REMARKS ON GENERALIZED BRAUER PAIRS

CONSTANTIN COSMIN TODEA

Abstract

Let k be an algebraically closed field of characteristic p, G a finite group, N a normal subgroup of G and c a G-stable block of $k N$. Then there exist generalized Brauer pairs, called (c, G)-Brauer pairs, and denoted by $\left(Q, e_{Q}\right)$, where Q is a p-subgroup of G and e_{Q} a block of $k C_{N}(Q)$. If $G=N$, then the generalized Brauer pairs becomes the usual c-Brauer pairs. If $\left(P, e_{P}\right)$ is a maximal (c, G)-Brauer pair, we prove that e_{P} is a nilpotent block. We also prove a generalization of Brauer's third main theorem.

MSC 2010. 20C20.
Key words. Finite group, block, generalized Brauer pair, Brauer homomorphism.

1. PRELIMINARIES

Throughout this paper we consider k an algebraically closed field of characteristic p, G a finite group, N a normal subgroup of G and c a G-stable block of $k N$, that is c is a primitive idempotent of $Z(k N)$ fixed by conjugation action of G.

Using the approach from [2], in [3, Section 3] R. Kessar and R. Stancu gave the definition of a generalized (c, G)-Brauer pair, generalized Brauer category, Brauer homomorphism etc. In the next lines we explicitly restate the definition of generalized (c, G)-Brauer pairs and a few interesting properties. We also include the approach of pointed groups, which is not used in [3].

In Section 2 we prove that for a maximal (c, G)-Brauer pair denoted $\left(P, e_{P}\right)$ it is true that e_{P} is a nilpotent block of $k C_{N}(P)$. We will make some intuitive connection between maximal (c, G)-Brauer pairs and defect pointed groups.

In Section 3, similarly to [6, Section 40], we define a normal relation denoted " \unlhd " between (c, G)-Brauer pairs which has as transitive closure the order relation from [2, Section 1], which we denote " \leq ". This allows us to imitate the proof of Brauer's third main theorem [6, Theorem 40.17].

We will use basic definitions, results and notations regarding block theory from [6].

For any p-subgroup Q of G the canonical projection from $k N$ to $k C_{N}(Q)$ induces a surjective homomorphism of algebras from $(k N)^{Q}$ onto $k C_{N}(Q)$, the Brauer homomorphism denoted by $\operatorname{Br}_{Q}^{N}$ (see [1]). Explicitly, $\operatorname{Br}_{Q}^{N}(x)=x$ if $x \in C_{N}(Q)$ and $\operatorname{Br}_{Q}^{N}(x)=0$ if $x \notin C_{N}(Q)$. Since $A:=k N$ is a p-permutation

[^0]G-algebra, c is a primitive idempotent of $A^{G} \subseteq A^{N}=Z(k N)$ and $c A c=$ $c A=A c$ remains a p-permutation algebra, we can adopt the approach of [2] for generalized Brauer pairs.

Definition 1.1. A (c, G)-Brauer pair is a pair $\left(Q, e_{Q}\right)$, where Q is a p subgroup of G such that $\operatorname{Br}_{Q}^{N}(c) \neq 0$ and $\operatorname{Br}_{Q}^{N}(c) e_{Q} \neq 0$. When $G=N$ a (c, G)-Brauer pair is also known as a c-Brauer pair.

There is an order relation on the set of generalized Brauer pairs:
Definition 1.2. Let (R, e_{R}) and (Q, e_{Q}) be two (c, G)-Brauer pair. We say that $\left(Q, e_{Q}\right)$ is contained in $\left(R, e_{R}\right)$ and we write $\left(Q, e_{Q}\right) \leq\left(R, e_{R}\right)$, if $Q \leq R$ and for any primitive idempotent $i \in(k N)^{R}$ such that $\operatorname{Br}_{R}^{N}(i) e_{R} \neq 0$ we have $\operatorname{Br}_{Q}^{N}(i) e_{Q} \neq 0$.

This order relation is compatible with the conjugation of G.
Remark 1.3. By [2, Theorem 1.8], if $\left(R, e_{R}\right)$ is a (c, G)-Brauer pair, then for any $Q \leq R$ there is a unique (c, G)-Brauer pair such that $\left(Q, e_{Q}\right) \leq\left(R, e_{R}\right)$.

Remark 1.4. By [2, Theorem 1.14], G acts transitively on maximal (c, G) Brauer pairs, equivalently all maximal (c, G)-Brauer pairs are G-conjugate. If $\left(P, e_{P}\right)$ is a maximal (c, G)-Brauer pair, then P is called a (c, G)-defect group. If $N=G$, then P is a defect group of c in the usual sense.

2. POINTED GROUPS AND GENERALIZED BRAUER PAIRS

We consider $A=k N$ as p-permutation G-algebra which is not interior, with $A c=k N c$ a primitive G-algebra. $N_{\{c\}}$ and $G_{\{c\}}$ are pointed groups on A. We remind that P_{γ} is a defect pointed group of $G_{\{c\}}$ if P_{γ} is a maximal local pointed group on A included in $G_{\{c\}}$. By [6, Theorem 18.5] this is equivalent to P being a maximal p-subgroup of G such that $B r_{P}^{N}(c) \neq 0$.

Proposition 2.1. Let P_{γ} be a defect pointed group of $G_{\{c\}}$ on A. Then there is a unique (c, G)-Brauer pair $\left(P, e_{P}\right)$ such that $\operatorname{Br}_{P}^{N}(i) e_{P} \neq 0$ for any $i \in \gamma$. Moreover, $\left(P, e_{p}\right)$ is a maximal (c, G)-Brauer pair, thus P is a (c, G) defect group.

Proof. For $i \in \gamma, i \in(k N c)^{P}$ is a primitive idempotent with $\operatorname{Br}_{P}^{N}(i) \neq 0$. $\operatorname{Br}_{P}^{N}(i)$ is a primitive idempotent in $k C_{N}(P)$ since $\operatorname{Br}_{P}^{N}$ is surjective. It follows that there is a block $e_{P} \in Z\left(k C_{N}(P)\right)$ such that $\operatorname{Br}_{P}^{N}(i) e_{P} \neq 0$. This block is unique since otherwise by contradiction it follows that $\operatorname{Br}_{P}^{N}(i)$ is a primitive idempotent in $k C_{N}(P)$, which is in the primitive decompositions in $k C_{N}(P)$ of two blocks.

Since P_{γ} is a defect pointed group we have $\operatorname{Br}_{P}^{N}(c) \neq 0$ and then $\operatorname{Br}_{P}^{N}(c) e_{P} \neq$ 0 . By contradiction, if $\operatorname{Br}_{P}^{N}(c) e_{P}=0$, then

$$
B r_{P}^{N}(i) e_{P}=B r_{P}^{N}(i c) e_{P}=\operatorname{Br}_{P}^{N}(i) \operatorname{Br}_{P}^{N}(c) e_{P}=0,
$$

false. The last part of the proof is obvious.

For proving the main result of this section we need the following lemma which gives a particular result in group theory.

Lemma 2.2. Let N be a normal subgroup of a finite group G and P a psubgroup of G such that $P \cap N \neq 1$. Then $Z(P) \cap N \neq 1$.

Proof. The p-group P acts on the set $P \cap N$ by conjugation. We denote by $\mathcal{O}\left(n_{i}\right), i \in\{1, \ldots, k\}$ the orbits of this P-set, where n_{i} are chosen representatives. By [5, Theorem 2.97, Proposition 2.98] we have:

$$
|P \cap N|=\sum_{i=1}^{k}\left|\mathcal{O}\left(n_{i}\right)\right|=\sum_{i=1}^{k}\left[P: P_{n_{i}}\right] .
$$

If $n_{i} \in Z(P) \cap N$, then its orbit $\mathcal{O}\left(n_{i}\right)=\left\{n_{i}\right\}$ and $P_{n_{i}}=P$. It follows that:

$$
|P \cap N|=|Z(P) \cap N|+\sum_{\substack{i=1 \\ \mathcal{O}\left(n_{i}\right) \neq\left\{n_{i}\right\}}}^{k}\left[P: P_{n_{i}}\right],
$$

where the orbit of n_{i} has more than one element. Since $P \cap N$ is a nontrivial p-group and p divides $\sum_{\substack{i=1 \\ \mathcal{O}\left(n_{i}\right) \neq\left\{n_{i}\right\}}}^{k}\left[P: P_{n_{i}}\right]$, it follows that p divides $|Z(P) \cap N|$, which concludes the proof.

Remark 2.3. By [4, Propsition 5.3] applied to our case, P_{γ} is a defect pointed group of $G_{\{c\}}$ on A if and only if $\bar{P}=P N / N$ is a Sylow p-subgroup of $\bar{G}=G / N$ and there is Q_{δ} a defect pointed group of $N_{\{c\}}$ on the N-algebra $k N$ such that $Q_{\delta} \leq P_{\gamma}$. In this case $Q=P \cap N$, thus $P \cap N \neq 1$.

Remark 2.4. Using Lemma 2.2 and Remark 2.3 it is not difficult to prove that if P_{γ} is a defect pointed group of $G_{\{c\}}$ and $\left(P, e_{P}\right)$ is the maximal (c, G) Brauer pair then $Z(P) \cap N \neq 1$ is included in any defect group of the block e_{P} in $k C_{N}(P)$.

Let $B=k N c$ be the primitive G-algebra, which is the localization of $G_{\{c\}}$ in A, and let P_{γ} be a defect pointed group of B. We remind that $S(\gamma)=B^{P} / m_{\gamma}$ is a simple k-algebra called the multiplicity algebra, where $m_{\gamma}=J\left(B^{P}\right)$ is the unique maximal ideal of B^{P} such that $\gamma \nsubseteq m_{\gamma}$. Then $S(\gamma) \simeq \operatorname{End}_{k}(V(\gamma))$, where $V(\gamma)$ is the simple B^{P}-module called the multiplicity module.

By [6, Lemma 14.5] we can view, slightly differently, the multiplicity algebra $S(\gamma)$ as a simple quotient of $k C_{N}(P)$ and thus $S(\gamma)$ isomorphic with the k endomorphism algebra of a simple $k C_{N}(P)$-module. Explicitly, this module is $V(\gamma)=k C_{N}(P) \operatorname{Br}_{P}^{N}(i) / J\left(k C_{N}(P)\right) \operatorname{Br}_{P}^{N}(i)$.

We denote $\bar{N}=N_{G}\left(P_{\gamma}\right) / P$ and $\bar{C}=C_{N}(P) / Z(P) \cap N$. Remark that $\bar{C}=C_{N}(P) / P \cap C_{N}(P) \simeq P C_{N}(P) / P$, which is a subgroup of \bar{N}.

Lemma 2.5. Under the above conditions the multiplicity module $V(\gamma)$ is simple and projective as a $k \bar{C}$-module.

Proof. $V(\gamma)$ is a simple $k C_{N}(P)$-module and $Z(P) \cap N$ a normal p-subgroup of $C_{N}(P)$. By [6, Corollary 21.2] $Z(P) \cap N$ acts trivially on every simple $k C_{N}(P)$-module, thus $V(\gamma)$ is simple as $k \bar{C}$-module.

The multiplicity algebra $S(\gamma)$ has a \bar{N}-algebra structure, which is not necessarily interior on restriction to the subgroup $P C_{G}(P) / P$ but is interior on restriction to the subgroup \bar{C}. By [6, Example 10.9] the multiplicity module $V(\gamma)$ of P_{γ} is endowed with a $k_{\sharp} \widehat{\bar{N}}$-module structure which extends the structure of $V(\gamma)$ as $k \bar{C}$-module. Since B is a primitive G-algebra by $[6$, Theorem 19.2] we have that $V(\gamma)$ is projective as $k_{\sharp} \widehat{\bar{N}}$-module. By [6, Corollary 17.8] this is equivalent to the fact that the \bar{N}-algebra $S(\gamma)=\operatorname{End}_{k}(V(\gamma))$ is projective algebra relative to $\{1\}$. Further this is equivalent to the surjectivity of the relative transfer map $t_{1}^{\bar{N}}: S(\gamma) \longrightarrow S(\gamma)^{\bar{N}}$.

Since $V(\gamma)$ is simple on restriction to $k \bar{C}$, it follows by Schur's lemma that $S(\gamma)^{\bar{C}} \cong k$, and a fortiori $S(\gamma)^{\bar{N}} \cong k$. Therefore the relative trace map $t_{1}^{\bar{N}}$ factorizes as

$$
S(\gamma) \xrightarrow{t_{1}^{\bar{C}}} k \xrightarrow{t^{\frac{N}{C}}} k
$$

\bar{N} / \bar{C} acts trivially on k thus by definition of relative trace map $t \overline{\bar{N}}$ is multiplication by $[\bar{N}: \bar{C}]$, which is either 0 or an isomorphism.

We conclude that $t_{1}^{\bar{N}}$ is surjective if and only if $t_{1}^{\bar{C}}$ is surjective and $[\bar{N}$: $\bar{C}] 1_{k} \neq 0$. By $[6$, Corollary 17.4] it follows that $V(\gamma)$ is projective on restriction to $k \bar{C}$.

We conclude with the main result of this section:
Proposition 2.6. Let P_{γ} be a defect pointed group of $G_{\{c\}}$ and $\left(P, e_{P}\right)$ the unique maximal (c, G)-Brauer pair with the property that $\operatorname{Br}_{P}^{N}(i) e_{P} \neq 0$. Then $Z(P) \cap N$ is a defect group of e_{P}. In particular, e_{P} is a nilpotent block of $k C_{N}(P)$.

Proof. From Lemma 2.5 we know that $V(\gamma)$ is simple and projective as a $k \bar{C}$-module, thus by [6, Theorem 39.1] $V(\gamma)$ belongs to a block \bar{e} of $k \bar{C}$ with defect 0 . By $\left[6\right.$, Proposition 39.2] \bar{e} lifts to a block e of $k C_{N}(P)$ with defect group $Z(P) \cap N$ since $Z(P) \cap N$ is a central p-subgroup of $C_{N}(P)$. Moreover, there is a unique simple $k C_{N}(P) e$-module up to isomorphism, which is $V(\gamma)$. Since e_{P} belongs to $V(\gamma)$ it follows that $e_{P}=e$, thus its defect group is $Z(P) \cap N$.

Since e_{P} has $Z(P) \cap N$ as defect group which is central in $C_{N}(P)$ by [6, Corllary 49.11], it follows that e_{P} is a nilpotent block.

If $G=N$ we obtain the well known result that $Z(P)$ is the defect group of e_{P} as a block of $k C_{G}(P)$ and e_{P} is a nilpotent block.

3. BRAUER'S THIRD MAIN THEOREM

If Q and P are two p-subgroups such that Q is normal in P, then $k C_{N}(Q)$ is a P-algebra by conjugation on which Q acts trivially and we view as a P / Q-algebra. Moreover, it is a p-permutation algebra. Thus there is the Brauer homomorphism, which we denote by $\operatorname{Br}_{P / Q}^{N}$ and which appears in $[2$, Proposition 1.5]:

$$
\operatorname{Br}_{P / Q}^{N}:\left(k C_{N}(Q)\right)^{P / Q} \longrightarrow k C_{N}(P) .
$$

$\operatorname{Br}_{P / Q}^{N}$ is in fact the restriction of the Brauer homomorphism $\operatorname{Br}_{P}^{N}$ for $k N$ to $\left(k C_{N}(Q)\right)^{P}$.

By [2, Proposition 1.5, Theorem 1.8] we have the next remark:
Remark 3.1. If (P, e) is a (c, G)-Brauer pair and Q is normal in P, then there is a unique (c, G)-Brauer pair $(Q, f) \leq(P, e)$ such that $\operatorname{Br}_{P / Q}^{N}(f) e=e$. We define a new relation by saying that (Q, f) is normal in (P, e) if and only if $Q \unlhd P$ and f is the unique block of $k C_{N}(Q)$ invariant under P such that $\operatorname{Br}_{P / Q}^{N}(f) e=e$. We write this $(Q, f) \unlhd(P, e)$.

Remark 3.2. Similarly to [6, Corollary 40.10] we have that the order relation \leq on (c, G)-Brauer pairs is the transitive closure of the relation \unlhd.

We may now prove the following generalization of Brauer's third main theorem, see [6, Theorem 40.17] and [6, Corollary 40.18].

Theorem 3.3. Let c be the principal block of $k N$, where N is normal in G and Q any p-subgroup of G. Then:
(a) The principal block c is G-stable.
(b) $\operatorname{Br}_{Q}^{N}(c)$ is a primitive idempotent in $Z\left(k C_{N}(Q)\right)$ and is the principal block of $k C_{N}(Q)$.
(c) (Q, e) is a (c, G)-Brauer pair if and only if e is the principal block of $k C_{N}(Q)$.
(d) The (c, G)-defect groups of c are the Sylow p-subgroups of G.

Proof. (a) Let $\mathcal{S} X=\sum_{x \in X} x$ where X is a subset of G. For all $g \in G$ we know that ${ }^{g} c$ is a primitive idempotent in $Z(k N)$. Using [6, Lemma 40.16] we prove that ${ }^{c} g$ is the principal block, which concludes (a). We have:

$$
g c g^{-1} \mathcal{S} N=g c^{-1} \sum_{n \in N} g^{-1} n=g c \sum_{n_{1} \in N} n_{1} g^{-1} \neq 0,
$$

since N normal in G and c is the principal block.
(b) For any R a p-subgroup of G we denote by e_{R} the principal block of $k C_{N}(R)$. First note that by definition of $\operatorname{Br}_{Q}^{N}$ we have $\operatorname{Br}_{Q}^{N}(\mathcal{S} N)=\mathcal{S} C_{N}(Q)$. It follows that:

$$
\operatorname{Br}_{Q}^{N}(c) \mathcal{S} C_{N}(Q)=\operatorname{Br}_{Q}^{N}(c \mathcal{S} N)=\operatorname{Br}_{Q}^{N}(\mathcal{S} N)=\mathcal{S} C_{N}(Q),
$$

so that e_{Q} appears in a decomposition of $\operatorname{Br}_{Q}^{N}(c)$ in $Z k C_{N}(Q)$. Particularly in the case that P is a Sylow p-subgroup of $G e_{P}$ appears in a decomposition of $\operatorname{Br}_{Q}^{N}(c)$, thus $\left(P, e_{P}\right)$ is a maximal (c, G)-Brauer pair. If (P, f) is any (c, G) Brauer pair (which is maximal since P is Sylow), by Remark 1.4 there is $g \in N_{G}(P)$ such that $f={ }^{g} e_{P}$. Since ${ }^{g} C_{N}(P)=C_{N}(P)$, we have:

$$
{ }^{g} e_{P} \mathcal{S} C_{N}(P)={ }^{g} \mathcal{S}\left(e_{P} C_{N}(P)\right)={ }^{g} \mathcal{S} C_{N}(P)=\mathcal{S} C_{N}(P)
$$

So ${ }^{g} e_{P}$ is the principal block. It follows that $f=e_{P}$, the principal block is the only block which appears in the decomposition of $\operatorname{Br}_{P}^{N}(c)$. Then $\operatorname{Br}_{P}^{N}(c)=e_{P}$ for all Sylow p-subgroups of G, which proves (b) in the Sylow case.

We prove (b) by descending induction and using Remarks 3.1 and 3.2 it suffices to prove that if $(R, f) \unlhd\left(Q, e_{Q}\right)$ then $f=e_{R}$. Now $\operatorname{Br}_{Q / R}^{N}(f) e_{Q}=e_{Q}$ by definition of \unlhd and since $\operatorname{Br}_{Q / R}^{N}\left(\mathcal{S} C_{N}(R)\right)=\mathcal{S} C_{N}(Q)$ we have:

$$
\begin{aligned}
\operatorname{Br}_{Q / R}^{N}\left(f \mathcal{S} C_{N}(R)\right) e_{Q} & =\operatorname{Br}_{Q / R}^{N}(f) \mathcal{S} C_{N}(Q) e_{Q}
\end{aligned}=\operatorname{Br}_{Q / R}^{N}(f) e_{Q} \mathcal{S} C_{N}(Q) .
$$

By contradiction it follows that $f \mathcal{S} C_{N}(R) \neq 0$, thus f is the principal block.
(c) This follows by (b).
(d) If P is a Sylow p-subgroup then $\operatorname{Br}_{P}^{N}(c) \neq 0$ by (b), thus P is maximal with this property. This implies that P is a (c, G)-defect group.

REFERENCES

[1] Alperin, J. and Broué, M., Local methods in block theory, Ann. of Math., 110 (1979), 143-157.
[2] Broué, M. and Puig, L., Characters and local structures in G-algebras, J. Algebra, 63 (1980), 306-317.
[3] Kessar, R. and Stancu, R., A reduction theorem for fusion systems of blocks, J. Algebra, 319 (2008), 806-823.
[4] Küelshammer, B. and Puig, L., Extensions of nilpotent blocks, Invent. Math., 102 (1990), 17-71.
[5] Rotman, J.J., Advanced Modern Algebra, Prentice Hall, 2003.
[6] Thévenaz, J., G-algebras and Modular Representation Theory, Clarendon Press, Oxford, 1995.

Received July 31, 2009
Accepted September 10, 2009

Technical University
Department of Mathematics
Str. G. Bariţiu nr. 25
400027 Cluj-Napoca, Romania
E-mail: Constantin.Todea@math.utcluj.ro

[^0]: This research has been supported by the Romanian PN-II-IDEI-PCE-2007-1 project ID_532, contract no. 29/01.10.2007.

