MULTIPLE SOLUTIONS FOR A NON-HOMOGENEOUS NEUMANN BOUNDARY-VALUE PROBLEM

ILDIKÓ-ILONA MEZEI and LIA SĂPLĂCAN

Abstract. In this paper we obtain multiple solutions in double weighted Sobolev spaces for a non-homogeneous elliptic semilinear eigenvalue problem on unbounded domain. We use a very recent Ricceri type critical points theorem proved by Kristály, Marzantowicz, Varga in [4].

MSC 2010. 35J20, 46E35.

Key words. semilinear elliptic equation, eigenvalue problem, variational methods, unbounded domain, weighted Sobolev space.

1. INTRODUCTION

For $\lambda, \mu > 0$, we consider the following elliptic eigenvalue problem with non-homogeneous boundary condition:

$$(P_{\lambda,\mu}) \qquad \qquad \left\{ \begin{array}{l} -\Delta u + b(x)u = \lambda f(x,u) \text{ in } \Omega \\ \\ \partial_n u = \mu g(x,u) \text{ on } \Gamma, \end{array} \right.$$

where $\Omega \subset \mathbb{R}^N$, $(N \geq 2)$ is an unbounded domain with smooth boundary Γ , $f: \Omega \times \mathbb{R} \to \mathbb{R}, g: \Gamma \times \mathbb{R} \to \mathbb{R}$ are Carathéodory functions, *n* denotes the unit outward normal on Γ and ∂_n is the outer normal derivative on Γ .

Problems of this type were studied by several authors in the last years. We mention here Kristály [3], Lisei, Horváth, Varga [5], Pflüger [9], Montefusco and Rădulescu [8], Mezei and Varga [7] and others. The problems studied in these papers involve the *p*-Laplacian and the nonlinear term defined on the boundary of Ω is *subcritical* and either *sublinear* or *superlinear* in the second variable in the origin and at the infinity. Mezei in [6] proved the existence of an open interval of eigenvalues, for which the eigenvalue problem $(P_{\lambda,\mu})$ has two distinct, nontrivial solutions. We remark that in [6] an important assumption is that *g* is *subcritical* and *sublinear* in the second variable in 0 and at infinity. In present paper we drop the sublinearity conditions for *g*, we assume only the subcriticality of *g* and we obtain multiple solutions of the problem $(P_{\lambda,\mu})$. Hence, this paper provides a more general multiplicity result than the earlier ones.

First author supported by Grant PN. II, ID_527/2007 from MEdC-ANCS.

The main tool used in this proof is a three critical points theorem proved in 2003 by G. Bonanno [1], which is actually a consequence of the three critical points theorem of B. Ricceri [12]. Later, in 2008, B. Ricceri "revisited" this theorem and reached a much more precise conclusion under an additional condition (which is always satisfied in the applications). In 2009, Kristály, Marzantowicz, Varga extended this result of Ricceri to locally Lipschitz functions in [4]. We are going to use this latter result, therefore we recall it.

For every $\tau > 0$, we introduce the following class of functions:

 $(\mathcal{G}_{\tau}): g \in C^1(\mathbb{R}, \mathbb{R})$ is bounded and g(t) = t, for any $t \in [-\tau, \tau]$.

THEOREM 1. [4, Theorem 2.1] Let $(X, ||\cdot||)$ be a real reflexive Banach space and $\tilde{X}_i (i = 1, 2)$ be two Banach spaces such that the embeddings $X \hookrightarrow \tilde{X}_i$ are compact. Let Λ be a real interval, $h : [0, \infty) \to [0, \infty)$ be a non-decreasing convex function and let $\Phi_i : \tilde{X}_i \to \mathbb{R}(i = 1, 2)$ be two locally Lipschitz functions such that $E_{\lambda,\mu} = h(||\cdot||) + \lambda \Phi_1 + \mu(g \circ \Phi_2)$ restricted to X satisfies the $(PS)_c$ condition for every $c \in \mathbb{R}$, $\lambda \in \Lambda$, $\mu \in [0, |\lambda| + 1]$ and $g \in \mathcal{G}_{\tau}, \tau \geq 0$. Assume that $h(||\cdot||) + \lambda \Phi_1$ is coercive on X for all $\lambda \in \Lambda$ and that there exists $\rho \in \mathbb{R}$ such that

$$\sup_{\lambda \in \Lambda} \inf_{x \in X} [h(||x||) + \lambda(\Phi_1(x) + \rho)] < \inf_{x \in X} \sup_{\lambda \in \Lambda} [h(||x||) + \lambda(\Phi_1(x) + \rho)].$$

Then, there exist a non-empty open set $A \subset \Lambda$ and r > 0 with the property that for every $\lambda \in A$ there exists $\mu_0 \in]0, |\lambda| + 1[$ such that, for each $\mu \in [0, \mu_0]$ the functional $\mathcal{E}_{\lambda,\mu} = h(||\cdot||) + \lambda \Phi_1 + \mu \Phi_2$ has at least three critical points in X whose norms are less than r.

In the last section of this paper we use a particular case of Theorem 1, when Φ_i , (i = 1, 2) are functions of class C^1 .

2. MAIN RESULT

Let $\Omega \subset \mathbb{R}^N$, $(N \ge 2)$ be an unbounded domain with smooth boundary Γ . For the positive measurable functions u and w, both defined in Ω , we define the weighted *p*-norm $(1 \le p < \infty)$ as

$$||u||_{p,\Omega,w} = \left(\int_{\Omega} |u(x)|^p w(x) \mathrm{d}x\right)^{\frac{1}{p}},$$

and denote by $L^p(\Omega; w)$ the space of all measurable functions u such that $||u||_{p,\Omega,w}$ is finite.

The double weighted Sobolev space $W^{1,p}(\Omega; v_0, v_1)$ is defined as the space of all functions $u \in L^p(\Omega; v_0)$ such that all derivatives $\frac{\partial u}{\partial x_i}$ belong to $L^p(\Omega; v_1)$. The corresponding norm is defined by

$$||u||_{p,\Omega,v_0,v_1} = \left(\int_{\Omega} |\nabla u(x)|^p v_1(x) + |u(x)|^p v_0(x) \mathrm{d}x\right)^{\frac{1}{p}}.$$

82

We are choosing our weight functions from the so-called Muckenhoupt class A_p , which is defined as the set of all positive functions v in \mathbb{R}^N satisfying

$$\frac{1}{|Q|} \left(\int_{\Omega} v \, \mathrm{d}x \right)^{\frac{1}{p}} \left(\int_{\Omega} v^{-\frac{1}{p-1}} \, \mathrm{d}x \right)^{\frac{p-1}{p}} \leq \bar{C}, \text{ if } 1
$$\frac{1}{|Q|} \int_{\Omega} v \, \mathrm{d}x \leq \bar{C} \, \mathrm{ess} \inf_{x \in Q} v(x), \text{ if } p = 1,$$$$

for all cubes $Q \in \mathbb{R}^N$ and some $\overline{C} > 0$.

In this paper we always assume that the weight functions v_0, v_1, w are defined on Ω , belong to A_p and are chosen such that the embeddings

(1)
$$W^{1,2}(\Omega; v_0, v_1) \hookrightarrow L^p(\Omega; w),$$

(2)
$$W^{1,2}(\Omega; v_0, v_1) \hookrightarrow L^q(\Gamma; w)$$

are compact for $p \in]2, 2^*[, q \in]2, \overline{2}^*[$ and continuous for $p \in [2, 2^*], q \in [2, \overline{2}^*]$ respectively, where $2^* = \frac{2N}{N-2}$ and $\overline{2}^* = \frac{2(N-1)}{N-2}$ are the critical exponents. Such weight functions there exist, see e.g. [10], [11].

Therefore, there exist the best embedding constants denoted by $C_{p,\Omega}, C_{q,\Gamma}$ such that:

(3)
$$||u||_{p,\Omega,w} \le C_{p,\Omega}||u||_{v_0,v_1}, \text{ for all } u \in W^{1,2}(\Omega;v_0,v_1),$$

(4)
$$||u||_{q,\Gamma,w} \leq C_{q,\Gamma}||u||_{v_0,v_1}, \text{ for all } u \in W^{1,2}(\Omega;v_0,v_1),$$

where we used the abbreviation $||u||_{v_0,v_1} = ||u||_{2,\Omega,v_0,v_1}$. First, we define an operator $A: W^{1,2}(\Omega; v_0, v_1) \to \mathbb{R}$ by $A(u) = -\Delta u + b(x)u$ for a positive measurable function b, then a continuous bilinear form associated with this operator as

(5)
$$\langle u, v \rangle_A = \int_{\Omega} (\nabla u \nabla v + b(x) u v) \mathrm{d}x$$

and the corresponding norm with

(6)
$$||u||_A^2 = \langle u, u \rangle_A = \int_{\Omega} (|\nabla u(x)|^2 + b(x)|u(x)|^2) \mathrm{d}x.$$

Now, we define the Banach space

(7)
$$X_A = \{ u \in W^{1,2}(\Omega; v_0, v_1) : ||u||_A < \infty \},$$

endowed with the norm $|| \cdot ||_A$.

We say that $u \in X_A$ is a *weak solution* of the problem $(P_{\lambda,\mu})$, if

$$\langle u, v \rangle_A - \lambda \int_{\Omega} f(x, u(x))v(x) dx - \mu \int_{\Gamma} g(x, u(x))v(x) d\Gamma = 0$$
, for every $v \in X_A$.

The relation between the spaces $W^{1,2}(\Omega; v_0, v_1)$ and X_A is given by the ellipticity condition

(A)
$$||u||_A^2 \ge 2K||u||_{v_0,v_1}^2$$
 for every $u \in X_A$,

with some positive constant K > 0;

Furthermore we consider the following assumptions on f, g:

- (F1) $f(\cdot, 0) = 0$ and $|f(x, s)| \leq f_0(x) + f_1(x)|s|^{p-1}$ for $x \in \Omega$, $s \in \mathbb{R}$, where $p \in]2, 2^*[$ and f_0, f_1 are positive measurable functions satisfying $f_0 \in L^{\frac{p}{p-1}}(\Omega; w^{\frac{1}{1-p}}), f_0(x) \leq C_f w(x) \text{ and } f_1(x) \leq C_f w(x) \text{ for a.e.}$ $x \in \Omega$, with an appropriate constant C_f ;
- (F2) $\lim_{s \to 0} \frac{f(x,s)}{f_0(x)|s|} = 0$, uniformly in $x \in \Omega$;
- (F3) $\limsup_{s \to \infty} \frac{F(x,s)}{f_0(x)|s|^2} \le 0 \text{ uniformly in } x \in \Omega \text{ and } \max_{|s| \le M} F(\cdot,s) \in L^1(\Omega), \text{ for } x \in \Omega \text{ and } \max_{|s| \le M} F(\cdot,s) \in L^1(\Omega), \text{ for } x \in \Omega \text{ and } \max_{|s| \le M} F(\cdot,s) \in L^1(\Omega), \text{ for } x \in \Omega \text{ and } \max_{|s| \le M} F(\cdot,s) \in L^1(\Omega), \text{ for } x \in \Omega \text{ and } \max_{|s| \le M} F(\cdot,s) \in L^1(\Omega).$ all M > 0, where $F(x, u) = \int_0^u f(x, s) ds$; (F4) there exist $x_0 \in \Omega$, $s_0 \in \mathbb{R}$ and $R_0 > 0$ such that $\min_{|x-x_0| < R} F(x, s_0) > 0$.
- (G) $g(\cdot,0) = 0$ and $|g(x,s)| \leq g_0(x) + g_1(x)|s|^{q-1}$, for $x \in \Gamma$, $s \in \mathbb{R}$, where $q \in]2, \bar{2}^*[$ and g_0, g_1 are positive measurable functions satisfying $g_0 \in L^{\frac{q}{q-1}}(\Gamma; w^{\frac{1}{1-q}}), g_0(x) \leq C_g w(x) \text{ and } g_1(x) \leq C_g w(x), \text{ a.e. } x \in \Gamma,$ with an appropriate constant C_g .

The main result of this paper is the following

THEOREM 2. Let $f : \Omega \times \mathbb{R} \to \mathbb{R}$ and $g : \Gamma \times \mathbb{R} \to \mathbb{R}$ be Carathéodory functions satisfying the conditions (F1)-(F4) and (G). Then there exists a nondegenerate interval $[a,b] \subset]0,+\infty[$ and a number r > 0, such that for every $\lambda \in [a, b]$ there exists $\mu_0 \in]0, \lambda + 1[$ such that for each $\mu \in [0, \mu_0]$, the problem $(P_{\lambda,\mu})$ has at least three distinct solutions with X_A -norms less than r.

3. AUXILIARY RESULTS AND PROOF OF THEOREM 2

In this section first we present some auxiliary results. These properties guarantee that all the assumptions of Theorem 1 are satisfied, so we can apply it obtaining our main result.

First, we define the functionals $J_F, J_G: X_A \to \mathbb{R}$ by

$$J_F(u) = \int_{\Omega} F(x, u(x)) dx, \quad J_G(u) = \int_{\Gamma} G(x, u(x)) d\Gamma,$$

where $G(x,u) = \int_0^u g(x,s) d\Gamma$, then the energy functional $\mathcal{E}_{\lambda,\mu} : X_A \to \mathbb{R}$ associated to $(P_{\lambda,\mu})$ by $\mathcal{E}_{\lambda,\mu}(u) = \frac{1}{2} ||u||_A^2 - \lambda J_F(u) - \mu J_G(u)$. In the next result we use the Nemytskii operator of a Carathéodory function

 $h: \Omega \times \mathbb{R} \to \mathbb{R}$, defined by $N_h(u) = h(x, u(x))$.

LEMMA 1. [6, Lemma 2.1] Assume that the conditions (F1), (G) are satisfied. Then, the Nemytskii operators $N_f: L^p(\Omega; w) \to L^{\frac{p}{p-1}}(\Omega; w^{\frac{1}{1-p}}), N_F:$ $L^p(\Omega; w) \to L^1(\Omega), N_g: L^q(\Gamma; w) \to L^{\frac{q}{q-1}}(\Gamma; w^{\frac{1}{1-q}})$ and $N_G: L^q(\Gamma; w) \to L^1(\Gamma)$ are bounded and continuous.

LEMMA 2. [10, Lemma 8] The energy functional $\mathcal{E}_{\lambda,\mu}: X_A \to \mathbb{R}$ is Fréchet differentiable and its derivative is given by

(8)
$$\langle \mathcal{E}'_{\lambda,\mu}(u), v \rangle = \langle u, v \rangle_A - \lambda \int_{\Omega} f(x, u(x))v(x)dx - \mu \int_{\Gamma} g(x, u(x))v(x)d\Gamma$$

for every $v \in X_A$.

Due to this result, one can see that the critical points of $\mathcal{E}_{\lambda,\mu}$ are exactly the weak solutions of $(P_{\lambda,\mu})$. Therefore, instead of looking for weak solutions of problem $(P_{\lambda,\mu})$, we are seeking for the critical points of $\mathcal{E}_{\lambda,\mu}$.

LEMMA 3. Assume that the conditions (F1)-(F3) are satisfied. Then, for every $\lambda > 0$ the functional $\alpha : X_A \to \mathbb{R}$ defined by $\alpha(u) = \frac{1}{2}||u||_A^2 - \lambda J_F(u)$ is coercive.

Proof. Let us fix $\lambda > 0$ arbitrarily and $\eta > 0$ such that

$$\frac{K}{\lambda C_f C_{2,\Omega}^2} > \eta$$

By the conditions (F2),(F3) there exist a positive function $k \in L^1(\Omega; w)$ such that

(9)
$$|F(x,s)| \le \eta f_0(x)|s|^2 + k(x)w(x), \quad \forall (x,s) \in \Omega \times \mathbb{R}$$

Thus, using the relation (9), the embedding (1) and the (A) ellipticity conditions, for every $u \in X_A$ we obtain:

$$\begin{aligned} \alpha(u) &\geq \frac{1}{2} ||u||_{A}^{2} - \lambda \int_{\Omega} \eta f_{0}(x) |u(x)|^{2} dx - \lambda \int_{\Omega} k(x) w(x) dx \\ &\geq \frac{1}{2} ||u||_{A}^{2} - \lambda \eta C_{f} ||u||_{2,\Omega,w}^{2} - \lambda ||k||_{1,\Omega,w} \\ &\geq \frac{1}{2} ||u||_{A}^{2} - \lambda \eta C_{f} C_{2,\Omega,w}^{2} ||u||_{w_{0},v_{1}}^{2} - \lambda ||k||_{1,\Omega,w} \\ &\geq \frac{1}{2} \left(1 - \lambda \eta C_{f} C_{2,\Omega}^{2} \frac{1}{K} \right) ||u||_{A}^{2} - \lambda ||k||_{1,\Omega,w}. \end{aligned}$$

Since $k \in L^1(\Omega; w)$, we have that $||k||_{1,\Omega,w}$ is finite. Therefore, by the choice of η it follows, that $\mathcal{E}_{\lambda,\mu}(u) \to \infty$ as $||u||_A \to \infty$. Hence $\mathcal{E}_{\lambda,\mu}$ is coercive. \Box

LEMMA 4. Let the conditions (F1) and (F2) be satisfied. Then

$$\lim_{t \to 0^+} \frac{\sup\{J_F(u) : u \in X_A, ||u||_A^2 < 2t\}}{t} = 0.$$

(10)
$$|f(x,s)| \le \hat{\varepsilon}f_0(x)|s| + \hat{c}(\varepsilon)f_1(x)|s|^{p-1}, \text{ for } p \in]2, 2^*[.$$

Then integrating with respect to the second variable, from 0 to u(x), we get the existence of $c(\varepsilon) > 0$, such that, for every $\varepsilon > 0$ we have:

(11)
$$|F(x, u(x))| \le \varepsilon f_0(x)|u(x)|^2 + c(\varepsilon)f_1(x)|u(x)|^p$$
, for $p \in]2, 2^*[.$

Now, fix $\varepsilon > 0$ and $p \in]2, 2^*[$ arbitrarily. Then from (11) and the ellipticity condition (A), it follows that:

$$J_{F}(u) \leq \varepsilon C_{f} C_{2,\Omega}^{2} ||u||_{v_{0},v_{1}}^{2} + c(\varepsilon) C_{f} C_{p,\Omega}^{p} ||u||_{v_{0},v_{1}}^{p} \\ \leq \varepsilon C_{f} C_{2,\Omega}^{2} \frac{||u||_{A}^{2}}{2K} + c(\varepsilon) C_{f} C_{p,\Omega}^{p} \left(\frac{||u||_{A}^{2}}{2K}\right)^{\frac{p}{2}}.$$

Therefore, we have:

$$\sup\{J_{\mu}(u): \frac{||u||_A^2}{2} < \rho\} \le \varepsilon \frac{C_f C_{2,\Omega}^2}{K} \rho + \frac{c(\varepsilon)C_f C_{p,\Omega}^p}{K^{\frac{p}{2}}} \rho^{\frac{p}{2}}$$

Since p > 2 and ε is chosen arbitrarily, by dividing this last inequality with ρ and taking the limit whenever $\rho \to 0$, we get the required equality.

The next lemma can be proved arguing as in [7, Lemma 3.2].

LEMMA 5. Assume that (F4) is satisfied. Then there exists a function $u_0 \in X_A$ such that $J_F(u_0) > 0$.

The result of Lemma 5 is deeply employed in the next lemma.

LEMMA 6. There exists $\rho_0 \in \mathbb{R}$ such that

$$\sup_{\lambda>0} \inf_{u \in X_A} \left(\frac{1}{2} ||u||_A^2 - \lambda (J_F(u) - \rho_0) \right) < \inf_{u \in X_A} \sup_{\lambda>0} \left(\frac{1}{2} ||u||_A^2 - \lambda (J_F(u) - \rho_0) \right).$$

Proof. Let us define the function $\beta : [0, \infty) \to \mathbb{R}$ by

$$\beta(t) = \sup\{J_F(u) : u \in X_A, ||u||_A^2 < 2t\}.$$

Then, from the assumption (F2), we have that $\beta(t) \ge 0$, for every t > 0 and Lemma 4 yields that

(12)
$$\lim_{t \searrow 0} \frac{\beta(t)}{t} = 0.$$

We consider the function $u_0 \in X_A$ provided from Lemma 5, i.e. $J_F(u_0) > 0$. Therefore we can choose a number $\gamma > 0$ such that

(13)
$$0 < \gamma < J_F(u_0) \frac{2}{||u_0||_A^2}.$$

By (12) we get the existence of a number $t_0 \in (0, \frac{||u_0||_A^2}{2})$ such that $\beta(t_0) < \gamma t_0$. Thus by (13) we have:

(14)
$$\beta(t_0) < J_F(u_0) \frac{2}{||u_0||_A^2} t_0.$$

Then, we can find a number $\rho_0 > 0$ such that

(15)
$$\beta(t_0) < \rho_0 < J_F(u_0) \frac{2}{||u_0||_A^2} t_0.$$

Hence, by the choice of t_0 we have:

(16)
$$\beta(t_0) < \rho_0 < J_F(u_0).$$

Now, we define the function $\varphi: X_A \times [0, \infty[\to \mathbb{R} \text{ by}$

$$\varphi(u,\lambda) = \frac{||u||_A^2}{2} + \lambda(\rho_0 - J_F(u))$$

and we claim that

(17)
$$\sup_{\lambda>0} \inf_{u\in X_A} \varphi(u,\lambda) < \inf_{u\in X_A} \sup_{\lambda>0} \varphi(u,\lambda).$$

The function $[0, \infty[\ni \lambda \mapsto \inf_{u \in X_A} \left(\frac{||u||_A^2}{2} + \lambda(\rho_0 - J_F(u)) \right)$ is upper semicontinuous on $[0, \infty[$. By the choice of ρ_0 in (16) it follows that:

$$\lim_{\lambda \to \infty} \inf_{u \in X_A} \varphi(u, \lambda) \le \lim_{\lambda \to \infty} \left(\frac{||u_0||_A^2}{2} + \lambda(\rho_0 - J_F(u_0)) \right) = -\infty.$$

Therefore we can choose a number $\overline{\lambda} \in [0, \infty[$ such that

(18)
$$\sup_{\lambda>0} \inf_{u\in X_A} \varphi(u,\lambda) = \inf_{u\in X_A} \left(\frac{||u||_A^2}{2} + \bar{\lambda}(\rho_0 - J_F(u)) \right).$$

From the definition of β we have that $J_F(u) \leq \beta(t_0)$, for all $u \in X_A$ with $||u||_A^2 \leq 2t_0$. Then by the choice of ρ_0 , it follows that $\rho_0 > J_F(u)$, for every $u \in X_A$, with $||u||_A^2 \leq 2t_0$. Hence $t_0 < \frac{||u||_A^2}{2}$, for $u \in X_A$, $\rho_0 \leq J_F(u)$, therefore:

(19)
$$t_0 \le \inf\left\{\frac{||u||_A^2}{2} : u \in X_A, \rho_0 \le J_F(u)\right\}.$$

On the other hand,

$$\inf_{u \in X_A} \sup_{\lambda \in [0,\infty[} \varphi(u,\lambda) = \inf_{u \in X_A} \left\{ \frac{\|u\|_A^2}{2} + \sup_{\lambda \in [0,\infty[} \{\lambda(\rho_0 - J_F(u))\} \right\}$$
$$= \inf_{u \in X_A} \left\{ \frac{\|u\|_A^2}{2} : \rho_0 \le J_F(u) \right\}.$$

Therefore, inequality (19) is equivalent to

(20)
$$t_0 \le \inf_{u \in X_A} \sup_{\lambda \in [0,\infty[} \varphi(u,\lambda).$$

Now, we consider two cases. First, when $0 \leq \overline{\lambda} < \frac{t_0}{\rho_0}$, then we have:

$$\inf_{u \in X_A} \left\{ \frac{||u||_A^2}{2} + \bar{\lambda}(\rho_0 - J_F(u)) \right\} = \inf_{u \in X_A} \varphi(u, \bar{\lambda}) \le \varphi(0, \bar{\lambda}) = \bar{\lambda}\rho_0 < t_0.$$

Combining this inequality with (18) and (20) the claim follows. Now, if $\bar{\lambda} \geq \frac{t_0}{\rho_0}$, applying the inequality (15) we have:

$$\inf_{u \in X_A} \left\{ \frac{||u||_A^2}{2} + \bar{\lambda}(\rho_0 - J_F(u)) \right\} \leq \frac{||u_0||_A^2}{2} + \bar{\lambda}(\rho_0 + J_F(u_0)) \\
\leq \frac{||u_0||_A^2}{2} + \frac{t_0}{\rho_0}(\rho_0 - J_F(u_0)) = t_0 + \left(\frac{||u_0||_A^2}{2} - \frac{t_0}{\rho_0}J_F(u_0)\right) < t_0.$$

Using the relations (18) and (20), we obtain (20), which completes the proof. $\hfill \Box$

In the sequel, for a $\tau \geq 0$, let $h : \mathbb{R} \to \mathbb{R}$ be a bounded C^1 function from \mathcal{G}_{τ} and for $\lambda, \mu > 0$ let $E_{\lambda,\mu} : X_A \to \mathbb{R}$ be the functional defined by

$$E_{\lambda,\mu} = \frac{1}{2} ||u||_A^2 - \lambda J_F(u) - \mu(h \circ J_G)(u), u \in X_A.$$

LEMMA 7. The functional $E_{\lambda,\mu}$ satisfies the Palais-Smale condition for every $\lambda \geq 0$ and $\mu \in [0, \lambda + 1]$.

Proof. Let $\{u_n\} \subset X_A$ be an arbitrary Palais-Smale sequence for $E_{\lambda,\mu}$, i.e. (a) $\{E_{\lambda,\mu}(u_n)\}$ is bounded;

(b) $E'_{\lambda,\mu}(u_n) \to 0.$

We have to prove that $\{u_n\}$ contains a strongly convergent subsequence in X_A .

By Lemma 3, we have that $\alpha(u) = \frac{1}{2}||u||_A^2 - \lambda J_F(u)$ is coercive. Then by the choice of h, we have that $E_{\lambda,\mu}$ is coercive as well. Therefore the sequence $\{u_n\}$ is bounded. X_A is a reflexive Banach space, so taking a subsequence if necessary (denoted in the same way), we get an element $u \in X_A$ such that $u_n \to u$ weakly in X_A .

Because the embeddings (1) and (2) are compact for $p \in]2, 2^*[$ and $q \in]2, \overline{2}^*[$, we have that $u_n \to u$ strongly in $L^p(\Omega; w)$ and $L^q(\Gamma; w)$, i.e.

(21)
$$||u_n - u||_{p,\Omega,w} \to 0 \text{ and } ||u_n - u||_{q,\Gamma,w} \to 0, \text{ whenever } n \to \infty.$$

From the condition (b) we have that $\left|\langle E'_{\lambda,\mu}(u_n), \frac{u_n}{||u_n||_A}\rangle\right| \leq \varepsilon$, for every $\varepsilon > 0$ and large $n \in \mathbb{N}$. Then

$$\langle u_n, u_n \rangle_A - \lambda \int_{\Omega} f(x, u_n(x)) u_n(x) dx - \mu h'(J_G(u_n)) \int_{\Gamma} g(x, u_n(x)) u_n(x) d\Gamma$$

 $\leq \varepsilon ||u_n||_A.$

Rearranging this inequality and taking $u_n - u$ instead of u_n , we obtain:

 $\langle u_n - u, u_n - u \rangle_A \leq |\langle u_n, u_n - u \rangle_A| + |\langle u, u_n - u \rangle_A|$ $\leq 2\varepsilon ||u_n - u||_A + \lambda \left| \int_{\Omega} f(x, u_n(x))(u_n(x) - u(x)) dx \right|$ $+ \lambda \left| \int_{\Omega} f(x, u(x))(u_n(x) - u(x)) dx \right|$ $+ \mu \left| h'(J_G(u_n)) \int_{\Gamma} g(x, u_n(x))(u_n(x) - u(x)) d\Gamma \right|$ $+ \mu \left| h'(J_G(u_n)) \int_{\Gamma} g(x, u(x))(u_n(x) - u(x)) d\Gamma \right|.$ Using Hölder's increasive.

Using Hölder's inequality we get:

$$\begin{aligned} \left| \int_{\Omega} f(x, u_n(x))(u_n(x) - u(x)) dx \right| \\ &\leq \int_{\Omega} \left| f(x, u_n(x))w(x)^{-\frac{1}{p}} \right| \left| (u_n(x) - u(x))w(x)^{\frac{1}{p}} \right| dx \\ &\leq \left(\int_{\Omega} |f(x, u_n(x))|^{p'} w(x)^{-\frac{p'}{p}} dx \right)^{\frac{1}{p'}} \left(\int_{\Omega} |u_n(x) - u(x)|^p w(x) dx \right)^{\frac{1}{p}} \\ &= \left(\int_{\Omega} |f(x, u_n(x))|^{p'} w(x)^{\frac{1}{1-p}} dx \right)^{\frac{1}{p'}} ||u_n - u||_{p,\Omega,w} \end{aligned}$$

and arguing in the same way for g, we obtain:

$$\left| \int_{\Gamma} g(x, u_n(x))(u_n(x) - u(x)) \mathrm{d}x \right|$$

$$\leq \left(\int_{\Gamma} |g(x, u_n(x))|^{q'} w(x)^{\frac{1}{1-q}} \mathrm{d}\Gamma \right)^{\frac{1}{q'}} ||u_n - u||_{q, \Gamma, w}$$

Since $\{u_n\}$ is bounded, by Lemma 1 it follows the existence of the constants $M_f, M_g > 0$ such that

$$\int_{\Omega} |f(x, u_n(x))|^{p'} w(x)^{\frac{1}{1-p}} dx \le M_f, \int_{\Omega} |f(x, u(x))|^{p'} w(x)^{\frac{1}{1-p}} dx \le M_f,$$
$$\int_{\Gamma} |g(x, u_n(x))|^{q'} w(x)^{\frac{1}{1-q}} d\Gamma \le M_g, \int_{\Gamma} |g(x, u(x))|^{q'} w(x)^{\frac{1}{1-q}} d\Gamma \le M_g,$$

and by the choice of the functional h, we obtain another positive constant M_h such that $|h'(J_G(u_n))| \leq M_h$.

Therefore the inequality (22) becomes:

 $\begin{aligned} ||u_n - u||_A^2 &\leq 2\varepsilon ||u_n - u||_A + 2\lambda M_f ||u_n - u||_{p,\Omega,w} + 2\mu M_g M_h ||u_n - u||_{q,\Gamma,w}. \\ \text{By (21) we have that } ||u_n - u||_{p,\Omega,w} \text{ and } ||u_n - u||_{q,\Gamma,w} \text{ tend to zero and since } \\ \varepsilon &> 0 \text{ is arbitrary, it follows that } u_n \text{ converges strongly to } u \text{ in } X_A, \text{ whenever } \\ n \to \infty. \end{aligned}$

Proof of Theorem 2. We choose $X = X_A$, $|| \cdot || = || \cdot ||_A$, $\tilde{X}_1 = L^p(\Omega; w)$, with $p \in]2, 2^*[$, $\tilde{X}_2 = L^q(\Gamma; w)$, with $q \in]2, \bar{2}^*[$, $\Lambda = [0, \infty[$ and $h(t) = t^2/2,$ $t \geq 0$. Using the Lemmas from this section, all the assumptions of Theorem 1 are satisfied, so we can apply it, achieving the claimed result. \Box

REFERENCES

- BONANNO, G., Some remarks on a three critical points theorem, Nonlinear Anal., 54 (2003), 651–665.
- [2] Brézis, H., Analyse fonctionelle. Théorie et applications, Masson, Paris, 1983.
- [3] KRISTÁLY, A. and VARGA, CS., On a class of quasilinear eigenvalue problems in R^N, Math. Nachr., 278 (2005), 1756–1765.
- [4] KRISTÁLY, A., MARZANTOWICZ, W. and VARGA, CS., A non-smooth three critical points theorem with applications in differential inclusions, J. Global Optim., 46 (2010), 49–62.
- [5] LISEI, H., HORVÁTH, A. and VARGA, CS., Multiplicity results for a class of quasilinear eigenvalue problems on unbounded domain, Arch. Math. (Basel), 90 (2008), 256–266.
- [6] MEZEI, I.I., Multiple solutions for a double eigenvalue semilinear problem in double weighted Sobolev spaces, Studia Univ. Babeş-Bolyai Math., 53 (2008), 33–48.
- [7] MEZEI, I.I. and VARGA, CS. Multiplicity result for a double eigenvalue quasilinear problem on unbounded domain, Nonlinear Anal., 69 (2008), 4099–4105.
- [8] MONTEFUSCO, E. and RĂDULESCU, V., Nonlinear eigenvalue problems for quasilinear operators on unbounded domains, Nonlinear Differ. Equ. Appl., 8 (2001), 481–497.
- [9] PFLÜGER, K., Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition, Electron. J. Differ. Equ., **1998** (1998), 1–13.
- [10] PFLÜGER, P., Compact traces in weighted Sobolev space, Analysis (Munich), 18 (1998), 65–83.
- [11] PFLÜGER, K., Semilinear Elliptic Problems in Unbounded Domains: Solutions in weighted Sobolev Spaces, Institut for Mathematik I, Freie Universität Berlin, Preprint no. 21, 1995.
- [12] RICCERI, B., On a three critical points theorem, Arch. Math. (Basel), 75 (2000), 220– 226.
- [13] RICCERI, B., A three critical points theorem revisited, Nonlinear Anal., 70(2008), 3084– 3089.

Received April 27, 2009 Received September 22, 2009 "Babeş-Bolyai" University Faculty of Matematics and Computer Science Str. M. Kogălniceanu nr. 1 400084 Cluj Napoca, Romania E-mail: mezeiildi@yahoo.com

> "Petru Rareş" High School Str. Obor 10A 425100 Beclean, Romania E-mail: liasaplacan@yahoo.com