
MATHEMATICA, Tome 54 (77), No Spécial, 2012, pp. 47–52

THE RELATIONSHIP BETWEEN DIFFERENT SEPARATION
NOTIONS ON L-TOPOLOGICAL SPACES

BAYAZ DARABY

Abstract. In the present paper we study the smooth topology and its equivalent
L-topology, the corresponding L-continuous, L-open, and homeomorphism maps.
We also study the concept of several separation axioms (like ST◦, ST1, ST2, and
their strong and weak forms on the mentioned topology). Finally we investigate
some of their properties and the relations between them.
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1. INTRODUCTION

The concept of fuzzy topology, introduced in 1968 by Chang, has been
redefined in a somewhat different way by Hutton, Reilly and others. Some
new definitions have been proposed by Badard in [1] and Ramadan in [3].

In the present work we study the concept of separation axioms as strong
ST◦, ST◦, weak ST◦, strong ST1, ST1, weak ST1, strong ST2, ST2, weak ST2
on an L-topological space that is equal to the smooth topological space. Also
we investigate some of their properties and the relations between them in
L-topological spaces.

2. PRELIMINARIES

Throughout this paper L and L′ represent two completely distributive lat-
tices with smallest element 0 (or ⊥) and greatest element 1 (or >), where
0 6= 1. We define M(L) to be the set of all non-zero ∨-irreducible (or coprime)
elements in L such that a ∈ M(L) if and only if a ≤ b ∨ c implies a ≤ b or
a ≤ c. Let X be a non-empty set, and LX be the set of all L-fuzzy sets on
X. For each a ∈ L, let a denote the constant-valued L-fuzzy set with a as its
value. Let 0 and 1 be the smallest element and the greatest element in LX ,
respectively. For the empty set ∅ ⊂ L, we define ∧∅ = 1 and ∨∅ = 0.

Definition 1. An L-fuzzy topology on X is a map τ : LX → L satisfying
the following three axioms:
1) τ(>) = >,
2) τ(A ∧B) ≥ τ(A) ∧ τ(B) for every A,B ∈ LX ,
3) τ(∨i∈4Ai) ≥

∨
i∈4 τ(Ai) for every family {Ai | i ∈ 4} ⊆ LX .

The pair (X, τ) is called an L-fuzzy topological space. For every A ∈
LX , τ(A) is called the degree of openness of the fuzzy subset A. For a ∈ L and
a map τ : LX → L, we define τ[a] =

{
A ∈ LX | τ(A) ≥ a

}
.
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Definition 2. A smooth topological space (sts) (see [3]) is an ordered pair
(X, τ), where X is a non-empty set and τ : LX → L′ is a mapping satisfying
the following properties :
(O1) τ(0) = τ(1) = 1L,
(O2) τ(A1 ∩A2) ≥ τ(A1) ∧ τ(A2), for every A1, A2 ∈ LX ,
(O3) τ(

⋃
i∈I Ai) ≥

∧
i∈I τ(Ai), for every family {Ai | i ∈ I} ⊆ LX .

Definition 3. A map f : X → Y is called smoothly continuous with respect
to the smooth topologies τ1 and τ2 if for every A ∈ LY we have τ1(f

−1(A)) ≥
τ2(A), where f−1(A) is defined by f−1(A)(x) = A(f(x)), ∀x ∈ X.

Definition 4. A map f : X → Y is called smoothly open with respect to
the smooth topologies τ1 and τ2 if for each A ∈ LX we have τ1(A) ≤ τ2(f(A)).

Definition 5. A map f : X → Y is called a smooth homeomorphism with
respect to the smooth topologies τ1 and τ2 if f is bijective and f and f−1 are
smoothly continuous.

Definition 6. (See [3]) A map f : X → Y is called L-preserving (resp.,
strictly L-preserving) with respect to the L-topologies τ1[a] and τ2[a] , for each

a ∈M(L), if for every A,B ∈ LY with τ2(A), τ2(B) ≥ a, we have

τ2(A) ≥ τ2(B)⇒ τ1(f
−1(A)) ≥ τ1(f−1(B))

(resp., τ2(A) > τ2(B)⇒ τ1(f
−1(A)) > τ1(f

−1(B)) .

Note that if f : X → Y is a strictly L-preserving and continuous map with
respect to the L-topologies τ1[a] and τ2[a] , then for every A ∈ LY with τ2(A) ≥ a
the relation f−1(A) ⊇ f−1(A) holds.

3. L-HOMEOMORPHISMS ON L-TOPOLOGICAL SPACES

Theorem 7. Let τ : LX → L be a map. Then the following conditions are
equivalent:
(1) τ is a smooth topology on X.
(2) τ[a] is an L-topology on X, ∀a ∈M(L).

Proof. The inclusion (1)⇒ (2) is obvious.
(2) ⇒ (1) We have 1 ∈ τ[a] and τ(1) ≥ a, each a ∈ M(L). Accordingly,

τ(1) ≥
∨
{a | a ∈M(L)} = 1. Thus, τ(1) = 1. Similarly, τ(0) = 1.

Let A,B ∈ LX . If τ(A)∧τ(B) = 0, then τ(A∩B) ≥ τ(A)∧τ(B). Otherwise,
if τ(A)∧τ(B) > 0, then, for each a ≤ τ(A)∧τ(B), we have τ(A) ≥ a, τ(B) ≥ a,
or A,B ∈ τ[a]. Consequently, A ∩ B ∈ τ[a], or τ(A ∩ B) ≥ a. This implies
further that

τ(A ∩B) ≥
∨
{a ∈M(L) | a ≤ τ(A) ∧ τ(B)} = τ(A) ∧ τ(B).

Let {Ai | i ∈ I} ⊆ LX . Then, for a ∈ M(L) and a ≤
∧

i∈I τ(Ai), we have
τ(Ai) ≥ a and Ai ∈ τ[a] for each i ∈ I. The assertion follows since

⋃
i∈I Ai ∈

τ[a], τ(
⋃

i∈I Ai) ≥ a, and τ(
⋃

i∈I Ai) ≥
∨{

a ∈M(L) | a ≤
∧

i∈I τ(Ai)
}

. �
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Theorem 8. Let (X, τ1) and (Y, τ2) be smooth topological spaces and f : X →
Y be a map. Then the following conditions are equivalent:
(1) f : (X, τ1)→ (Y, τ2) is a smoothly continuous map.
(2) f(X, τ1[a])→ (Y, τ2[a]) is an L-continuous map, ∀a ∈M(L).

Proof. The inclusion (1)⇒ (2) is obvious.
(2) ⇒ (1) For all A ∈ LY , a ∈ M(L), such that a ≤ τ2(A) we have (A) ∈

τ2[a] and f−1(A) ∈ τ1[a] , by the continuity of f : (X, τ1[a]) → (Y, τ2[a]). Ac-

cordingly, τ1(f
−1(A)) ≥ a for each a ∈M(L)

⋂
M(τ2(A)), where M(τ2(A)) =

{a ∈M(L) | a ≤ τ2(A)}. It follows that τ1(f
−1(A)) ≥

∨
M(τ2(A)) = τ2(A).

Thus f : (X, τ1)→ (Y, τ2) is a smoothly continuous map. �

Theorem 9. Let (X, τ1) and (Y, τ2) be smooth topological spaces, and f : X →
Y be a map. Then the following conditions are equivalent:
(1) f : (X, τ1)→ (Y, τ2) is a smoothly open map.
(2) f : (X, τ1[a])→ (Y, τ2[a]) is L-open for each a ∈M(L).

Proof. The implication (1) ⇒ (2) follows from the definition of L-open
maps.

(2) ⇒ (1) Let A ∈ LX . If τ1(A) = 0, then clearly, τ1(A) ≤ τ2(f
−1(A)). If

τ1(A) > 0, then since τ1(A) =
∨
M(τ1(A)), we have τ2(f

−1(A)) ≥ a for each
a ∈M(τ1(A)). Hence τ2(f

−1(A)) ≥
∨
{a | a ∈M(τ1(A))} = τ1(A). �

Theorem 10. Let (X, τ1) and (X, τ2) be two smooth topological spaces, and
let f : X → Y be a bijective map. The following conditions are equivalent:
(1) f : (X, τ1)→ (Y, τ2) is a smooth homeomorphism.
(2) f : (X, τ1[a])→ (Y, τ2[a]) is a homeomorphism for each a ∈M(L).

Proof. The proof is straightforward. �

4. SEPARATION AXIOMS

Definition 11. Let a ∈M(L). The L-topological space (X, τ[a]) is called:

(a) a strong ST◦ space if for each x, y ∈ X, x 6= y, there exists A ∈ LX

with τ(A) ≥ a such that one of the conditions (x ∈ suppA, y /∈ suppA and
τ(A) ≥ A(x)) or (y ∈ suppA, x /∈ suppA and τ(A) ≥ A(y)) holds,

(b) an ST◦ space if for each x, y ∈ X, x 6= y, there exists A ∈ LX with
τ(A) ≥ a such that (x ∈ suppA, y /∈ suppA and τ(A) ≥ A(x)) or (y ∈
suppA, x /∈ suppA and τ(A) ≥ A(y)),

(c) a weak ST◦ space if for each x, y ∈ X, x 6= y, there exists A ∈ LX

with τ(A) ≥ a such that (x ∈ suppA, y /∈ suppA◦ and τ(A) ≥ A(x)) or
(y ∈ suppA, x /∈ suppA◦ and τ(A) ≥ A(y)).

Definition 12. Let a ∈M(L). The L-topological space (X, τ[a]) is called:

(a) a strong ST1 (resp., strong ST ′1) space if for each x, y ∈ X, x 6= y,
there exist A,B ∈ LX with τ(A), τ(B) ≥ a such that [x ∈ suppA \ suppB
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(resp., x ∈ supp(A \ B) and τ(A) ≥ A(x))] or [y ∈ suppB \ suppA (resp.,
y ∈ supp(B \A)) and τ(B) ≥ B(y)],

(b) an ST1 (resp., ST ′1) space if for each x, y ∈ X, x 6= y, there exist
A,B ∈ LX with τ(A), τ(B) ≥ a such that [x ∈ suppA \ suppB (resp., x ∈
supp(A\B)) and τ(A) ≥ A(x)] or [y ∈ suppB\suppA (resp., y ∈ supp(B\A))
and τ(B) ≥ B(y)],

(c) a weak ST1 (resp., weak ST ′1) space if for each x, y ∈ X, x 6= y, there
exist A,B ∈ LX with τ(A), τ(B) ≥ a such that [x ∈ suppA \ suppB◦) (resp.,
x ∈ supp(A \ B◦)) and τ(A) ≥ A(x)] or [y ∈ suppB \ suppA◦ (resp., y ∈
supp(B \A◦)) and τ(B) ≥ B(y)].

Definition 13. Let a ∈M(L). The L-topology (X, τ[a]) is called:

(a) a strong ST2 (resp., strong ST ′2) space if for each x, y ∈ X, x 6= y,
there exist A,B ∈ LX with τ(A), τ(B) ≥ a such that x ∈ suppA (resp., x ∈
supp(A\B)), τ(A) ≥ A(x), y ∈ suppB (resp., y ∈ supp(B \A)), τ(B) ≥ B(y),
A ∩B = 0 (resp., A ⊆ (B)c),

(b) an ST2 (resp., ST ′2) space if for each x, y ∈ X, x 6= y, there exist
A,B ∈ LX with τ(A), τ(B) ≥ a such that x ∈ suppA (resp., x ∈ supp(A B)),
τ(A) ≥ A(x), y ∈ suppB (resp., y ∈ supp(B \ A)), τ(B) ≥ B(y), A ∩ B = 0
(resp., A ⊆ Bc),

(c) a weak ST2 (resp., weak ST ′2) space if for each x, y ∈ X, x 6= y, there
exist A,B ∈ LX with τ(A), τ(B) ≥ a such that x ∈ suppA \ suppB◦ (resp.,
x ∈ supp(A\B◦)), τ(A) ≥ A(x), y ∈ suppB\suppA◦ (resp., y ∈ supp(B\A◦)),
τ(B) ≥ B(y), A◦ ∩B◦ = 0 (resp., A◦ ⊆ (B◦)c).

Lemma 14. Let (X, τ[a]) be an L-topological space for each a ∈ M(L), let

A,B ∈ LX with τ(A), τ(B) ≥ a. Then the following properties hold:
(i) suppA \ suppB ⊆ supp(A \B),
(ii) suppA \ suppB ⊆ suppA \ suppB ⊆ suppA \ suppB◦,
(iii) A\B ⊆ A\B ⊆ A\B◦,
(iv) A ∩B = 0⇒ A ⊆ Bc.

Proof. (i) Let x ∈ suppA\suppB. Then A(x) > 0 and B(x) = 0. Hence
min{A(x), 1−B(x)} = A(x) > 0, i.e., x ∈ supp(A \B). Note that the reverse
inclusion in (i) is not true as it can be seen from the following counterexample:
Let X = {x1, x2}, A(x1) = 0.5, B(x1) = 0.3. Then we have x1 ∈ supp(A\B)
and x1 /∈ suppA\suppB. The properties (ii) and (iii) follow from B◦ ⊆ B ⊆ B.
For (iv) we refer to [4]. �

Corollary 15. Let (X, τ[a]) be an L-topological space for each a ∈M(L).
Then all relations between the separation notions listed in Figure 1 hold.

Proof. All implications in Figure 1 are straightforward consequences of
Lemma 14. As an example we prove that strong ST2 implies strong ST ′2.
Suppose that the space (X, τ[a]) is strong ST2 and let x, y ∈ X, x 6= y.
Since
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strong ST1 ⇒ ST1 ⇒ weak ST1 strong ST◦ ⇒ ST◦ ⇒ weak ST◦

⇓ ⇓ ⇓ ⇑ ⇑ ⇑
strong ST ′1 ⇒ ST ′1 ⇒ weak ST ′1 strong ST1 ⇒ ST1 ⇒ weak ST1

⇑ ⇑ ⇑ ⇑ ⇑ ⇑
strong ST2 ⇒ ST2 ⇒ weak ST2 strong ST2 ⇒ ST2 ⇒ weak ST2

⇓ ⇓ ⇓
strongST ′2 ⇒ ST ′2 ⇒ weakST ′2

strong ST ′1 ⇒ ST ′1 ⇒ weak ST ′1
⇑ ⇑ ⇑

strong ST ′2 ⇒ ST ′2 ⇒ weak ST ′2

Fig. 1. Relationship between the different separation notions.

(X, τ[a]) is strong ST2, it follows that there exist A,B ∈ LX with τ(A), τ(B) ≥
a such that x ∈ suppA, τ(A) ≥ A(x), y ∈ suppB, τ(B) ≥ B(y) and A ∩
B = 0. From the assertions (i) and (iv) of Lemma 14 it follows that x ∈
supp(A\B), y ∈ supp(B \A) and A ⊆ (B)c, hence (X, τ[a]) is strong ST ′2. �

Corollary 16. The STi (i = 0, 1, 2) (resp., ST ′i (i = 1, 2)) property is a
topological property, when f : (X, τ1) → (Y, τ2) is a smooth homeomorphism
or f : (X, τ1[a])→ (Y, τ1[a]) is a homeomorphism for each a ∈M(L).

Proof. As an example we give the proof for ST ′2, when (X, τ1[a]), (Y, τ2[a])

are two L-topological spaces for for all a ∈ M(L). Let f : X → Y be a
homeomorphism from the ST ′2 space (X, τ1[a]) onto a space (Y, τ2[a]), and let

x, y ∈ Y with x 6= y. We have f−1(x) 6= f−1(y), because f is bijective. Since
(X, τ1[a]) is ST ′2, there exist A,B ∈ LX with τ(A) ≥ a and τ(B) ≥ a such that

f−1(x) ∈ supp(A \ B), τ1(A) ≥ A(f−1(x)), f−1(y) ∈ supp(B \ A), τ1(A) ≥
B(f−1(y)) and A ⊆ Bc. Since f is L-open it follows that for each A ∈ τ1[a] we

have f(A) ∈ τ2[a] , i.e., τ1(A) ≥ a yields τ2(f(A)) ≥ a. Consequently, τ1(A) ≤
τ2(f(A)). Similarly, τ1(B) ≤ τ2(f(B)). As f is bijective we have A(f−1(x)) =
f(A)(x), B(f−1(y)) = f(B)(y), (A \ B)(f−1(x)) = f(A \ B)(x) = (f(A) ∩
f(Bc))(x) = (f(A) ∩ (f(Bc))(x) = (f(A) ∩ (f(B))c)(x) = (f(A) \ (f(B)))(x)
and similarly, (B \A)(f−1(y)) = (f(B) \ f(A))(y). Moreover f(A) ⊆ f(Bc) =
(f(B))c. Hence (Y, τ2[a]) is ST ′2. �

Corollary 17. Let f : (X, τ1[a]) → (Y, τ2[a]) be an injective, L-continuous

map for each a ∈M(L). If (Y, τ2[a]) is STi (i = 0, 1, 2) (resp., ST ′i (i = 1, 2)),

then so is (X, τ1[a]).

Proof. As an example we give the proof for ST ′2. Pick x, y ∈ X with x 6= y.
We have f(x) 6= f(y), because f is injective. Since (Y, τ2[a]) is ST ′2, there exist
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A,B ∈ LY with τ2(A), τ2(B) ≥ a such that f(x) ∈ supp(A \ B), τ2(A) ≥
A(f(x)), f(y) ∈ supp(B \ A), τ2(B) ≥ B(f(y)) and A ⊆ Bc. Since f is
injective and L-continuous, it follows that f−1(A) ∈ τ1[a] , for A ∈ τ2[a] . Thus

τ2(A) ≥ a yields τ1(f
−1(A)) ≥ a. It follows that τ1(f

−1(A)) ≥ τ2(A). Since
τ2(A) ≥ A(f(x)), we obtain that τ1(f

−1(A)) ≥ τ2(A) ≥ A(f(x)) = f−1(A)(x),
and, similarly, τ1(f

−1(B)) ≥ τ2(B) ≥ B(f(y)) = f−1(B)(y). Also,

(A \B)f(x) = f−1(A \B)(x) = [f−1(A) \ (f−1(B))](x) > 0,

i.e., x ∈ supp(f−1(A) \ (f−1(B))). Similarly, y ∈ supp(f−1(B) \ (f−1(A)))
and f−1(A) ⊆ f−1(Bc) = (f−1(B))c. Hence (X, τ1[a]) is ST ′2. �

Corollary 18. Let f : X → Y be a strict L-preserving, injective and L-
continuous map with respect to the L-topologies τ1[a] and τ2[a] for each a ∈
M(L). If (Y, τ2[a]) is strong STi (i = 0, 1, 2) (resp., strong ST ′i (i = 1, 2)),

then so is (X, τ1[a]).

Proof. As an example we give the proof for strong ST2. Pick x, y ∈ X
with x 6= y. We have f(x) 6= f(y), because f is injective. Since (Y, τ2[a])

is strong ST2, there exist A,B ∈ LY with τ(A), τ(B) ≥ a such that f(x) ∈
suppA, τ2(A) ≥ A(f(x)), f(y) ∈ supp(B), τ2(B) ≥ B(f(y)) and A ∩ B = 0.
Since f is injective and L-continuous, from A ∈ τ2[a] we get f−1(A) ∈ τ1[a] ,
i.e., τ2(A) ≥ a yields τ1(f

−1(A)) ≥ a. Thus τ1(f
−1(A) ≥ τ2(A) ≥ A(f(x)) =

f−1(A)(x). Similarly, τ1(f
−1(B)) ≥ τ2(B) ≥ B(f(y)) = f−1(B)(y). From

f(x) ∈ supp(A) we have x ∈ supp(f−1(A)), and f(y) ∈ supp(B) implies
y ∈ supp(f−1(B). Since f is injective and A∩B = 0, we get f−1(A)∩f−1(B) =
f−1(0) = 0. Since f is L-preserving and L-continuous, f−1(A) ∩ f−1(B) ⊇
f−1(A)∩f−1(B). So f−1(A)∩f−1(B) = 0. Hence (X, τ1[a]) is strong ST2. �
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