REMARKS ON GENERALIZED BRAUER PAIRS

CONSTANTIN COSMIN TODEA

Abstract. Let k be an algebraically closed field of characteristic p, G a finite group, N a normal subgroup of G and c a G-stable block of kN. Then there exist generalized Brauer pairs, called (c, G)-Brauer pairs, and denoted by (Q, e_Q) , where Q is a p-subgroup of G and e_Q a block of $kC_N(Q)$. If G = N, then the generalized Brauer pairs becomes the usual c-Brauer pairs. If (P, e_P) is a maximal (c, G)-Brauer pair, we prove that e_P is a nilpotent block. We also prove a generalization of Brauer's third main theorem.

MSC 2010. 20C20.

Key words. Finite group, block, generalized Brauer pair, Brauer homomorphism.

1. PRELIMINARIES

Throughout this paper we consider k an algebraically closed field of characteristic p, G a finite group, N a normal subgroup of G and c a G-stable block of kN, that is c is a primitive idempotent of Z(kN) fixed by conjugation action of G.

Using the approach from [2], in [3, Section 3] R. Kessar and R. Stancu gave the definition of a generalized (c, G)-Brauer pair, generalized Brauer category, Brauer homomorphism etc. In the next lines we explicitly restate the definition of generalized (c, G)-Brauer pairs and a few interesting properties. We also include the approach of pointed groups, which is not used in [3].

In Section 2 we prove that for a maximal (c, G)-Brauer pair denoted (P, e_P) it is true that e_P is a nilpotent block of $kC_N(P)$. We will make some intuitive connection between maximal (c, G)-Brauer pairs and defect pointed groups.

In Section 3, similarly to [6, Section 40], we define a normal relation denoted " \leq " between (c, G)-Brauer pairs which has as transitive closure the order relation from [2, Section 1], which we denote " \leq ". This allows us to imitate the proof of Brauer's third main theorem [6, Theorem 40.17].

We will use basic definitions, results and notations regarding block theory from [6].

For any *p*-subgroup Q of G the canonical projection from kN to $kC_N(Q)$ induces a surjective homomorphism of algebras from $(kN)^Q$ onto $kC_N(Q)$, the Brauer homomorphism denoted by Br_Q^N (see [1]). Explicitly, $\operatorname{Br}_Q^N(x) = x$ if $x \in C_N(Q)$ and $\operatorname{Br}_Q^N(x) = 0$ if $x \notin C_N(Q)$. Since A := kN is a *p*-permutation

This research has been supported by the Romanian PN-II-IDEI-PCE-2007-1 project ID_532, contract no. 29/01.10.2007.

G-algebra, *c* is a primitive idempotent of $A^G \subseteq A^N = Z(kN)$ and cAc = cA = Ac remains a *p*-permutation algebra, we can adopt the approach of [2] for generalized Brauer pairs.

DEFINITION 1.1. A (c, G)-Brauer pair is a pair (Q, e_Q) , where Q is a psubgroup of G such that $\operatorname{Br}_Q^N(c) \neq 0$ and $\operatorname{Br}_Q^N(c)e_Q \neq 0$. When G = N a (c, G)-Brauer pair is also known as a c-Brauer pair.

There is an order relation on the set of generalized Brauer pairs:

DEFINITION 1.2. Let (R, e_R) and (Q, e_Q) be two (c, G)-Brauer pair. We say that (Q, e_Q) is *contained* in (R, e_R) and we write $(Q, e_Q) \leq (R, e_R)$, if $Q \leq R$ and for any primitive idempotent $i \in (kN)^R$ such that $\operatorname{Br}_R^N(i)e_R \neq 0$ we have $\operatorname{Br}_Q^N(i)e_Q \neq 0$.

This order relation is compatible with the conjugation of G.

REMARK 1.3. By [2, Theorem 1.8], if (R, e_R) is a (c, G)-Brauer pair, then for any $Q \leq R$ there is a unique (c, G)-Brauer pair such that $(Q, e_Q) \leq (R, e_R)$.

REMARK 1.4. By [2, Theorem 1.14], G acts transitively on maximal (c, G)-Brauer pairs, equivalently all maximal (c, G)-Brauer pairs are G-conjugate. If (P, e_P) is a maximal (c, G)-Brauer pair, then P is called a (c, G)-defect group. If N = G, then P is a defect group of c in the usual sense.

2. POINTED GROUPS AND GENERALIZED BRAUER PAIRS

We consider A = kN as *p*-permutation *G*-algebra which is not interior, with Ac = kNc a primitive *G*-algebra. $N_{\{c\}}$ and $G_{\{c\}}$ are pointed groups on *A*. We remind that P_{γ} is a defect pointed group of $G_{\{c\}}$ if P_{γ} is a maximal local pointed group on *A* included in $G_{\{c\}}$. By [6, Theorem 18.5] this is equivalent to *P* being a maximal *p*-subgroup of *G* such that $Br_P^N(c) \neq 0$.

PROPOSITION 2.1. Let P_{γ} be a defect pointed group of $G_{\{c\}}$ on A. Then there is a unique (c, G)-Brauer pair (P, e_P) such that $\operatorname{Br}_P^N(i)e_P \neq 0$ for any $i \in \gamma$. Moreover, (P, e_p) is a maximal (c, G)-Brauer pair, thus P is a (c, G)defect group.

Proof. For $i \in \gamma$, $i \in (kNc)^P$ is a primitive idempotent with $\operatorname{Br}_P^N(i) \neq 0$. $\operatorname{Br}_P^N(i)$ is a primitive idempotent in $kC_N(P)$ since Br_P^N is surjective. It follows that there is a block $e_P \in Z(kC_N(P))$ such that $\operatorname{Br}_P^N(i)e_P \neq 0$. This block is unique since otherwise by contradiction it follows that $\operatorname{Br}_P^N(i)$ is a primitive idempotent in $kC_N(P)$, which is in the primitive decompositions in $kC_N(P)$ of two blocks.

Since P_{γ} is a defect pointed group we have $\operatorname{Br}_{P}^{N}(c) \neq 0$ and then $\operatorname{Br}_{P}^{N}(c)e_{P} \neq 0$. By contradiction, if $\operatorname{Br}_{P}^{N}(c)e_{P} = 0$, then

$$Br_P^N(i)e_P = Br_P^N(ic)e_P = Br_P^N(i)Br_P^N(c)e_P = 0,$$

false. The last part of the proof is obvious.

For proving the main result of this section we need the following lemma which gives a particular result in group theory.

LEMMA 2.2. Let N be a normal subgroup of a finite group G and P a psubgroup of G such that $P \cap N \neq 1$. Then $Z(P) \cap N \neq 1$.

Proof. The *p*-group P acts on the set $P \cap N$ by conjugation. We denote by $\mathcal{O}(n_i), i \in \{1, \ldots, k\}$ the orbits of this P-set, where n_i are chosen representatives. By [5, Theorem 2.97, Proposition 2.98] we have:

$$|P \cap N| = \sum_{i=1}^{k} |\mathcal{O}(n_i)| = \sum_{i=1}^{k} [P:P_{n_i}].$$

If $n_i \in Z(P) \cap N$, then its orbit $\mathcal{O}(n_i) = \{n_i\}$ and $P_{n_i} = P$. It follows that:

$$|P \cap N| = |Z(P) \cap N| + \sum_{\substack{i=1 \\ \mathcal{O}(n_i) \neq \{n_i\}}}^k [P : P_{n_i}],$$

where the orbit of n_i has more than one element. Since $P \cap N$ is a nontrivial p-group and p divides $\sum_{\substack{i=1 \\ \mathcal{O}(n_i) \neq \{n_i\}}}^k [P:P_{n_i}]$, it follows that p divides $|Z(P) \cap N|$, which concludes the proof.

REMARK 2.3. By [4, Propsition 5.3] applied to our case, P_{γ} is a defect pointed group of $G_{\{c\}}$ on A if and only if $\overline{P} = PN/N$ is a Sylow p-subgroup of $\overline{G} = G/N$ and there is Q_{δ} a defect pointed group of $N_{\{c\}}$ on the N-algebra kN such that $Q_{\delta} \leq P_{\gamma}$. In this case $Q = P \cap N$, thus $P \cap N \neq 1$.

REMARK 2.4. Using Lemma 2.2 and Remark 2.3 it is not difficult to prove that if P_{γ} is a defect pointed group of $G_{\{c\}}$ and (P, e_P) is the maximal (c, G)-Brauer pair then $Z(P) \cap N \neq 1$ is included in any defect group of the block e_P in $kC_N(P)$.

Let B = kNc be the primitive *G*-algebra, which is the localization of $G_{\{c\}}$ in A, and let P_{γ} be a defect pointed group of B. We remind that $S(\gamma) = B^P/m_{\gamma}$ is a simple *k*-algebra called the *multiplicity algebra*, where $m_{\gamma} = J(B^P)$ is the unique maximal ideal of B^P such that $\gamma \notin m_{\gamma}$. Then $S(\gamma) \simeq \operatorname{End}_k(V(\gamma))$, where $V(\gamma)$ is the simple B^P -module called the *multiplicity module*.

By [6, Lemma 14.5] we can view, slightly differently, the multiplicity algebra $S(\gamma)$ as a simple quotient of $kC_N(P)$ and thus $S(\gamma)$ isomorphic with the *k*-endomorphism algebra of a simple $kC_N(P)$ -module. Explicitly, this module is $V(\gamma) = kC_N(P) \text{Br}_P^N(i) / J(kC_N(P)) \text{Br}_P^N(i).$

We denote $\overline{N} = N_G(P_\gamma)/P$ and $\overline{C} = C_N(P)/Z(P) \cap N$. Remark that $\overline{C} = C_N(P)/P \cap C_N(P) \simeq PC_N(P)/P$, which is a subgroup of \overline{N} .

LEMMA 2.5. Under the above conditions the multiplicity module $V(\gamma)$ is simple and projective as a $k\overline{C}$ -module.

Proof. $V(\gamma)$ is a simple $kC_N(P)$ -module and $Z(P) \cap N$ a normal *p*-subgroup of $C_N(P)$. By [6, Corollary 21.2] $Z(P) \cap N$ acts trivially on every simple $kC_N(P)$ -module, thus $V(\gamma)$ is simple as $k\overline{C}$ -module.

The multiplicity algebra $S(\gamma)$ has a \overline{N} -algebra structure, which is not necessarily interior on restriction to the subgroup $PC_G(P)/P$ but is interior on restriction to the subgroup \overline{C} . By [6, Example 10.9] the multiplicity module $V(\gamma)$ of P_{γ} is endowed with a $k_{\sharp}\overline{N}$ -module structure which extends the structure of $V(\gamma)$ as $k\overline{C}$ -module. Since B is a primitive G-algebra by [6, Theorem 19.2] we have that $V(\gamma)$ is projective as $k_{\sharp}\overline{N}$ -module. By [6, Corollary 17.8] this is equivalent to the fact that the \overline{N} -algebra $S(\gamma) = \operatorname{End}_k(V(\gamma))$ is projective algebra relative to $\{1\}$. Further this is equivalent to the surjectivity of the relative transfer map $t_1^{\overline{N}}: S(\gamma) \longrightarrow S(\gamma)^{\overline{N}}$.

the relative transfer map $t_1^{\overline{N}}: S(\gamma) \longrightarrow S(\gamma)^{\overline{N}}$. Since $V(\gamma)$ is simple on restriction to $k\overline{C}$, it follows by Schur's lemma that $S(\gamma)^{\overline{C}} \cong k$, and a fortiori $S(\gamma)^{\overline{N}} \cong k$. Therefore the relative trace map $t_1^{\overline{N}}$ factorizes as

$$S(\gamma) \xrightarrow{t_1^{\overline{C}}} k \xrightarrow{t_{\overline{C}}^{\overline{N}}} k \xrightarrow{t_{\overline{$$

 $\overline{N}/\overline{C}$ acts trivially on k thus by definition of relative trace map $t_{\overline{C}}^{\overline{N}}$ is multiplication by $[\overline{N}:\overline{C}]$, which is either 0 or an isomorphism.

We conclude that $t_1^{\overline{N}}$ is surjective if and only if $t_1^{\overline{C}}$ is surjective and $[\overline{N} : \overline{C}] 1_k \neq 0$. By [6, Corollary 17.4] it follows that $V(\gamma)$ is projective on restriction to $k\overline{C}$.

We conclude with the main result of this section:

PROPOSITION 2.6. Let P_{γ} be a defect pointed group of $G_{\{c\}}$ and (P, e_P) the unique maximal (c, G)-Brauer pair with the property that $\operatorname{Br}_P^N(i)e_P \neq 0$. Then $Z(P) \cap N$ is a defect group of e_P . In particular, e_P is a nilpotent block of $kC_N(P)$.

Proof. From Lemma 2.5 we know that $V(\gamma)$ is simple and projective as a $k\overline{C}$ -module, thus by [6, Theorem 39.1] $V(\gamma)$ belongs to a block \overline{e} of $k\overline{C}$ with defect 0. By [6, Proposition 39.2] \overline{e} lifts to a block e of $kC_N(P)$ with defect group $Z(P) \cap N$ since $Z(P) \cap N$ is a central p-subgroup of $C_N(P)$. Moreover, there is a unique simple $kC_N(P)e$ -module up to isomorphism, which is $V(\gamma)$. Since e_P belongs to $V(\gamma)$ it follows that $e_P = e$, thus its defect group is $Z(P) \cap N$.

Since e_P has $Z(P) \cap N$ as defect group which is central in $C_N(P)$ by [6, Corllary 49.11], it follows that e_P is a nilpotent block.

If G = N we obtain the well known result that Z(P) is the defect group of e_P as a block of $kC_G(P)$ and e_P is a nilpotent block.

3. BRAUER'S THIRD MAIN THEOREM

If Q and P are two p-subgroups such that Q is normal in P, then $kC_N(Q)$ is a P-algebra by conjugation on which Q acts trivially and we view as a P/Q-algebra. Moreover, it is a p-permutation algebra. Thus there is the Brauer homomorphism, which we denote by $\operatorname{Br}_{P/Q}^N$ and which appears in [2, Proposition 1.5]:

$$\operatorname{Br}_{P/Q}^N : (kC_N(Q))^{P/Q} \longrightarrow kC_N(P).$$

 $\operatorname{Br}_{P/Q}^{N}$ is in fact the restriction of the Brauer homomorphism $\operatorname{Br}_{P}^{N}$ for kN to $(kC_{N}(Q))^{P}$.

By [2, Proposition 1.5, Theorem 1.8] we have the next remark:

REMARK 3.1. If (P, e) is a (c, G)-Brauer pair and Q is normal in P, then there is a unique (c, G)-Brauer pair $(Q, f) \leq (P, e)$ such that $\operatorname{Br}_{P/Q}^{N}(f)e = e$. We define a new relation by saying that (Q, f) is normal in (P, e) if and only if $Q \leq P$ and f is the unique block of $kC_N(Q)$ invariant under P such that $\operatorname{Br}_{P/Q}^{N}(f)e = e$. We write this $(Q, f) \leq (P, e)$.

REMARK 3.2. Similarly to [6, Corollary 40.10] we have that the order relation \leq on (c, G)-Brauer pairs is the transitive closure of the relation \leq .

We may now prove the following generalization of Brauer's third main theorem, see [6, Theorem 40.17] and [6, Corollary 40.18].

THEOREM 3.3. Let c be the principal block of kN, where N is normal in G and Q any p-subgroup of G. Then:

- (a) The principal block c is G-stable.
- (b) $\operatorname{Br}_Q^N(c)$ is a primitive idempotent in $Z(kC_N(Q))$ and is the principal block of $kC_N(Q)$.
- (c) (Q, e) is a (c, G)-Brauer pair if and only if e is the principal block of $kC_N(Q)$.
- (d) The (c, G)-defect groups of c are the Sylow p-subgroups of G.

Proof. (a) Let $SX = \sum_{x \in X} x$ where X is a subset of G. For all $g \in G$ we know that ${}^{g}c$ is a primitive idempotent in Z(kN). Using [6, Lemma 40.16] we prove that ${}^{c}g$ is the principal block, which concludes (a). We have:

$$gcg^{-1}SN = gc^{-1}\sum_{n \in N} g^{-1}n = gc\sum_{n_1 \in N} n_1g^{-1} \neq 0,$$

since N normal in G and c is the principal block.

(b) For any R a p-subgroup of G we denote by e_R the principal block of $kC_N(R)$. First note that by definition of Br_Q^N we have $\operatorname{Br}_Q^N(\mathcal{S}N) = \mathcal{S}C_N(Q)$. It follows that:

$$\operatorname{Br}_Q^N(c)\mathcal{S}C_N(Q) = \operatorname{Br}_Q^N(c\mathcal{S}N) = \operatorname{Br}_Q^N(\mathcal{S}N) = \mathcal{S}C_N(Q),$$

so that e_Q appears in a decomposition of $\operatorname{Br}_Q^N(c)$ in $ZkC_N(Q)$. Particularly in the case that P is a Sylow p-subgroup of $G e_P$ appears in a decomposition of $\operatorname{Br}_Q^N(c)$, thus (P, e_P) is a maximal (c, G)-Brauer pair. If (P, f) is any (c, G)-Brauer pair (which is maximal since P is Sylow), by Remark 1.4 there is $g \in N_G(P)$ such that $f = {}^g e_P$. Since ${}^g C_N(P) = C_N(P)$, we have:

$${}^{g}e_{P}\mathcal{S}C_{N}(P) = {}^{g}\mathcal{S}(e_{P}C_{N}(P)) = {}^{g}\mathcal{S}C_{N}(P) = \mathcal{S}C_{N}(P).$$

So ${}^{g}e_{P}$ is the principal block. It follows that $f = e_{P}$, the principal block is the only block which appears in the decomposition of $\operatorname{Br}_{P}^{N}(c)$. Then $\operatorname{Br}_{P}^{N}(c) = e_{P}$ for all Sylow *p*-subgroups of *G*, which proves (b) in the Sylow case.

We prove (b) by descending induction and using Remarks 3.1 and 3.2 it suffices to prove that if $(R, f) \leq (Q, e_Q)$ then $f = e_R$. Now $\operatorname{Br}_{Q/R}^N(f)e_Q = e_Q$ by definition of \leq and since $\operatorname{Br}_{Q/R}^N(\mathcal{S}C_N(R)) = \mathcal{S}C_N(Q)$ we have:

$$Br_{Q/R}^{N}(f\mathcal{S}C_{N}(R))e_{Q} = Br_{Q/R}^{N}(f)\mathcal{S}C_{N}(Q)e_{Q} = Br_{Q/R}^{N}(f)e_{Q}\mathcal{S}C_{N}(Q)$$
$$= e_{Q}\mathcal{S}C_{N}(Q) = \mathcal{S}C_{N}(Q) \neq 0.$$

By contradiction it follows that $f SC_N(R) \neq 0$, thus f is the principal block. (c) This follows by (b).

(d) If P is a Sylow p-subgroup then $\operatorname{Br}_P^N(c) \neq 0$ by (b), thus P is maximal with this property. This implies that P is a (c, G)-defect group.

REFERENCES

- ALPERIN, J. and BROUÉ, M., Local methods in block theory, Ann. of Math., 110 (1979), 143–157.
- [2] BROUÉ, M. and PUIG, L., Characters and local structures in G-algebras, J. Algebra, 63 (1980), 306–317.
- [3] KESSAR, R. and STANCU, R., A reduction theorem for fusion systems of blocks, J. Algebra, 319 (2008), 806–823.
- [4] KÜELSHAMMER, B. and PUIG, L., Extensions of nilpotent blocks, Invent. Math., 102 (1990), 17–71.
- [5] ROTMAN, J.J., Advanced Modern Algebra, Prentice Hall, 2003.
- [6] THÉVENAZ, J., G-algebras and Modular Representation Theory, Clarendon Press, Oxford, 1995.

Received July 31, 2009 Accepted September 10, 2009 Technical University Department of Mathematics Str. G. Bariţiu nr. 25 400027 Cluj-Napoca, Romania E-mail: Constantin.Todea@math.utcluj.ro