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MULTIPLE SOLUTIONS FOR A NON-HOMOGENEOUS
NEUMANN BOUNDARY-VALUE PROBLEM

ILDIKÓ-ILONA MEZEI and LIA SĂPLĂCAN

Abstract. In this paper we obtain multiple solutions in double weighted Sobolev
spaces for a non-homogeneous elliptic semilinear eigenvalue problem on un-
bounded domain. We use a very recent Ricceri type critical points theorem
proved by Kristály, Marzantowicz, Varga in [4].
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1. INTRODUCTION

For λ, µ > 0, we consider the following elliptic eigenvalue problem with
non-homogeneous boundary condition:

(Pλ,µ)

{ −∆u+ b(x)u = λf(x, u) in Ω

∂nu = µg(x, u) on Γ,

where Ω ⊂ RN , (N ≥ 2) is an unbounded domain with smooth boundary Γ,
f : Ω×R→ R, g : Γ×R→ R are Carathéodory functions, n denotes the unit
outward normal on Γ and ∂n is the outer normal derivative on Γ.

Problems of this type were studied by several authors in the last years. We
mention here Kristály [3], Lisei, Horváth, Varga [5], Pflüger [9], Montefusco
and Rădulescu [8], Mezei and Varga [7] and others. The problems studied in
these papers involve the p-Laplacian and the nonlinear term defined on the
boundary of Ω is subcritical and either sublinear or superlinear in the second
variable in the origin and at the infinity. Mezei in [6] proved the existence of an
open interval of eigenvalues, for which the eigenvalue problem (Pλ,µ) has two
distinct, nontrivial solutions. We remark that in [6] an important assumption
is that g is subcritical and sublinear in the second variable in 0 and at infinity.
In present paper we drop the sublinearity conditions for g, we assume only
the subcriticality of g and we obtain multiple solutions of the problem (Pλ,µ).
Hence, this paper provides a more general multiplicity result than the earlier
ones.
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The main tool used in this proof is a three critical points theorem proved
in 2003 by G. Bonanno [1], which is actually a consequence of the three crit-
ical points theorem of B. Ricceri [12]. Later, in 2008, B. Ricceri “revisited”
this theorem and reached a much more precise conclusion under an additional
condition (which is always satisfied in the applications). In 2009, Kristály,
Marzantowicz, Varga extended this result of Ricceri to locally Lipschitz func-
tions in [4]. We are going to use this latter result, therefore we recall it.

For every τ > 0, we introduce the following class of functions:
(Gτ ) : g ∈ C1(R,R) is bounded and g(t) = t, for any t ∈ [−τ, τ ].

Theorem 1. [4, Theorem 2.1] Let (X, || · ||) be a real reflexive Banach space
and X̃i(i = 1, 2) be two Banach spaces such that the embeddings X ↪→ X̃i

are compact. Let Λ be a real interval, h : [0,∞)→ [0,∞) be a non-decreasing
convex function and let Φi : X̃i → R(i = 1, 2) be two locally Lipschitz functions
such that Eλ,µ = h(|| · ||) + λΦ1 + µ(g ◦Φ2) restricted to X satisfies the (PS)c
condition for every c ∈ R, λ ∈ Λ, µ ∈ [0, |λ|+ 1] and g ∈ Gτ , τ ≥ 0. Assume
that h(|| · ||) + λΦ1 is coercive on X for all λ ∈ Λ and that there exists ρ ∈ R
such that

sup
λ∈Λ

inf
x∈X

[h(||x||) + λ(Φ1(x) + ρ)] < inf
x∈X

sup
λ∈Λ

[h(||x||) + λ(Φ1(x) + ρ)].

Then, there exist a non-empty open set A ⊂ Λ and r > 0 with the property
that for every λ ∈ A there exists µ0 ∈]0, |λ|+ 1[ such that, for each µ ∈ [0, µ0]
the functional Eλ,µ = h(|| · ||) + λΦ1 + µΦ2 has at least three critical points in
X whose norms are less than r.

In the last section of this paper we use a particular case of Theorem 1, when
Φi, (i = 1, 2) are functions of class C1.

2. MAIN RESULT

Let Ω ⊂ RN , (N ≥ 2) be an unbounded domain with smooth boundary Γ.
For the positive measurable functions u and w, both defined in Ω, we define
the weighted p-norm (1 ≤ p <∞) as

||u||p,Ω,w =
(∫

Ω
|u(x)|pw(x)dx

) 1
p

,

and denote by Lp(Ω;w) the space of all measurable functions u such that
||u||p,Ω,w is finite.

The double weighted Sobolev space W 1,p(Ω; v0, v1) is defined as the space
of all functions u ∈ Lp(Ω; v0) such that all derivatives ∂u

∂xi
belong to Lp(Ω; v1).

The corresponding norm is defined by

||u||p,Ω,v0,v1 =
(∫

Ω
|∇u(x)|pv1(x) + |u(x)|pv0(x)dx

) 1
p

.
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We are choosing our weight functions from the so-called Muckenhoupt class
Ap, which is defined as the set of all positive functions v in RN satisfying

1
|Q|

(∫
Ω
v dx

) 1
p
(∫

Ω
v
− 1

p−1 dx
) p−1

p

≤ C̄, if 1 < p <∞

1
|Q|

∫
Ω
v dx ≤ C̄ ess inf

x∈Q
v(x), if p = 1,

for all cubes Q ∈ RN and some C̄ > 0.
In this paper we always assume that the weight functions v0, v1, w are de-

fined on Ω, belong to Ap and are chosen such that the embeddings

(1) W 1,2(Ω; v0, v1) ↪→ Lp(Ω;w),

(2) W 1,2(Ω; v0, v1) ↪→ Lq(Γ;w)

are compact for p ∈]2, 2∗[, q ∈]2, 2̄∗[ and continuous for p ∈ [2, 2∗], q ∈ [2, 2̄∗]

respectively, where 2∗ =
2N
N − 2

and 2̄∗ =
2(N − 1)
N − 2

are the critical exponents.

Such weight functions there exist, see e.g. [10], [11].
Therefore, there exist the best embedding constants denoted by Cp,Ω, Cq,Γ

such that:

(3) ||u||p,Ω,w ≤ Cp,Ω||u||v0,v1 , for all u ∈W 1,2(Ω; v0, v1),

(4) ||u||q,Γ,w ≤ Cq,Γ||u||v0,v1 , for all u ∈W 1,2(Ω; v0, v1),

where we used the abbreviation ||u||v0,v1 = ||u||2,Ω,v0,v1 .
First, we define an operator A : W 1,2(Ω; v0, v1)→ R by A(u) = −∆u+b(x)u

for a positive measurable function b, then a continuous bilinear form associated
with this operator as

(5) 〈u, v〉A =
∫

Ω
(∇u∇v + b(x)uv)dx

and the corresponding norm with

(6) ||u||2A = 〈u, u〉A =
∫

Ω
(|∇u(x)|2 + b(x)|u(x)|2)dx.

Now, we define the Banach space

(7) XA = {u ∈W 1,2(Ω; v0, v1) : ||u||A <∞},

endowed with the norm || · ||A.
We say that u ∈ XA is a weak solution of the problem (Pλ,µ), if

〈u, v〉A−λ
∫

Ω
f(x, u(x))v(x)dx−µ

∫
Γ
g(x, u(x))v(x)dΓ = 0, for every v ∈ XA.
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The relation between the spaces W 1,2(Ω; v0, v1) and XA is given by the
ellipticity condition

(A) ||u||2A ≥ 2K||u||2v0,v1 for every u ∈ XA,

with some positive constant K > 0;
Furthermore we consider the following assumptions on f , g:
(F1) f(·, 0) = 0 and |f(x, s)| ≤ f0(x) + f1(x)|s|p−1 for x ∈ Ω, s ∈ R,

where p ∈]2, 2∗[ and f0, f1 are positive measurable functions satisfying
f0 ∈ L

p
p−1 (Ω;w

1
1−p ), f0(x) ≤ Cfw(x) and f1(x) ≤ Cfw(x) for a.e.

x ∈ Ω, with an appropiate constant Cf ;

(F2) lim
s→0

f(x, s)
f0(x)|s|

= 0, uniformly in x ∈ Ω;

(F3) lim sup
s→∞

F (x, s)
f0(x)|s|2

≤ 0 uniformly in x ∈ Ω and max
|s|≤M

F (·, s) ∈ L1(Ω), for

all M > 0, where F (x, u) =
∫ u

0
f(x, s)ds;

(F4) there exist x0 ∈ Ω, s0 ∈ R and R0 > 0 such that min
|x−x0|<R

F (x, s0) > 0.

(G) g(·, 0) = 0 and |g(x, s)| ≤ g0(x) + g1(x)|s|q−1, for x ∈ Γ, s ∈ R,
where q ∈]2, 2̄∗[ and g0, g1 are positive measurable functions satisfying
g0 ∈ L

q
q−1 (Γ;w

1
1−q ), g0(x) ≤ Cgw(x) and g1(x) ≤ Cgw(x), a.e. x ∈ Γ,

with an appropiate constant Cg.
The main result of this paper is the following

Theorem 2. Let f : Ω × R → R and g : Γ × R → R be Carathéodory
functions satisfying the conditions (F1)-(F4) and (G). Then there exists a
nondegenerate interval [a, b] ⊂]0,+∞[ and a number r > 0, such that for
every λ ∈ [a, b] there exists µ0 ∈]0, λ + 1[ such that for each µ ∈ [0, µ0], the
problem (Pλ,µ) has at least three distinct solutions with XA-norms less than r.

3. AUXILIARY RESULTS AND PROOF OF THEOREM 2

In this section first we present some auxiliary results. These properties
guarantee that all the assumptions of Theorem 1 are satisfied, so we can apply
it obtaining our main result.

First, we define the functionals JF , JG : XA → R by

JF (u) =
∫

Ω
F (x, u(x))dx, JG(u) =

∫
Γ
G(x, u(x))dΓ,

where G(x, u) =
∫ u

0
g(x, s)dΓ, then the energy functional Eλ,µ : XA → R

associated to (Pλ,µ) by Eλ,µ(u) = 1
2 ||u||

2
A − λJF (u)− µJG(u).

In the next result we use the Nemytskii operator of a Carathéodory function
h : Ω× R→ R, defined by Nh(u) = h(x, u(x)).
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Lemma 1. [6, Lemma 2.1] Assume that the conditions (F1), (G) are sa-
tisfied. Then, the Nemytskii operators Nf : Lp(Ω;w) → L

p
p−1 (Ω;w

1
1−p ), NF :

Lp(Ω;w) → L1(Ω), Ng : Lq(Γ;w) → L
q

q−1 (Γ;w
1

1−q ) and NG : Lq(Γ;w) →
L1(Γ) are bounded and continuous.

Lemma 2. [10, Lemma 8] The energy functional Eλ,µ : XA → R is Fréchet
differentiable and its derivative is given by

(8) 〈E ′λ,µ(u), v〉 = 〈u, v〉A − λ
∫

Ω
f(x, u(x))v(x)dx− µ

∫
Γ
g(x, u(x))v(x)dΓ.

for every v ∈ XA.

Due to this result, one can see that the critical points of Eλ,µ are exactly
the weak solutions of (Pλ,µ). Therefore, instead of looking for weak solutions
of problem (Pλ,µ), we are seeking for the critical points of Eλ,µ.

Lemma 3. Assume that the conditions (F1)-(F3) are satisfied. Then, for
every λ > 0 the functional α : XA → R defined by α(u) = 1

2 ||u||
2
A − λJF (u) is

coercive.

Proof. Let us fix λ > 0 arbitrarily and η > 0 such that
K

λCfC
2
2,Ω

> η.

By the conditions (F2),(F3) there exist a positive function k ∈ L1(Ω;w) such
that

(9) |F (x, s)| ≤ ηf0(x)|s|2 + k(x)w(x), ∀(x, s) ∈ Ω× R.

Thus, using the relation (9), the embedding (1) and the (A) ellipticity condi-
tions, for every u ∈ XA we obtain:

α(u) ≥ 1
2
||u||2A − λ

∫
Ω
ηf0(x)|u(x)|2dx− λ

∫
Ω
k(x)w(x)dx

≥ 1
2
||u||2A − ληCf ||u||22,Ω,w − λ||k||1,Ω,w

≥ 1
2
||u||2A − ληCfC2

2,Ω,w||u||2v0,v1 − λ||k||1,Ω,w

≥ 1
2

(
1− ληCfC2

2,Ω

1
K

)
||u||2A − λ||k||1,Ω,w.

Since k ∈ L1(Ω;w), we have that ||k||1,Ω,wis finite. Therefore, by the choice of
η it follows, that Eλ,µ(u)→∞ as ||u||A →∞. Hence Eλ,µ is coercive. �

Lemma 4. Let the conditions (F1) and (F2) be satisfied. Then

lim
t→0+

sup{JF (u) : u ∈ XA, ||u||2A < 2t}
t

= 0.



86 I.I. Mezei and L. Săplăcan 6

Proof. From the assumptions (F1), (F2) it results the existence of ĉ(ε) > 0,
such that, for every ε̂ > 0 we have:

(10) |f(x, s)| ≤ ε̂f0(x)|s|+ ĉ(ε)f1(x)|s|p−1, for p ∈]2, 2∗[.

Then integrating with respect to the second variable, from 0 to u(x), we get
the existence of c(ε) > 0, such that, for every ε > 0 we have:

(11) |F (x, u(x))| ≤ εf0(x)|u(x)|2 + c(ε)f1(x)|u(x)|p, for p ∈]2, 2∗[.

Now, fix ε > 0 and p ∈]2, 2∗[ arbitrarily. Then from (11) and the ellipticity
condition (A), it follows that:

JF (u) ≤ εCfC
2
2,Ω||u||2v0,v1 + c(ε)CfC

p
p,Ω||u||

p
v0,v1

≤ εCfC
2
2,Ω

||u||2A
2K

+ c(ε)CfC
p
p,Ω

(
||u||2A
2K

) p
2

.

Therefore, we have:

sup{Jµ(u) :
||u||2A

2
< ρ} ≤ ε

CfC
2
2,Ω

K
ρ+

c(ε)CfC
p
p,Ω

K
p
2

ρ
p
2 .

Since p > 2 and ε is chosen arbitrarily, by dividing this last inequality with ρ
and taking the limit whenever ρ→ 0, we get the required equality. �

The next lemma can be proved arguing as in [7, Lemma 3.2].

Lemma 5. Assume that (F4) is satisfied. Then there exists a function
u0 ∈ XA such that JF (u0) > 0.

The result of Lemma 5 is deeply employed in the next lemma.

Lemma 6. There exists ρ0 ∈ R such that

sup
λ>0

inf
u∈XA

(
1
2
||u||2A − λ(JF (u)− ρ0)

)
< inf

u∈XA

sup
λ>0

(
1
2
||u||2A − λ(JF (u)− ρ0)

)
.

Proof. Let us define the function β :]0,∞)→ R by

β(t) = sup{JF (u) : u ∈ XA, ||u||2A < 2t}.

Then, from the assumption (F2), we have that β(t) ≥ 0, for every t > 0 and
Lemma 4 yields that

(12) lim
t↘0

β(t)
t

= 0.

We consider the function u0 ∈ XA provided from Lemma 5, i.e. JF (u0) > 0.
Therefore we can choose a number γ > 0 such that

(13) 0 < γ < JF (u0)
2

||u0||2A
.
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By (12) we get the existence of a number t0 ∈ (0, ||u0||2A
2 ) such that β(t0) <

γt0. Thus by (13) we have:

(14) β(t0) < JF (u0)
2

||u0||2A
t0.

Then, we can find a number ρ0 > 0 such that

(15) β(t0) < ρ0 < JF (u0)
2

||u0||2A
t0.

Hence, by the choice of t0 we have:

(16) β(t0) < ρ0 < JF (u0).

Now, we define the function ϕ : XA × [0,∞[→ R by

ϕ(u, λ) =
||u||2A

2
+ λ(ρ0 − JF (u))

and we claim that

(17) sup
λ>0

inf
u∈XA

ϕ(u, λ) < inf
u∈XA

sup
λ>0

ϕ(u, λ).

The function [0,∞[3 λ 7→ infu∈XA

(
||u||2A

2 + λ(ρ0 − JF (u))
)

is upper semi-
continuous on [0,∞[. By the choice of ρ0 in (16) it follows that:

lim
λ→∞

inf
u∈XA

ϕ(u, λ) ≤ lim
λ→∞

(
||u0||2A

2
+ λ(ρ0 − JF (u0))

)
= −∞.

Therefore we can choose a number λ̄ ∈ [0,∞[ such that

(18) sup
λ>0

inf
u∈XA

ϕ(u, λ) = inf
u∈XA

(
||u||2A

2
+ λ̄(ρ0 − JF (u))

)
.

From the definition of β we have that JF (u) ≤ β(t0), for all u ∈ XA with
||u||2A ≤ 2t0. Then by the choice of ρ0, it follows that ρ0 > JF (u), for every

u ∈ XA, with ||u||2A ≤ 2t0. Hence t0 <
||u||2A

2 , for u ∈ XA, ρ0 ≤ JF (u), therefore:

(19) t0 ≤ inf
{
||u||2A

2
: u ∈ XA, ρ0 ≤ JF (u)

}
.

On the other hand,

inf
u∈XA

sup
λ∈[0,∞[

ϕ(u, λ) = inf
u∈XA

{
‖u‖2A

2
+ sup
λ∈[0,∞[

{λ(ρ0 − JF (u))}

}

= inf
u∈XA

{
‖u‖2A

2
: ρ0 ≤ JF (u)

}
.

Therefore, inequality (19) is equivalent to

(20) t0 ≤ inf
u∈XA

sup
λ∈[0,∞[

ϕ(u, λ).
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Now, we consider two cases. First, when 0 ≤ λ̄ < t0
ρ0

, then we have:

inf
u∈XA

{
||u||2A

2
+ λ̄(ρ0 − JF (u))

}
= inf

u∈XA

ϕ(u, λ̄) ≤ ϕ(0, λ̄) = λ̄ρ0 < t0.

Combining this inequality with (18) and (20) the claim follows.
Now, if λ̄ ≥ t0

ρ0
, applying the inequality (15) we have:

inf
u∈XA

{
||u||2A

2
+ λ̄(ρ0 − JF (u))

}
≤
||u0||2A

2
+ λ̄(ρ0 + JF (u0))

≤
||u0||2A

2
+
t0
ρ0

(ρ0 − JF (u0)) = t0 +
(
||u0||2A

2
− t0
ρ0
JF (u0)

)
< t0.

Using the relations (18) and (20), we obtain (20), which completes the
proof. �

In the sequel, for a τ ≥ 0, let h : R→ R be a bounded C1 function from Gτ
and for λ, µ > 0 let Eλ,µ : XA → R be the functional defined by

Eλ,µ =
1
2
||u||2A − λJF (u)− µ(h ◦ JG)(u), u ∈ XA.

Lemma 7. The functional Eλ,µ satisfies the Palais-Smale condition for every
λ ≥ 0 and µ ∈ [0, λ+ 1].

Proof. Let {un} ⊂ XA be an arbitrary Palais-Smale sequence for Eλ,µ, i.e.
(a) {Eλ,µ(un)} is bounded;
(b) E′λ,µ(un)→ 0.
We have to prove that {un} contains a strongly convergent subsequence in

XA.
By Lemma 3, we have that α(u) = 1

2 ||u||
2
A − λJF (u) is coercive. Then by

the choice of h, we have that Eλ,µ is coercive as well. Therefore the sequence
{un} is bounded. XA is a reflexive Banach space, so taking a subsequence if
necessary (denoted in the same way), we get an element u ∈ XA such that
un → u weakly in XA.

Because the embeddings (1) and (2) are compact for p ∈]2, 2∗[ and q ∈]2, 2̄∗[,
we have that un → u strongly in Lp(Ω;w) and Lq(Γ;w), i.e.

(21) ||un − u||p,Ω,w → 0 and ||un − u||q,Γ,w → 0, whenever n→∞.

From the condition (b) we have that
∣∣∣〈E′λ,µ(un), un

||un||A 〉
∣∣∣ ≤ ε, for every ε > 0

and large n ∈ N. Then

〈un, un〉A − λ
∫

Ω
f(x, un(x))un(x)dx− µh′(JG(un))

∫
Γ
g(x, un(x))un(x)dΓ

≤ ε||un||A.
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Rearranging this inequality and taking un − u instead of un, we obtain:
〈un − u, un − u〉A ≤ |〈un, un − u〉A|+ |〈u, un − u〉A|

≤ 2ε||un − u||A + λ

∣∣∣∣∫
Ω
f(x, un(x))(un(x)− u(x))dx

∣∣∣∣
+ λ

∣∣∣∣∫
Ω
f(x, u(x))(un(x)− u(x))dx

∣∣∣∣
+ µ

∣∣∣∣h′(JG(un))
∫

Γ
g(x, un(x))(un(x)− u(x))dΓ

∣∣∣∣
+ µ

∣∣∣∣h′(JG(un))
∫

Γ
g(x, u(x))(un(x)− u(x))dΓ

∣∣∣∣ .

(22)

Using Hölder’s inequality we get:∣∣∣∣∫
Ω
f(x, un(x))(un(x)− u(x))dx

∣∣∣∣
≤
∫

Ω

∣∣∣f(x, un(x))w(x)−
1
p

∣∣∣ ∣∣∣(un(x)− u(x))w(x)
1
p

∣∣∣ dx
≤
(∫

Ω
|f(x, un(x))|p′w(x)−

p′
p dx

) 1
p′
(∫

Ω
|un(x)− u(x)|pw(x)dx

) 1
p

=
(∫

Ω
|f(x, un(x))|p′w(x)

1
1−p dx

) 1
p′

||un − u||p,Ω,w

and arguing in the same way for g, we obtain:∣∣∣∣∫
Γ
g(x, un(x))(un(x)− u(x))dx

∣∣∣∣
≤
(∫

Γ
|g(x, un(x))|q′w(x)

1
1−q dΓ

) 1
q′

||un − u||q,Γ,w.

Since {un} is bounded, by Lemma 1 it follows the existence of the constants
Mf ,Mg > 0 such that∫

Ω
|f(x, un(x))|p′w(x)

1
1−p dx ≤Mf ,

∫
Ω
|f(x, u(x))|p′w(x)

1
1−p dx ≤Mf ,∫

Γ
|g(x, un(x))|q′w(x)

1
1−q dΓ ≤Mg,

∫
Γ
|g(x, u(x))|q′w(x)

1
1−q dΓ ≤Mg,

and by the choice of the functional h, we obtain another positive constant Mh

such that |h′(JG(un))| ≤Mh.
Therefore the inequality (22) becomes:

||un − u||2A ≤ 2ε||un − u||A + 2λMf ||un − u||p,Ω,w + 2µMgMh||un − u||q,Γ,w.
By (21) we have that ||un − u||p,Ω,w and ||un − u||q,Γ,w tend to zero and since
ε > 0 is arbitrary, it follows that un converges strongly to u in XA, whenever
n→∞. �
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Proof of Theorem 2. We choose X = XA, || · || = || · ||A, X̃1 = Lp(Ω;w),
with p ∈]2, 2∗[, X̃2 = Lq(Γ;w), with q ∈]2, 2̄∗[,Λ = [0,∞[ and h(t) = t2/2,
t ≥ 0. Using the Lemmas from this section, all the assumptions of Theorem 1
are satisfied, so we can apply it, achieving the claimed result. 2
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