# MULTIPLE SOLUTIONS FOR A NON-HOMOGENEOUS NEUMANN BOUNDARY-VALUE PROBLEM 

ILDIKÓ-ILONA MEZEI and LIA SĂPLĂCAN


#### Abstract

In this paper we obtain multiple solutions in double weighted Sobolev spaces for a non-homogeneous elliptic semilinear eigenvalue problem on unbounded domain. We use a very recent Ricceri type critical points theorem proved by Kristály, Marzantowicz, Varga in [4].


MSC 2010. 35J20, 46E35.
Key words. semilinear elliptic equation, eigenvalue problem, variational methods, unbounded domain, weighted Sobolev space.

## 1. INTRODUCTION

For $\lambda, \mu>0$, we consider the following elliptic eigenvalue problem with non-homogeneous boundary condition:

$$
\left\{\begin{align*}
-\Delta u+b(x) u & =\lambda f(x, u) \text { in } \Omega \\
\partial_{n} u & =\mu g(x, u) \text { on } \Gamma
\end{align*}\right.
$$

where $\Omega \subset \mathbb{R}^{N},(N \geq 2)$ is an unbounded domain with smooth boundary $\Gamma$, $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}, g: \Gamma \times \mathbb{R} \rightarrow \mathbb{R}$ are Carathéodory functions, $n$ denotes the unit outward normal on $\Gamma$ and $\partial_{n}$ is the outer normal derivative on $\Gamma$.

Problems of this type were studied by several authors in the last years. We mention here Kristály [3], Lisei, Horváth, Varga [5], Pflüger [9], Montefusco and Rădulescu [8], Mezei and Varga [7] and others. The problems studied in these papers involve the $p$-Laplacian and the nonlinear term defined on the boundary of $\Omega$ is subcritical and either sublinear or superlinear in the second variable in the origin and at the infinity. Mezei in [6] proved the existence of an open interval of eigenvalues, for which the eigenvalue problem $\left(P_{\lambda, \mu}\right)$ has two distinct, nontrivial solutions. We remark that in [6] an important assumption is that $g$ is subcritical and sublinear in the second variable in 0 and at infinity. In present paper we drop the sublinearity conditions for $g$, we assume only the subcriticality of $g$ and we obtain multiple solutions of the problem $\left(P_{\lambda, \mu}\right)$. Hence, this paper provides a more general multiplicity result than the earlier ones.

[^0]The main tool used in this proof is a three critical points theorem proved in 2003 by G. Bonanno [1], which is actually a consequence of the three critical points theorem of B. Ricceri [12]. Later, in 2008, B. Ricceri "revisited" this theorem and reached a much more precise conclusion under an additional condition (which is always satisfied in the applications). In 2009, Kristály, Marzantowicz, Varga extended this result of Ricceri to locally Lipschitz functions in [4]. We are going to use this latter result, therefore we recall it.

For every $\tau>0$, we introduce the following class of functions:
$\left(\mathcal{G}_{\tau}\right): g \in C^{1}(\mathbb{R}, \mathbb{R})$ is bounded and $g(t)=t$, for any $t \in[-\tau, \tau]$.
Theorem 1. [4, Theorem 2.1] Let $(X,\|\cdot\|)$ be a real reflexive Banach space and $\tilde{X}_{i}(i=1,2)$ be two Banach spaces such that the embeddings $X \hookrightarrow \tilde{X}_{i}$ are compact. Let $\Lambda$ be a real interval, $h:[0, \infty) \rightarrow[0, \infty)$ be a non-decreasing convex function and let $\Phi_{i}: \tilde{X}_{i} \rightarrow \mathbb{R}(i=1,2)$ be two locally Lipschitz functions such that $E_{\lambda, \mu}=h(\|\cdot\|)+\lambda \Phi_{1}+\mu\left(g \circ \Phi_{2}\right)$ restricted to $X$ satisfies the $(P S)_{c}$ condition for every $c \in \mathbb{R}, \lambda \in \Lambda, \mu \in[0,|\lambda|+1]$ and $g \in \mathcal{G}_{\tau}, \tau \geq 0$. Assume that $h(\|\cdot\|)+\lambda \Phi_{1}$ is coercive on $X$ for all $\lambda \in \Lambda$ and that there exists $\rho \in \mathbb{R}$ such that

$$
\sup _{\lambda \in \Lambda} \inf _{x \in X}\left[h(\|x\|)+\lambda\left(\Phi_{1}(x)+\rho\right)\right]<\inf _{x \in X} \sup _{\lambda \in \Lambda}\left[h(\|x\|)+\lambda\left(\Phi_{1}(x)+\rho\right)\right] .
$$

Then, there exist a non-empty open set $A \subset \Lambda$ and $r>0$ with the property that for every $\lambda \in A$ there exists $\left.\mu_{0} \in\right] 0,|\lambda|+1\left[\right.$ such that, for each $\mu \in\left[0, \mu_{0}\right]$ the functional $\mathcal{E}_{\lambda, \mu}=h(\|\cdot\|)+\lambda \Phi_{1}+\mu \Phi_{2}$ has at least three critical points in $X$ whose norms are less than $r$.

In the last section of this paper we use a particular case of Theorem 1, when $\Phi_{i},(i=1,2)$ are functions of class $C^{1}$.

## 2. MAIN RESULT

Let $\Omega \subset \mathbb{R}^{N},(N \geq 2)$ be an unbounded domain with smooth boundary $\Gamma$. For the positive measurable functions $u$ and $w$, both defined in $\Omega$, we define the weighted $p$-norm $(1 \leq p<\infty)$ as

$$
\|u\|_{p, \Omega, w}=\left(\int_{\Omega}|u(x)|^{p} w(x) \mathrm{d} x\right)^{\frac{1}{p}}
$$

and denote by $L^{p}(\Omega ; w)$ the space of all measurable functions $u$ such that $\|u\|_{p, \Omega, w}$ is finite.

The double weighted Sobolev space $W^{1, p}\left(\Omega ; v_{0}, v_{1}\right)$ is defined as the space of all functions $u \in L^{p}\left(\Omega ; v_{0}\right)$ such that all derivatives $\frac{\partial u}{\partial x_{i}}$ belong to $L^{p}\left(\Omega ; v_{1}\right)$. The corresponding norm is defined by

$$
\|u\|_{p, \Omega, v_{0}, v_{1}}=\left(\int_{\Omega}|\nabla u(x)|^{p} v_{1}(x)+|u(x)|^{p} v_{0}(x) \mathrm{d} x\right)^{\frac{1}{p}}
$$

We are choosing our weight functions from the so-called Muckenhoupt class $A_{p}$, which is defined as the set of all positive functions $v$ in $\mathbb{R}^{N}$ satisfying

$$
\begin{gathered}
\frac{1}{|Q|}\left(\int_{\Omega} v \mathrm{~d} x\right)^{\frac{1}{p}}\left(\int_{\Omega} v^{-\frac{1}{p-1}} \mathrm{~d} x\right)^{\frac{p-1}{p}} \leq \bar{C}, \text { if } 1<p<\infty \\
\frac{1}{|Q|} \int_{\Omega} v \mathrm{~d} x \leq \bar{C} \text { ess } \inf _{x \in Q} v(x), \text { if } p=1
\end{gathered}
$$

for all cubes $Q \in \mathbb{R}^{N}$ and some $\bar{C}>0$.
In this paper we always assume that the weight functions $v_{0}, v_{1}, w$ are defined on $\Omega$, belong to $A_{p}$ and are chosen such that the embeddings

$$
\begin{align*}
W^{1,2}\left(\Omega ; v_{0}, v_{1}\right) & \hookrightarrow L^{p}(\Omega ; w),  \tag{1}\\
W^{1,2}\left(\Omega ; v_{0}, v_{1}\right) & \hookrightarrow L^{q}(\Gamma ; w) \tag{2}
\end{align*}
$$

are compact for $p \in] 2,2^{*}[, q \in] 2, \overline{2}^{*}\left[\right.$ and continuous for $p \in\left[2,2^{*}\right], q \in\left[2, \overline{2}^{*}\right]$ respectively, where $2^{*}=\frac{2 N}{N-2}$ and $\overline{2}^{*}=\frac{2(N-1)}{N-2}$ are the critical exponents. Such weight functions there exist, see e.g. [10], [11].

Therefore, there exist the best embedding constants denoted by $C_{p, \Omega}, C_{q, \Gamma}$ such that:

$$
\begin{array}{ll}
\|u\|_{p, \Omega, w} \leq C_{p, \Omega}\|u\|_{v_{0}, v_{1}}, & \text { for all } u \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right), \\
\|u\|_{q, \Gamma, w} \leq C_{q, \Gamma}\|u\|_{v_{0}, v_{1}}, & \text { for all } u \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right), \tag{4}
\end{array}
$$

where we used the abbreviation $\|u\|_{v_{0}, v_{1}}=\|u\|_{2, \Omega, v_{0}, v_{1}}$.
First, we define an operator $A: W^{1,2}\left(\Omega ; v_{0}, v_{1}\right) \rightarrow \mathbb{R}$ by $A(u)=-\Delta u+b(x) u$ for a positive measurable function $b$, then a continuous bilinear form associated with this operator as

$$
\begin{equation*}
\langle u, v\rangle_{A}=\int_{\Omega}(\nabla u \nabla v+b(x) u v) \mathrm{d} x \tag{5}
\end{equation*}
$$

and the corresponding norm with

$$
\begin{equation*}
\|u\|_{A}^{2}=\langle u, u\rangle_{A}=\int_{\Omega}\left(|\nabla u(x)|^{2}+b(x)|u(x)|^{2}\right) \mathrm{d} x . \tag{6}
\end{equation*}
$$

Now, we define the Banach space

$$
\begin{equation*}
X_{A}=\left\{u \in W^{1,2}\left(\Omega ; v_{0}, v_{1}\right):\|u\|_{A}<\infty\right\} \tag{7}
\end{equation*}
$$

endowed with the norm $\|\cdot\|_{A}$.
We say that $u \in X_{A}$ is a weak solution of the problem $\left(P_{\lambda, \mu}\right)$, if

$$
\langle u, v\rangle_{A}-\lambda \int_{\Omega} f(x, u(x)) v(x) \mathrm{d} x-\mu \int_{\Gamma} g(x, u(x)) v(x) \mathrm{d} \Gamma=0, \text { for every } v \in X_{A} .
$$

The relation between the spaces $W^{1,2}\left(\Omega ; v_{0}, v_{1}\right)$ and $X_{A}$ is given by the ellipticity condition

$$
\begin{equation*}
\|u\|_{A}^{2} \geq 2 K\|u\|_{v_{0}, v_{1}}^{2} \text { for every } u \in X_{A}, \tag{A}
\end{equation*}
$$

with some positive constant $K>0$;
Furthermore we consider the following assumptions on $f, g$ :
(F1) $f(\cdot, 0)=0$ and $|f(x, s)| \leq f_{0}(x)+f_{1}(x)|s|^{p-1}$ for $x \in \Omega, s \in \mathbb{R}$, where $p \in] 2,2^{*}\left[\right.$ and $f_{0}, f_{1}$ are positive measurable functions satisfying $f_{0} \in L^{\frac{p}{p-1}}\left(\Omega ; w^{\frac{1}{1-p}}\right), f_{0}(x) \leq C_{f} w(x)$ and $f_{1}(x) \leq C_{f} w(x)$ for a.e. $x \in \Omega$, with an appropiate constant $C_{f}$;
(F2) $\lim _{s \rightarrow 0} \frac{f(x, s)}{f_{0}(x)|s|}=0$, uniformly in $x \in \Omega$;
(F3) $\limsup _{s \rightarrow \infty} \frac{F(x, s)}{f_{0}(x)|s|^{2}} \leq 0$ uniformly in $x \in \Omega$ and $\max _{|s| \leq M} F(\cdot, s) \in L^{1}(\Omega)$, for all $M>0$, where $F(x, u)=\int_{0}^{u} f(x, s) \mathrm{d} s ;$
(F4) there exist $x_{0} \in \Omega, s_{0} \in \mathbb{R}$ and $R_{0}>0$ such that $\min _{\left|x-x_{0}\right|<R} F\left(x, s_{0}\right)>0$.
(G) $g(\cdot, 0)=0$ and $|g(x, s)| \leq g_{0}(x)+g_{1}(x)|s|^{q-1}$, for $x \in \Gamma, s \in \mathbb{R}$, where $q \in] 2, \overline{2}^{*}\left[\right.$ and $g_{0}, g_{1}$ are positive measurable functions satisfying $g_{0} \in L^{\frac{q}{q-1}}\left(\Gamma ; w^{\frac{1}{1-q}}\right), g_{0}(x) \leq C_{g} w(x)$ and $g_{1}(x) \leq C_{g} w(x)$, a.e. $x \in \Gamma$, with an appropiate constant $C_{g}$.
The main result of this paper is the following
Theorem 2. Let $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ and $g: \Gamma \times \mathbb{R} \rightarrow \mathbb{R}$ be Carathéodory functions satisfying the conditions (F1)-(F4) and (G). Then there exists a nondegenerate interval $[a, b] \subset] 0,+\infty[$ and a number $r>0$, such that for every $\lambda \in[a, b]$ there exists $\left.\mu_{0} \in\right] 0, \lambda+1\left[\right.$ such that for each $\mu \in\left[0, \mu_{0}\right]$, the problem $\left(P_{\lambda, \mu}\right)$ has at least three distinct solutions with $X_{A}$-norms less than $r$.

## 3. AUXILIARY RESULTS AND PROOF OF THEOREM 2

In this section first we present some auxiliary results. These properties guarantee that all the assumptions of Theorem 1 are satisfied, so we can apply it obtaining our main result.

First, we define the functionals $J_{F}, J_{G}: X_{A} \rightarrow \mathbb{R}$ by

$$
J_{F}(u)=\int_{\Omega} F(x, u(x)) \mathrm{d} x, \quad J_{G}(u)=\int_{\Gamma} G(x, u(x)) \mathrm{d} \Gamma
$$

where $G(x, u)=\int_{0}^{u} g(x, s) \mathrm{d} \Gamma$, then the energy functional $\mathcal{E}_{\lambda, \mu}: X_{A} \rightarrow \mathbb{R}$ associated to $\left(P_{\lambda, \mu}\right)$ by $\mathcal{E}_{\lambda, \mu}(u)=\frac{1}{2}\|u\|_{A}^{2}-\lambda J_{F}(u)-\mu J_{G}(u)$.

In the next result we use the Nemytskii operator of a Carathéodory function $h: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$, defined by $N_{h}(u)=h(x, u(x))$.

Lemma 1. [6, Lemma 2.1] Assume that the conditions (F1), (G) are satisfied. Then, the Nemytskii operators $N_{f}: L^{p}(\Omega ; w) \rightarrow L^{\frac{p}{p-1}}\left(\Omega ; w^{\frac{1}{1-p}}\right), N_{F}$ : $L^{p}(\Omega ; w) \rightarrow L^{1}(\Omega), N_{g}: L^{q}(\Gamma ; w) \rightarrow L^{\frac{q}{q-1}}\left(\Gamma ; w^{\frac{1}{1-q}}\right)$ and $N_{G}: L^{q}(\Gamma ; w) \rightarrow$ $L^{1}(\Gamma)$ are bounded and continuous.

Lemma 2. [10, Lemma 8] The energy functional $\mathcal{E}_{\lambda, \mu}: X_{A} \rightarrow \mathbb{R}$ is Fréchet differentiable and its derivative is given by

$$
\begin{equation*}
\left\langle\mathcal{E}_{\lambda, \mu}^{\prime}(u), v\right\rangle=\langle u, v\rangle_{A}-\lambda \int_{\Omega} f(x, u(x)) v(x) \mathrm{d} x-\mu \int_{\Gamma} g(x, u(x)) v(x) \mathrm{d} \Gamma . \tag{8}
\end{equation*}
$$

for every $v \in X_{A}$.
Due to this result, one can see that the critical points of $\mathcal{E}_{\lambda, \mu}$ are exactly the weak solutions of $\left(P_{\lambda, \mu}\right)$. Therefore, instead of looking for weak solutions of problem $\left(P_{\lambda, \mu}\right)$, we are seeking for the critical points of $\mathcal{E}_{\lambda, \mu}$.

Lemma 3. Assume that the conditions (F1)-(F3) are satisfied. Then, for every $\lambda>0$ the functional $\alpha: X_{A} \rightarrow \mathbb{R}$ defined by $\alpha(u)=\frac{1}{2}\|u\|_{A}^{2}-\lambda J_{F}(u)$ is coercive.

Proof. Let us fix $\lambda>0$ arbitrarily and $\eta>0$ such that

$$
\frac{K}{\lambda C_{f} C_{2, \Omega}^{2}}>\eta
$$

By the conditions (F2),(F3) there exist a positive function $k \in L^{1}(\Omega ; w)$ such that

$$
\begin{equation*}
|F(x, s)| \leq \eta f_{0}(x)|s|^{2}+k(x) w(x), \quad \forall(x, s) \in \Omega \times \mathbb{R} \tag{9}
\end{equation*}
$$

Thus, using the relation (9), the embedding (1) and the (A) ellipticity conditions, for every $u \in X_{A}$ we obtain:

$$
\begin{aligned}
\alpha(u) & \geq \frac{1}{2}\|u\|_{A}^{2}-\lambda \int_{\Omega} \eta f_{0}(x)|u(x)|^{2} \mathrm{~d} x-\lambda \int_{\Omega} k(x) w(x) \mathrm{d} x \\
& \geq \frac{1}{2}\|u\|_{A}^{2}-\lambda \eta C_{f}\|u\|_{2, \Omega, w}^{2}-\lambda\|k\|_{1, \Omega, w} \\
& \geq \frac{1}{2}\|u\|_{A}^{2}-\lambda \eta C_{f} C_{2, \Omega, w}^{2}\|u\|_{v_{0}, v_{1}}^{2}-\lambda\|k\|_{1, \Omega, w} \\
& \geq \frac{1}{2}\left(1-\lambda \eta C_{f} C_{2, \Omega}^{2} \frac{1}{K}\right)\|u\|_{A}^{2}-\lambda\|k\|_{1, \Omega, w} .
\end{aligned}
$$

Since $k \in L^{1}(\Omega ; w)$, we have that $\|k\|_{1, \Omega, w}$ is finite. Therefore, by the choice of $\eta$ it follows, that $\mathcal{E}_{\lambda, \mu}(u) \rightarrow \infty$ as $\|u\|_{A} \rightarrow \infty$. Hence $\mathcal{E}_{\lambda, \mu}$ is coercive.

Lemma 4. Let the conditions (F1) and (F2) be satisfied. Then

$$
\lim _{t \rightarrow 0^{+}} \frac{\sup \left\{J_{F}(u): u \in X_{A},\|u\|_{A}^{2}<2 t\right\}}{t}=0 .
$$

Proof. From the assumptions (F1), (F2) it results the existence of $\hat{c}(\varepsilon)>0$, such that, for every $\hat{\varepsilon}>0$ we have:

$$
\begin{equation*}
\left.|f(x, s)| \leq \hat{\varepsilon} f_{0}(x)|s|+\hat{c}(\varepsilon) f_{1}(x)|s|^{p-1}, \text { for } p \in\right] 2,2^{*}[ \tag{10}
\end{equation*}
$$

Then integrating with respect to the second variable, from 0 to $u(x)$, we get the existence of $c(\varepsilon)>0$, such that, for every $\varepsilon>0$ we have:

$$
\begin{equation*}
\left.|F(x, u(x))| \leq \varepsilon f_{0}(x)|u(x)|^{2}+c(\varepsilon) f_{1}(x)|u(x)|^{p}, \text { for } p \in\right] 2,2^{*}[ \tag{11}
\end{equation*}
$$

Now, fix $\varepsilon>0$ and $p \in] 2,2^{*}[$ arbitrarily. Then from (11) and the ellipticity condition (A), it follows that:

$$
\begin{aligned}
J_{F}(u) & \leq \varepsilon C_{f} C_{2, \Omega}^{2}\|u\|_{v_{0}, v_{1}}^{2}+c(\varepsilon) C_{f} C_{p, \Omega}^{p}\|u\|_{v_{0}, v_{1}}^{p} \\
& \leq \varepsilon C_{f} C_{2, \Omega}^{2} \frac{\|u\|_{A}^{2}}{2 K}+c(\varepsilon) C_{f} C_{p, \Omega}^{p}\left(\frac{\|u\|_{A}^{2}}{2 K}\right)^{\frac{p}{2}} .
\end{aligned}
$$

Therefore, we have:

$$
\sup \left\{J_{\mu}(u): \frac{\|u\|_{A}^{2}}{2}<\rho\right\} \leq \varepsilon \frac{C_{f} C_{2, \Omega}^{2}}{K} \rho+\frac{c(\varepsilon) C_{f} C_{p, \Omega}^{p}}{K^{\frac{p}{2}}} \rho^{\frac{p}{2}}
$$

Since $p>2$ and $\varepsilon$ is chosen arbitrarily, by dividing this last inequality with $\rho$ and taking the limit whenever $\rho \rightarrow 0$, we get the required equality.

The next lemma can be proved arguing as in [7, Lemma 3.2].
Lemma 5. Assume that (F4) is satisfied. Then there exists a function $u_{0} \in X_{A}$ such that $J_{F}\left(u_{0}\right)>0$.

The result of Lemma 5 is deeply employed in the next lemma.
Lemma 6. There exists $\rho_{0} \in \mathbb{R}$ such that $\sup _{\lambda>0} \inf _{u \in X_{A}}\left(\frac{1}{2}\|u\|_{A}^{2}-\lambda\left(J_{F}(u)-\rho_{0}\right)\right)<\inf _{u \in X_{A}} \sup _{\lambda>0}\left(\frac{1}{2}\|u\|_{A}^{2}-\lambda\left(J_{F}(u)-\rho_{0}\right)\right)$.

Proof. Let us define the function $\beta:] 0, \infty) \rightarrow \mathbb{R}$ by

$$
\beta(t)=\sup \left\{J_{F}(u): u \in X_{A},\|u\|_{A}^{2}<2 t\right\}
$$

Then, from the assumption (F2), we have that $\beta(t) \geq 0$, for every $t>0$ and Lemma 4 yields that

$$
\begin{equation*}
\lim _{t \searrow 0} \frac{\beta(t)}{t}=0 \tag{12}
\end{equation*}
$$

We consider the function $u_{0} \in X_{A}$ provided from Lemma 5, i.e. $J_{F}\left(u_{0}\right)>0$. Therefore we can choose a number $\gamma>0$ such that

$$
\begin{equation*}
0<\gamma<J_{F}\left(u_{0}\right) \frac{2}{\left\|u_{0}\right\|_{A}^{2}} \tag{13}
\end{equation*}
$$

By (12) we get the existence of a number $t_{0} \in\left(0, \frac{\left\|u_{0}\right\|_{A}^{2}}{2}\right)$ such that $\beta\left(t_{0}\right)<$ $\gamma t_{0}$. Thus by (13) we have:

$$
\begin{equation*}
\beta\left(t_{0}\right)<J_{F}\left(u_{0}\right) \frac{2}{\left\|u_{0}\right\|_{A}^{2}} t_{0} \tag{14}
\end{equation*}
$$

Then, we can find a number $\rho_{0}>0$ such that

$$
\begin{equation*}
\beta\left(t_{0}\right)<\rho_{0}<J_{F}\left(u_{0}\right) \frac{2}{\left\|u_{0}\right\|_{A}^{2}} t_{0} \tag{15}
\end{equation*}
$$

Hence, by the choice of $t_{0}$ we have:

$$
\begin{equation*}
\beta\left(t_{0}\right)<\rho_{0}<J_{F}\left(u_{0}\right) \tag{16}
\end{equation*}
$$

Now, we define the function $\varphi: X_{A} \times[0, \infty[\rightarrow \mathbb{R}$ by

$$
\varphi(u, \lambda)=\frac{\|u\|_{A}^{2}}{2}+\lambda\left(\rho_{0}-J_{F}(u)\right)
$$

and we claim that

$$
\begin{equation*}
\sup _{\lambda>0} \inf _{u \in X_{A}} \varphi(u, \lambda)<\inf _{u \in X_{A}} \sup _{\lambda>0} \varphi(u, \lambda) \tag{17}
\end{equation*}
$$

The function $\left[0, \infty\left[\ni \lambda \mapsto \inf _{u \in X_{A}}\left(\frac{\|u\|_{A}^{2}}{2}+\lambda\left(\rho_{0}-J_{F}(u)\right)\right)\right.\right.$ is upper semicontinuous on $\left[0, \infty\left[\right.\right.$. By the choice of $\rho_{0}$ in (16) it follows that:

$$
\lim _{\lambda \rightarrow \infty} \inf _{u \in X_{A}} \varphi(u, \lambda) \leq \lim _{\lambda \rightarrow \infty}\left(\frac{\left\|u_{0}\right\|_{A}^{2}}{2}+\lambda\left(\rho_{0}-J_{F}\left(u_{0}\right)\right)\right)=-\infty
$$

Therefore we can choose a number $\bar{\lambda} \in[0, \infty[$ such that

$$
\begin{equation*}
\sup _{\lambda>0} \inf _{u \in X_{A}} \varphi(u, \lambda)=\inf _{u \in X_{A}}\left(\frac{\|u\|_{A}^{2}}{2}+\bar{\lambda}\left(\rho_{0}-J_{F}(u)\right)\right) \tag{18}
\end{equation*}
$$

From the definition of $\beta$ we have that $J_{F}(u) \leq \beta\left(t_{0}\right)$, for all $u \in X_{A}$ with $\|u\|_{A}^{2} \leq 2 t_{0}$. Then by the choice of $\rho_{0}$, it follows that $\rho_{0}>J_{F}(u)$, for every $u \in X_{A}$, with $\|u\|_{A}^{2} \leq 2 t_{0}$. Hence $t_{0}<\frac{\|u\|_{A}^{2}}{2}$, for $u \in X_{A}, \rho_{0} \leq J_{F}(u)$, therefore:

$$
\begin{equation*}
t_{0} \leq \inf \left\{\frac{\|u\|_{A}^{2}}{2}: u \in X_{A}, \rho_{0} \leq J_{F}(u)\right\} \tag{19}
\end{equation*}
$$

On the other hand,

$$
\begin{aligned}
\inf _{u \in X_{A}} \sup _{\lambda \in[0, \infty[ } \varphi(u, \lambda) & =\inf _{u \in X_{A}}\left\{\frac{\|u\|_{A}^{2}}{2}+\sup _{\lambda \in[0, \infty[ }\left\{\lambda\left(\rho_{0}-J_{F}(u)\right)\right\}\right\} \\
& =\inf _{u \in X_{A}}\left\{\frac{\|u\|_{A}^{2}}{2}: \rho_{0} \leq J_{F}(u)\right\}
\end{aligned}
$$

Therefore, inequality (19) is equivalent to

$$
\begin{equation*}
t_{0} \leq \inf _{u \in X_{A}} \sup _{\lambda \in[0, \infty[ } \varphi(u, \lambda) \tag{20}
\end{equation*}
$$

Now, we consider two cases. First, when $0 \leq \bar{\lambda}<\frac{t_{0}}{\rho_{0}}$, then we have:

$$
\inf _{u \in X_{A}}\left\{\frac{\|u\|_{A}^{2}}{2}+\bar{\lambda}\left(\rho_{0}-J_{F}(u)\right)\right\}=\inf _{u \in X_{A}} \varphi(u, \bar{\lambda}) \leq \varphi(0, \bar{\lambda})=\bar{\lambda} \rho_{0}<t_{0} .
$$

Combining this inequality with (18) and (20) the claim follows.
Now, if $\bar{\lambda} \geq \frac{t_{0}}{\rho_{0}}$, applying the inequality (15) we have:

$$
\begin{aligned}
& \inf _{u \in X_{A}}\left\{\frac{\|u\|_{A}^{2}}{2}+\bar{\lambda}\left(\rho_{0}-J_{F}(u)\right)\right\} \leq \frac{\left\|u_{0}\right\|_{A}^{2}}{2}+\bar{\lambda}\left(\rho_{0}+J_{F}\left(u_{0}\right)\right) \\
& \leq \frac{\left\|u_{0}\right\|_{A}^{2}}{2}+\frac{t_{0}}{\rho_{0}}\left(\rho_{0}-J_{F}\left(u_{0}\right)\right)=t_{0}+\left(\frac{\left\|u_{0}\right\|_{A}^{2}}{2}-\frac{t_{0}}{\rho_{0}} J_{F}\left(u_{0}\right)\right)<t_{0} .
\end{aligned}
$$

Using the relations (18) and (20), we obtain (20), which completes the proof.

In the sequel, for a $\tau \geq 0$, let $h: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded $C^{1}$ function from $\mathcal{G}_{\tau}$ and for $\lambda, \mu>0$ let $E_{\lambda, \mu}: X_{A} \rightarrow \mathbb{R}$ be the functional defined by

$$
E_{\lambda, \mu}=\frac{1}{2}\|u\|_{A}^{2}-\lambda J_{F}(u)-\mu\left(h \circ J_{G}\right)(u), u \in X_{A} .
$$

Lemma 7. The functional $E_{\lambda, \mu}$ satisfies the Palais-Smale condition for every $\lambda \geq 0$ and $\mu \in[0, \lambda+1]$.

Proof. Let $\left\{u_{n}\right\} \subset X_{A}$ be an arbitrary Palais-Smale sequence for $E_{\lambda, \mu}$, i.e.
(a) $\left\{E_{\lambda, \mu}\left(u_{n}\right)\right\}$ is bounded;
(b) $E_{\lambda, \mu}^{\prime}\left(u_{n}\right) \rightarrow 0$.

We have to prove that $\left\{u_{n}\right\}$ contains a strongly convergent subsequence in $X_{A}$.

By Lemma 3, we have that $\alpha(u)=\frac{1}{2}\|u\|_{A}^{2}-\lambda J_{F}(u)$ is coercive. Then by the choice of $h$, we have that $E_{\lambda, \mu}$ is coercive as well. Therefore the sequence $\left\{u_{n}\right\}$ is bounded. $X_{A}$ is a reflexive Banach space, so taking a subsequence if necessary (denoted in the same way), we get an element $u \in X_{A}$ such that $u_{n} \rightarrow u$ weakly in $X_{A}$.

Because the embeddings (1) and (2) are compact for $p \in] 2,2^{*}[$ and $q \in] 2, \overline{2}^{*}[$, we have that $u_{n} \rightarrow u$ strongly in $L^{p}(\Omega ; w)$ and $L^{q}(\Gamma ; w)$, i.e.

$$
\begin{equation*}
\left\|u_{n}-u\right\|_{p, \Omega, w} \rightarrow 0 \text { and }\left\|u_{n}-u\right\|_{q, \Gamma, w} \rightarrow 0, \text { whenever } n \rightarrow \infty . \tag{21}
\end{equation*}
$$

From the condition (b) we have that $\left|\left\langle E_{\lambda, \mu}^{\prime}\left(u_{n}\right), \frac{u_{n}}{\left\|u_{n}\right\|_{A}}\right\rangle\right| \leq \varepsilon$, for every $\varepsilon>0$ and large $n \in \mathbb{N}$. Then

$$
\begin{aligned}
& \left\langle u_{n}, u_{n}\right\rangle_{A}-\lambda \int_{\Omega} f\left(x, u_{n}(x)\right) u_{n}(x) \mathrm{d} x-\mu h^{\prime}\left(J_{G}\left(u_{n}\right)\right) \int_{\Gamma} g\left(x, u_{n}(x)\right) u_{n}(x) \mathrm{d} \Gamma \\
& \leq \varepsilon\left\|u_{n}\right\|_{A} .
\end{aligned}
$$

Rearranging this inequality and taking $u_{n}-u$ instead of $u_{n}$, we obtain:

$$
\begin{aligned}
\left\langle u_{n}-u, u_{n}-u\right\rangle_{A} & \leq\left|\left\langle u_{n}, u_{n}-u\right\rangle_{A}\right|+\left|\left\langle u, u_{n}-u\right\rangle_{A}\right| \\
& \leq 2 \varepsilon\left\|u_{n}-u\right\|_{A}+\lambda\left|\int_{\Omega} f\left(x, u_{n}(x)\right)\left(u_{n}(x)-u(x)\right) \mathrm{d} x\right| \\
& +\lambda\left|\int_{\Omega} f(x, u(x))\left(u_{n}(x)-u(x)\right) \mathrm{d} x\right| \\
& +\mu\left|h^{\prime}\left(J_{G}\left(u_{n}\right)\right) \int_{\Gamma} g\left(x, u_{n}(x)\right)\left(u_{n}(x)-u(x)\right) \mathrm{d} \Gamma\right| \\
& +\mu\left|h^{\prime}\left(J_{G}\left(u_{n}\right)\right) \int_{\Gamma} g(x, u(x))\left(u_{n}(x)-u(x)\right) \mathrm{d} \Gamma\right| .
\end{aligned}
$$

Using Hölder's inequality we get:

$$
\begin{aligned}
& \left|\int_{\Omega} f\left(x, u_{n}(x)\right)\left(u_{n}(x)-u(x)\right) \mathrm{d} x\right| \\
& \leq \int_{\Omega}\left|f\left(x, u_{n}(x)\right) w(x)^{-\frac{1}{p}}\right|\left|\left(u_{n}(x)-u(x)\right) w(x)^{\frac{1}{p}}\right| \mathrm{d} x \\
& \leq\left(\int_{\Omega} \left\lvert\, f\left(x, u_{n}(x)\right)^{p^{\prime}} w(x)^{-\frac{p^{\prime}}{p}} \mathrm{~d} x\right.\right)^{\frac{1}{p^{\prime}}}\left(\int_{\Omega}\left|u_{n}(x)-u(x)\right|^{p} w(x) \mathrm{d} x\right)^{\frac{1}{p}} \\
& =\left(\int_{\Omega}\left|f\left(x, u_{n}(x)\right)\right|^{p^{\prime}} w(x)^{\frac{1}{1-p}} \mathrm{~d} x\right)^{\frac{1}{p^{p}}}\left\|u_{n}-u\right\|_{p, \Omega, w}
\end{aligned}
$$

and arguing in the same way for $g$, we obtain:

$$
\begin{aligned}
& \left|\int_{\Gamma} g\left(x, u_{n}(x)\right)\left(u_{n}(x)-u(x)\right) \mathrm{d} x\right| \\
& \leq\left(\int_{\Gamma}\left|g\left(x, u_{n}(x)\right)\right|^{q^{\prime}} w(x)^{\frac{1}{1-q}} \mathrm{~d} \Gamma\right)^{\frac{1}{q^{\prime}}}\left\|u_{n}-u\right\|_{q, \Gamma, w} .
\end{aligned}
$$

Since $\left\{u_{n}\right\}$ is bounded, by Lemma 1 it follows the existence of the constants $M_{f}, M_{g}>0$ such that

$$
\begin{gathered}
\int_{\Omega}\left|f\left(x, u_{n}(x)\right)\right|^{p^{\prime}} w(x)^{\frac{1}{1-p}} \mathrm{~d} x \leq M_{f}, \int_{\Omega}|f(x, u(x))|^{p^{\prime}} w(x)^{\frac{1}{1-p}} \mathrm{~d} x \leq M_{f}, \\
\int_{\Gamma}\left|g\left(x, u_{n}(x)\right)\right|^{q^{\prime}} w(x)^{\frac{1}{1-q}} \mathrm{~d} \Gamma \leq M_{g}, \int_{\Gamma}|g(x, u(x))|^{q^{\prime}} w(x)^{\frac{1}{1-q}} \mathrm{~d} \Gamma \leq M_{g},
\end{gathered}
$$

and by the choice of the functional $h$, we obtain another positive constant $M_{h}$ such that $\left|h^{\prime}\left(J_{G}\left(u_{n}\right)\right)\right| \leq M_{h}$.

Therefore the inequality (22) becomes:

$$
\left\|u_{n}-u\right\|_{A}^{2} \leq 2 \varepsilon\left\|u_{n}-u\right\|_{A}+2 \lambda M_{f}\left\|u_{n}-u\right\|_{p, \Omega, w}+2 \mu M_{g} M_{h}\left\|u_{n}-u\right\|_{q, \Gamma, w} .
$$

By (21) we have that $\left\|u_{n}-u\right\|_{p, \Omega, w}$ and $\left\|u_{n}-u\right\|_{q, \Gamma, w}$ tend to zero and since $\varepsilon>0$ is arbitrary, it follows that $u_{n}$ converges strongly to $u$ in $X_{A}$, whenever $n \rightarrow \infty$.

Proof of Theorem 2. We choose $X=X_{A},\|\cdot\|=\|\cdot\|_{A}, \tilde{X}_{1}=L^{p}(\Omega ; w)$, with $p \in] 2,2^{*}\left[, \tilde{X}_{2}=L^{q}(\Gamma ; w)\right.$, with $\left.q \in\right] 2, \overline{2}^{*}\left[, \Lambda=\left[0, \infty\left[\right.\right.\right.$ and $h(t)=t^{2} / 2$, $t \geq 0$. Using the Lemmas from this section, all the assumptions of Theorem 1 are satisfied, so we can apply it, achieving the claimed result.

## REFERENCES

[1] Bonanno, G., Some remarks on a three critical points theorem, Nonlinear Anal., 54 (2003), 651-665.
[2] Brézis, H., Analyse fonctionelle. Théorie et applications, Masson, Paris, 1983.
[3] Kristály, A. and Varga, Cs., On a class of quasilinear eigenvalue problems in $\mathbb{R}^{N}$, Math. Nachr., 278 (2005), 1756-1765.
[4] Kristály, A., Marzantowicz, W. and Varga, Cs., A non-smooth three critical points theorem with applications in differential inclusions, J. Global Optim., 46 (2010), 49-62.
[5] Lisei, H., Horváth, A. and Varga, Cs., Multiplicity results for a class of quasilinear eigenvalue problems on unbounded domain, Arch. Math. (Basel), 90 (2008), 256-266.
[6] Mezei, I.I., Multiple solutions for a double eigenvalue semilinear problem in double weighted Sobolev spaces, Studia Univ. Babeş-Bolyai Math., 53 (2008), 33-48.
[7] Mezei, I.I. and Varga, Cs. Multiplicity result for a double eigenvalue quasilinear problem on unbounded domain, Nonlinear Anal., 69 (2008), 4099-4105.
[8] Montefusco, E. and Rădulescu, V., Nonlinear eigenvalue problems for quasilinear operators on unbounded domains, Nonlinear Differ. Equ. Appl., 8 (2001), 481-497.
[9] Pflüger, K., Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electron. J. Differ. Equ., 1998 (1998), 1-13.
[10] PFlÜger, P., Compact traces in weighted Sobolev space, Analysis (Munich), 18 (1998), 65-83.
[11] Pflüger, K., Semilinear Elliptic Problems in Unbounded Domains: Solutions in weighted Sobolev Spaces, Institüt for Mathematik I, Freie Universität Berlin, Preprint no. 21, 1995.
[12] Ricceri, B., On a three critical points theorem, Arch. Math. (Basel), 75 (2000), 220226.
[13] Ricceri, B., A three critical points theorem revisited, Nonlinear Anal., 70(2008), 30843089.

Received April 27, 2009
Received September 22, 2009

"Babeş-Bolyai" University<br>Faculty of Matematics and Computer Science<br>Str. M. Kogălniceanu nr. 1<br>400084 Cluj Napoca, Romania<br>E-mail: mezeiildi@yahoo.com<br>"Petru Rares" High School Str. Obor 10A<br>425100 Beclean, Romania<br>E-mail: liasaplacan@yahoo.com


[^0]:    First author supported by Grant PN. II, ID_527/2007 from MEdC-ANCS.

