on X is a map $\tau: L^X \to L$ satisfying the following three axioms:

1) $\tau(\top) = \top$,

2) $\tau(A \wedge B) \ge \tau(A) \wedge \tau(B)$ for every $A, B \in L^X$,

3) $\tau(\vee_{i\in\Delta}A_i) \ge \bigvee_{i\in\Delta}\tau(A_i)$ for every family $\{A_i \mid i\in\Delta\} \subseteq L^X$.

The pair (X, τ) is called an *L*-fuzzy topological space. For every $A \in L^X, \tau(A)$ is called the *degree of openness* of the fuzzy subset A. For $a \in L$ and a map $\tau \colon L^X \to L$, we define $\tau_{[a]} = \{A \in L^X \mid \tau(A) \ge a\}$.

DEFINITION 2. A smooth topological space (sts) (see [3]) is an ordered pair (X, τ) , where X is a non-empty set and $\tau \colon L^X \to L'$ is a mapping satisfying the following properties :

 $(O1) \ \tau(\underline{0}) = \tau(\underline{1}) = 1_L,$

 $\begin{array}{l} (O2) \quad \tau(\overrightarrow{A_1} \cap \overrightarrow{A_2}) \geq \tau(\overrightarrow{A_1}) \wedge \tau(A_2), \text{ for every } A_1, A_2 \in L^X, \\ (O3) \quad \tau(\bigcup_{i \in I} A_i) \geq \bigwedge_{i \in I} \tau(A_i), \text{ for every family } \{A_i \mid i \in I\} \subseteq L^X. \end{array}$

DEFINITION 3. A map $f: X \to Y$ is called *smoothly continuous with respect* to the smooth topologies τ_1 and τ_2 if for every $A \in L^Y$ we have $\tau_1(f^{-1}(A)) \ge \tau_2(A)$, where $f^{-1}(A)$ is defined by $f^{-1}(A)(x) = A(f(x)), \forall x \in X$.

DEFINITION 4. A map $f: X \to Y$ is called *smoothly open with respect to* the smooth topologies τ_1 and τ_2 if for each $A \in L^X$ we have $\tau_1(A) \leq \tau_2(f(A))$.

DEFINITION 5. A map $f: X \to Y$ is called a smooth homeomorphism with respect to the smooth topologies τ_1 and τ_2 if f is bijective and f and f^{-1} are smoothly continuous.

DEFINITION 6. (See [3]) A map $f: X \to Y$ is called *L*-preserving (resp., strictly *L*-preserving) with respect to the *L*-topologies $\tau_{1_{[a]}}$ and $\tau_{2_{[a]}}$, for each $a \in M(L)$, if for every $A, B \in L^Y$ with $\tau_2(A), \tau_2(B) \ge a$, we have $\tau_2(A) \ge \tau_2(B) \Rightarrow \tau_1(f^{-1}(A)) \ge \tau_1(f^{-1}(B))$

$$(\text{resp.}, \tau_2(A) \ge \tau_2(B) \Rightarrow \tau_1(f^{-1}(A)) \ge \tau_1(f^{-1}(B))$$

Note that if $f: X \to Y$ is a strictly *L*-preserving and continuous map with respect to the *L*-topologies $\tau_{1_{[a]}}$ and $\tau_{2_{[a]}}$, then for every $A \in L^Y$ with $\tau_2(A) \ge a$ the relation $f^{-1}(\overline{A}) \supseteq \overline{f^{-1}(A)}$ holds.

3. L-HOMEOMORPHISMS ON L-TOPOLOGICAL SPACES

THEOREM 7. Let $\tau: L^X \to L$ be a map. Then the following conditions are equivalent:

(1) τ is a smooth topology on X.

(2) $\tau_{[a]}$ is an L-topology on X, $\forall a \in M(L)$.

Proof. The inclusion $(1) \Rightarrow (2)$ is obvious.

 $(2) \Rightarrow (1)$ We have $\underline{1} \in \tau_{[a]}$ and $\tau(\underline{1}) \geq a$, each $a \in M(L)$. Accordingly, $\tau(\underline{1}) \geq \bigvee \{a \mid a \in M(L)\} = 1$. Thus, $\tau(\underline{1}) = 1$. Similarly, $\tau(\underline{0}) = 1$.

Let $A, B \in L^X$. If $\tau(A) \wedge \tau(B) = 0$, then $\tau(A \cap B) \geq \tau(A) \wedge \tau(B)$. Otherwise, if $\tau(A) \wedge \tau(B) > 0$, then, for each $a \leq \tau(A) \wedge \tau(B)$, we have $\tau(A) \geq a, \tau(B) \geq a$, or $A, B \in \tau_{[a]}$. Consequently, $A \cap B \in \tau_{[a]}$, or $\tau(A \cap B) \geq a$. This implies further that

$$\tau(A \cap B) \ge \bigvee \{a \in M(L) \mid a \le \tau(A) \land \tau(B)\} = \tau(A) \land \tau(B).$$

Let $\{A_i \mid i \in I\} \subseteq L^X$. Then, for $a \in M(L)$ and $a \leq \bigwedge_{i \in I} \tau(A_i)$, we have $\tau(A_i) \geq a$ and $A_i \in \tau_{[a]}$ for each $i \in I$. The assertion follows since $\bigcup_{i \in I} A_i \in \tau_{[a]}$, $\tau(\bigcup_{i \in I} A_i) \geq a$, and $\tau(\bigcup_{i \in I} A_i) \geq \bigvee \{a \in M(L) \mid a \leq \bigwedge_{i \in I} \tau(A_i)\}$. \Box

THEOREM 8. Let (X, τ_1) and (Y, τ_2) be smooth topological spaces and $f: X \to Y$ be a map. Then the following conditions are equivalent: (1) $f: (X, \tau_1) \to (Y, \tau_2)$ is a smoothly continuous map.

(2) $f(X, \tau_{1_{[a]}}) \to (Y, \tau_{2_{[a]}})$ is an L-continuous map, $\forall a \in M(L)$.

Proof. The inclusion $(1) \Rightarrow (2)$ is obvious.

(2) \Rightarrow (1) For all $A \in L^Y$, $a \in M(L)$, such that $a \leq \tau_2(A)$ we have $(A) \in \tau_{2_{[a]}}$ and $f^{-1}(A) \in \tau_{1_{[a]}}$, by the continuity of $f: (X, \tau_{1_{[a]}}) \to (Y, \tau_{2_{[a]}})$. Accordingly, $\tau_1(f^{-1}(A)) \geq a$ for each $a \in M(L) \bigcap M(\tau_2(A))$, where $M(\tau_2(A)) = \{a \in M(L) \mid a \leq \tau_2(A)\}$. It follows that $\tau_1(f^{-1}(A)) \geq \bigvee M(\tau_2(A)) = \tau_2(A)$. Thus $f: (X, \tau_1) \to (Y, \tau_2)$ is a smoothly continuous map. \Box

THEOREM 9. Let (X, τ_1) and (Y, τ_2) be smooth topological spaces, and $f: X \to Y$ be a map. Then the following conditions are equivalent: (1) $f: (X, \tau_1) \to (Y, \tau_2)$ is a smoothly open map. (2) $f: (X, \tau_{1_{[a]}}) \to (Y, \tau_{2_{[a]}})$ is L-open for each $a \in M(L)$.

Proof. The implication $(1) \Rightarrow (2)$ follows from the definition of *L*-open maps.

 $(2) \Rightarrow (1)$ Let $A \in L^X$. If $\tau_1(A) = 0$, then clearly, $\tau_1(A) \leq \tau_2(f^{-1}(A))$. If $\tau_1(A) > 0$, then since $\tau_1(A) = \bigvee M(\tau_1(A))$, we have $\tau_2(f^{-1}(A)) \geq a$ for each $a \in M(\tau_1(A))$. Hence $\tau_2(f^{-1}(A)) \geq \bigvee \{a \mid a \in M(\tau_1(A))\} = \tau_1(A)$. \Box

THEOREM 10. Let (X, τ_1) and (X, τ_2) be two smooth topological spaces, and let $f: X \to Y$ be a bijective map. The following conditions are equivalent: (1) $f: (X, \tau_1) \to (Y, \tau_2)$ is a smooth homeomorphism. (2) $f: (X, \tau_1) \to (Y, \tau_2)$ is a homeomorphism for each $a \in M(L)$

(2) $f: (X, \tau_{1_{[a]}}) \to (Y, \tau_{2_{[a]}})$ is a homeomorphism for each $a \in M(L)$.

Proof. The proof is straightforward.

4. SEPARATION AXIOMS

DEFINITION 11. Let $a \in M(L)$. The L-topological space $(X, \tau_{[a]})$ is called:

(a) a strong ST_{\circ} space if for each $x, y \in X, x \neq y$, there exists $A \in L^X$ with $\tau(A) \geq a$ such that one of the conditions $(x \in \text{supp}A, y \notin \text{supp}\overline{A} \text{ and } \tau(A) \geq A(x))$ or $(y \in \text{supp}A, x \notin \text{supp}\overline{A} \text{ and } \tau(A) \geq A(y))$ holds,

(b) an ST_{\circ} space if for each $x, y \in X$, $x \neq y$, there exists $A \in L^X$ with $\tau(A) \geq a$ such that $(x \in \text{supp}A, y \notin \text{supp}A \text{ and } \tau(A) \geq A(x))$ or $(y \in \text{supp}A, x \notin \text{supp}A \text{ and } \tau(A) \geq A(y))$,

(c) a weak ST_{\circ} space if for each $x, y \in X$, $x \neq y$, there exists $A \in L^X$ with $\tau(A) \geq a$ such that $(x \in \text{supp}A, y \notin \text{supp}A^{\circ} \text{ and } \tau(A) \geq A(x))$ or $(y \in \text{supp}A, x \notin \text{supp}A^{\circ} \text{ and } \tau(A) \geq A(y)).$

DEFINITION 12. Let $a \in M(L)$. The L-topological space $(X, \tau_{[a]})$ is called:

(a) a strong ST_1 (resp., strong ST'_1) space if for each $x, y \in X, x \neq y$, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $[x \in \text{supp}A \setminus \text{supp}\overline{B}$

(resp., $x \in \operatorname{supp}(A \setminus \overline{B})$ and $\tau(A) \ge A(x)$)] or $[y \in \operatorname{supp}B \setminus \operatorname{supp}\overline{A}$ (resp., $y \in \operatorname{supp}(B \setminus \overline{A})$) and $\tau(B) \ge B(y)$],

(b) an ST_1 (resp., ST'_1) space if for each $x, y \in X, x \neq y$, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $[x \in \text{supp}A \setminus \text{supp}B$ (resp., $x \in \text{supp}(A \setminus B)$) and $\tau(A) \geq A(x)$] or $[y \in \text{supp}B \setminus \text{supp}A$ (resp., $y \in \text{supp}(B \setminus A)$) and $\tau(B) \geq B(y)$],

(c) a weak ST_1 (resp., weak ST'_1) space if for each $x, y \in X, x \neq y$, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $[x \in \text{supp}A \setminus \text{supp}B^\circ)$ (resp., $x \in \text{supp}(A \setminus B^\circ)$) and $\tau(A) \geq A(x)$] or $[y \in \text{supp}B \setminus \text{supp}A^\circ$ (resp., $y \in \text{supp}(B \setminus A^\circ)$) and $\tau(B) \geq B(y)$].

DEFINITION 13. Let $a \in M(L)$. The L-topology $(X, \tau_{[a]})$ is called:

(a) a strong ST_2 (resp., strong ST'_2) space if for each $x, y \in X, x \neq y$, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $x \in \text{supp}A$ (resp., $x \in \text{supp}(A \setminus \overline{B})$), $\tau(A) \geq A(x), y \in \text{supp}B$ (resp., $y \in \text{supp}(B \setminus \overline{A})$), $\tau(B) \geq B(y)$, $\overline{A} \cap \overline{B} = \underline{0}$ (resp., $\overline{A} \subseteq (\overline{B})^c$),

(b) an ST_2 (resp., ST'_2) space if for each $x, y \in X, x \neq y$, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \ge a$ such that $x \in \text{supp}A$ (resp., $x \in \text{supp}(A|B)$), $\tau(A) \ge A(x), y \in \text{supp}B$ (resp., $y \in \text{supp}(B \setminus A)$), $\tau(B) \ge B(y), A \cap B = \underline{0}$ (resp., $A \subseteq B^c$),

(c) a weak ST_2 (resp., weak ST'_2) space if for each $x, y \in X, x \neq y$, there exist $A, B \in L^X$ with $\tau(A), \tau(B) \geq a$ such that $x \in \operatorname{supp} A \setminus \operatorname{supp} B^\circ$ (resp., $x \in \operatorname{supp}(A \setminus B^\circ)$), $\tau(A) \geq A(x), y \in \operatorname{supp} B \setminus \operatorname{supp} A^\circ$ (resp., $y \in \operatorname{supp}(B \setminus A^\circ)$), $\tau(B) \geq B(y), A^\circ \cap B^\circ = 0$ (resp., $A^\circ \subseteq (B^\circ)^c$).

LEMMA 14. Let $(X, \tau_{[a]})$ be an L-topological space for each $a \in M(L)$, let $A, B \in L^X$ with $\tau(A), \tau(B) \ge a$. Then the following properties hold:

- (i) $\operatorname{supp} A \setminus \operatorname{supp} B \subseteq \operatorname{supp} (A \setminus B)$,
- (ii) $\operatorname{supp} A \setminus \operatorname{supp} B \subseteq \operatorname{supp} A \setminus \operatorname{supp} B \subseteq \operatorname{supp} A \setminus \operatorname{supp} B^\circ$,

(iii) $A \setminus \overline{B} \subseteq A \setminus B \subseteq A \setminus B^{\circ}$,

(iv) $A \cap B = \underline{0} \Rightarrow A \subseteq B^c$.

Proof. (i) Let $x \in \operatorname{supp} A \setminus B$. Then A(x) > 0 and B(x) = 0. Hence $\min\{A(x), 1 - B(x)\} = A(x) > 0$, i.e., $x \in \operatorname{supp}(A \setminus B)$. Note that the reverse inclusion in (i) is not true as it can be seen from the following counterexample: Let $X = \{x_1, x_2\}, A(x_1) = 0.5, B(x_1) = 0.3$. Then we have $x_1 \in \operatorname{supp}(A \setminus B)$ and $x_1 \notin \operatorname{supp} A \setminus \operatorname{supp} B$. The properties (ii) and (iii) follow from $B^\circ \subseteq B \subseteq \overline{B}$. For (iv) we refer to [4].

COROLLARY 15. Let $(X, \tau_{[a]})$ be an L-topological space for each $a \in M(L)$. Then all relations between the separation notions listed in Figure 1 hold.

Proof. All implications in Figure 1 are straightforward consequences of Lemma 14. As an example we prove that strong ST_2 implies strong ST'_2 . Suppose that the space $(X, \tau_{[a]})$ is strong ST_2 and let $x, y \in X, x \neq y$. Since strong $ST_1 \Rightarrow ST_1 \Rightarrow$ weak ST_1 strong $ST_\circ \Rightarrow ST_\circ \Rightarrow$ weak ST_\circ $\downarrow \qquad \downarrow \qquad \downarrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$ strong $ST'_1 \Rightarrow ST'_1 \Rightarrow$ weak ST'_1 strong $ST_1 \Rightarrow ST_1 \Rightarrow$ weak ST_1 $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$ strong $ST_2 \Rightarrow ST_2 \Rightarrow$ weak ST_2 strong $ST_2 \Rightarrow ST_2 \Rightarrow$ weak ST_2 $\downarrow \qquad \downarrow \qquad \downarrow$ strong $ST'_2 \Rightarrow ST'_2 \Rightarrow$ weak ST'_2

strong
$$ST'_1 \Rightarrow ST'_1 \Rightarrow$$
 weak ST'_1
 $\uparrow \qquad \uparrow \qquad \uparrow$
strong $ST'_2 \Rightarrow ST'_2 \Rightarrow$ weak ST'_2

Fig. 1. Relationship between the different separation notions.

 $(X, \tau_{[a]})$ is strong ST_2 , it follows that there exist $A, B \in L^X$ with $\tau(A), \tau(B) \ge a$ such that $x \in \operatorname{supp} A, \tau(A) \ge A(x), y \in \operatorname{supp} B, \tau(B) \ge B(y)$ and $\overline{A} \cap \overline{B} = \underline{0}$. From the assertions (i) and (iv) of Lemma 14 it follows that $x \in \operatorname{supp}(A \setminus \overline{B}), y \in \operatorname{supp}(B \setminus \overline{A})$ and $\overline{A} \subseteq (\overline{B})^c$, hence $(X, \tau_{[a]})$ is strong ST'_2 . \Box

COROLLARY 16. The ST_i (i = 0, 1, 2) (resp., $ST'_i(i = 1, 2)$) property is a topological property, when $f: (X, \tau_1) \to (Y, \tau_2)$ is a smooth homeomorphism or $f: (X, \tau_{1_{[a]}}) \to (Y, \tau_{1_{[a]}})$ is a homeomorphism for each $a \in M(L)$.

Proof. As an example we give the proof for ST'_2 , when $(X, \tau_{1_{[a]}})$, $(Y, \tau_{2_{[a]}})$ are two *L*-topological spaces for for all $a \in M(L)$. Let $f: X \to Y$ be a homeomorphism from the ST'_2 space $(X, \tau_{1_{[a]}})$ onto a space $(Y, \tau_{2_{[a]}})$, and let $x, y \in Y$ with $x \neq y$. We have $f^{-1}(x) \neq f^{-1}(y)$, because f is bijective. Since $(X, \tau_{1_{[a]}})$ is ST'_2 , there exist $A, B \in L^X$ with $\tau(A) \geq a$ and $\tau(B) \geq a$ such that $f^{-1}(x) \in \text{supp}(A \setminus B), \ \tau_1(A) \geq A(f^{-1}(x)), \ f^{-1}(y) \in \text{supp}(B \setminus A), \ \tau_1(A) \geq$ $B(f^{-1}(y))$ and $A \subseteq B^c$. Since f is L-open it follows that for each $A \in \tau_{1_{[a]}}$ we have $f(A) \in \tau_{2_{[a]}}$, i.e., $\tau_1(A) \geq a$ yields $\tau_2(f(A)) \geq a$. Consequently, $\tau_1(A) \leq$ $\tau_2(f(A))$. Similarly, $\tau_1(B) \leq \tau_2(f(B))$. As f is bijective we have $A(f^{-1}(x)) =$ $f(A)(x), \ B(f^{-1}(y)) = f(B)(y), \ (A \setminus B)(f^{-1}(x)) = f(A \setminus B)(x) = (f(A) \cap$ $f(B^c))(x) = (f(A) \cap (f(B^c))(x) = (f(A) \cap (f(B))^c)(x) = (f(A) \setminus (f(B)))(x)$ and similarly, $(B \setminus A)(f^{-1}(y)) = (f(B) \setminus f(A))(y)$. Moreover $f(A) \subseteq f(B^c) =$ $(f(B))^c$. Hence $(Y, \tau_{2_{[a]}})$ is ST'_2 . □

COROLLARY 17. Let $f: (X, \tau_{1_{[a]}}) \to (Y, \tau_{2_{[a]}})$ be an injective, L-continuous map for each $a \in M(L)$. If $(Y, \tau_{2_{[a]}})$ is ST_i (i = 0, 1, 2) (resp., ST'_i (i = 1, 2)), then so is $(X, \tau_{1_{[a]}})$.

Proof. As an example we give the proof for ST'_2 . Pick $x, y \in X$ with $x \neq y$. We have $f(x) \neq f(y)$, because f is injective. Since $(Y, \tau_{2_{[a]}})$ is ST'_2 , there exist

 $\begin{array}{l} A,B \in L^Y \text{ with } \tau_2(A), \tau_2(B) \geq a \text{ such that } f(x) \in \mathrm{supp}(A \setminus B), \ \tau_2(A) \geq A(f(x)), \ f(y) \in \mathrm{supp}(B \setminus A), \ \tau_2(B) \geq B(f(y)) \text{ and } A \subseteq B^c. \text{ Since } f \text{ is injective and } L\text{-continuous, it follows that } f^{-1}(A) \in \tau_{1_{[a]}}, \text{ for } A \in \tau_{2_{[a]}}. \text{ Thus } \tau_2(A) \geq a \text{ yields } \tau_1(f^{-1}(A)) \geq a. \text{ It follows that } \tau_1(f^{-1}(A)) \geq \tau_2(A). \text{ Since } \tau_2(A) \geq A(f(x)), \text{ we obtain that } \tau_1(f^{-1}(A)) \geq \tau_2(A) \geq A(f(x)) = f^{-1}(A)(x), \text{ and, similarly, } \tau_1(f^{-1}(B)) \geq \tau_2(B) \geq B(f(y)) = f^{-1}(B)(y). \text{ Also,} \end{array}$

$$(A \setminus B)f(x) = f^{-1}(A \setminus B)(x) = [f^{-1}(A) \setminus (f^{-1}(B))](x) > 0,$$

i.e., $x \in \text{supp}(f^{-1}(A) \setminus (f^{-1}(B)))$. Similarly, $y \in \text{supp}(f^{-1}(B) \setminus (f^{-1}(A)))$ and $f^{-1}(A) \subseteq f^{-1}(B^c) = (f^{-1}(B))^c$. Hence $(X, \tau_{1_{[a]}})$ is ST'_2 .

COROLLARY 18. Let $f: X \to Y$ be a strict L-preserving, injective and Lcontinuous map with respect to the L-topologies $\tau_{1_{[a]}}$ and $\tau_{2_{[a]}}$ for each $a \in M(L)$. If $(Y, \tau_{2_{[a]}})$ is strong ST_i (i = 0, 1, 2) (resp., strong ST'_i (i = 1, 2)), then so is $(X, \tau_{1_{[a]}})$.

Proof. As an example we give the proof for strong ST_2 . Pick $x, y \in X$ with $x \neq y$. We have $f(x) \neq f(y)$, because f is injective. Since $(Y, \tau_{2_{[a]}})$ is strong ST_2 , there exist $A, B \in L^Y$ with $\tau(A), \tau(B) \geq a$ such that $f(x) \in$ supp $A, \tau_2(A) \geq A(f(x)), f(y) \in$ supp $(B), \tau_2(B) \geq B(f(y))$ and $\overline{A} \cap \overline{B} = \underline{0}$. Since f is injective and L-continuous, from $A \in \tau_{2_{[a]}}$ we get $f^{-1}(A) \in \tau_{1_{[a]}}$, i.e., $\tau_2(A) \geq a$ yields $\tau_1(f^{-1}(A)) \geq a$. Thus $\tau_1(f^{-1}(A) \geq \tau_2(A) \geq A(f(x)) =$ $f^{-1}(A)(x)$. Similarly, $\tau_1(f^{-1}(B)) \geq \tau_2(B) \geq B(f(y)) = f^{-1}(B)(y)$. From $f(x) \in$ supp(A) we have $x \in$ supp $(f^{-1}(A))$, and $f(y) \in$ supp(B) implies $y \in$ supp $(f^{-1}(B)$. Since f is injective and $\overline{A} \cap \overline{B} = \underline{0}$, we get $f^{-1}(\overline{A}) \cap f^{-1}(\overline{B}) =$ $\frac{f^{-1}(\underline{0}) = \underline{0}$. Since f is L-preserving and L-continuous, $f^{-1}(\overline{A}) \cap f^{-1}(\overline{B}) \supseteq$ $f^{-1}(A) \cap \overline{f^{-1}(B)}$. So $\overline{f^{-1}(A)} \cap \overline{f^{-1}(B)} = \underline{0}$. Hence $(X, \tau_{1_{[a]}})$ is strong ST_2 . \Box

REFERENCES

- [1] BADARD, R., Smooth axiomatics, The 1st IFSA Congress, Palma de Mallorea, July 1986.
- [2] CHANG, C.L., Fuzzy topological spaces, J. Math. Anal. Appl., 24 (1968) 182-193.
- [3] EL-GAYYAR, M.K., KERRE, E.E. and RAMADAN, A.A., On smooth topological spaces II: separation axioms, Fuzzy Sets and Systems, 119 (2001) 495-504.
- [4] GHANIM, M.H., KERRE, E.E. and MASHHOUR, A.S., Separation axioms, subspaces and sums in fuzzy topology, J. Math. Anal. Appl., 102 (1984) 189-202.
- [5] HUTTON, B., Normality in fuzzy topological spaces, J. Math. Anal. Appl., 50 (1975) 74-79.
- [6] RAMADAN, A.A., Smooth topological space, Fuzzy Sets and Systems, 48 (1992) 371-375.
- [7] ZHANG, J., SHI, F.G. and ZHENG, C.Y., On L-fuzzy topological spaces, Fuzzy Sets and Systems, 149 (2005), 473-484.

University of Maragheh Department of Mathematics Maragheh, Iran E-mail: bayazdaraby@yahoo.com