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MULTIPLE SOLUTIONS FOR A NON-HOMOGENEOUS
NEUMANN BOUNDARY-VALUE PROBLEM

ILDIKO-ILONA MEZEI and LIA SAPLACAN

Abstract. In this paper we obtain multiple solutions in double weighted Sobolev
spaces for a non-homogeneous elliptic semilinear eigenvalue problem on un-
bounded domain. We use a very recent Ricceri type critical points theorem
proved by Kristdly, Marzantowicz, Varga in [4].
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1. INTRODUCTION

For A, i > 0, we consider the following elliptic eigenvalue problem with
non-homogeneous boundary condition:

—Au+ b(x)u = Af(z,u) in Q
(PA,;L) {
Opu = pg(x,u) on T,

where Q@ ¢ RV, (N > 2) is an unbounded domain with smooth boundary T,
fiOXR—-R, g:T' xR — R are Carathéodory functions, n denotes the unit
outward normal on I" and 0, is the outer normal derivative on I'.

Problems of this type were studied by several authors in the last years. We
mention here Kristdly [3], Lisei, Horvath, Varga [5], Pfliiger [9], Montefusco
and Radulescu [8], Mezei and Varga [7] and others. The problems studied in
these papers involve the p-Laplacian and the nonlinear term defined on the
boundary of € is subcritical and either sublinear or superlinear in the second
variable in the origin and at the infinity. Mezei in [6] proved the existence of an
open interval of eigenvalues, for which the eigenvalue problem (Py ) has two
distinct, nontrivial solutions. We remark that in [6] an important assumption
is that g is subcritical and sublinear in the second variable in 0 and at infinity.
In present paper we drop the sublinearity conditions for g, we assume only
the subcriticality of g and we obtain multiple solutions of the problem (Py ).
Hence, this paper provides a more general multiplicity result than the earlier
ones.

First author supported by Grant PN. II, ID_527/2007 from MEdC-ANCS.



82 I.I. Mezei and L. Saplacan 2

The main tool used in this proof is a three critical points theorem proved
in 2003 by G. Bonanno [1], which is actually a consequence of the three crit-
ical points theorem of B. Ricceri [12]. Later, in 2008, B. Ricceri “revisited”
this theorem and reached a much more precise conclusion under an additional
condition (which is always satisfied in the applications). In 2009, Kristély,
Marzantowicz, Varga extended this result of Ricceri to locally Lipschitz func-
tions in [4]. We are going to use this latter result, therefore we recall it.

For every 7 > 0, we introduce the following class of functions:

(G.) : g € CL(R,R) is bounded and g(t) = t, for any t € [, 7].

THEOREM 1. [4, Theorem 2.1] Let (X, ||-||) be a real reflexive Banach space
and X;(i = 1,2) be two Banach spaces such that the embeddings X — X;
are compact. Let A be a real interval, h : [0,00) — [0,00) be a non-decreasing
convex function and let ®; : X; — R(i = 1,2) be two locally Lipschitz functions
such that Ex , = h(|| - ||) + A®1 + p(g o ®2) restricted to X satisfies the (PS).
condition for every c € R, A€ A, p € [0,|A\| +1] and g € G-, 7 > 0. Assume
that h(|| - ||) + A®q is coercive on X for all X € A and that there exists p € R
such that

sup in

£ [A(l|z]]) + A(@1(2) + p)] < inf sup[h(|[z][) + A(®1(z) + p)]-
AEA TE TEX XeA

Then, there exist a non-empty open set A C A and r > 0 with the property
that for every \ € A there exists g €]0, || + 1[ such that, for each p € [0, uo]
the functional €y, = h(|| - ||) + A®1 + uP2 has at least three critical points in
X whose norms are less than r.

In the last section of this paper we use a particular case of Theorem 1, when
®;, (i = 1,2) are functions of class C*.

2. MAIN RESULT

Let © € RN, (N > 2) be an unbounded domain with smooth boundary T'.
For the positive measurable functions v and w, both defined in €2, we define
the weighted p-norm (1 < p < c0) as

lullpos = ( [ \u(w)\pwmdx)’l’ |

and denote by LP(Q;w) the space of all measurable functions u such that
||u||p,0,w is finite.

The double weighted Sobolev space WP (Q; g, v1) is defined as the space
of all functions u € LP(€; vg) such that all derivatives g—; belong to LP(; v1).
The corresponding norm is defined by

Py = ( /Q [Vu(z)[Por(z) + |u(x)|pvg(x)daj> ’

[|u
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We are choosing our weight functions from the so-called Muckenhoupt class
Ay, which is defined as the set of all positive functions v in RY satisfying

1 % _ 1 p%l _
</de> </U Pldx> <C,ifl<p<
1Ql \Ja Q

1 / -
— [ vdx < Cessinf v(z), if p=1,
Q| Ja r€Q
for all cubes @ € RY and some C > 0.
In this paper we always assume that the weight functions vy, vy, w are de-
fined on (2, belong to A, and are chosen such that the embeddings

(1) W2 (Q; 09, v1) — LP(Q;w),

(2) W2 (Q; w9, v1) — LI(T;w)
are compact for p €]2,2*[, ¢ €]2,2*[ and continuous for p € [2,2*], q € [2,27]
2 - 2(N —1
respectively, where 2* = N _3 and 2* = (N—Z)
Such weight functions there exist, see e.g. [10], [11].
Therefore, there exist the best embedding constants denoted by Cp o, Cyr
such that:

are the critical exponents.

(3) HUHILQM < CP,QHUHUOWN for all u € W172(Q; Vo, Ul)v

gTw < Cq,FHquoﬂm for all u € WLQ(Q?UOle),

(4) 17
where we used the abbreviation ||u||yy v, = ||©]|2,0,00,0: -

First, we define an operator A : W12(Q;vp,v1) — R by A(u) = —Au+b(z)u
for a positive measurable function b, then a continuous bilinear form associated
with this operator as

(5) (1, 0)4 = /Q (VuVo + b(z)uv)dz

and the corresponding norm with

(6) lullh = (u,u)a = /Q(|Vu(x)2 +b(@)|u(@)[*)dz.
Now, we define the Banach space

(7) Xa={ueW"(Quo,v1) : [Jul|4 < o0},

endowed with the norm || - || 4.

We say that u € X4 is a weak solution of the problem (P ,), if

(u, U>A—)\/Qf(x, u(:c))v(:c)daz—u/rg(x, u(x))v(x)dl' =0, for every v € X 4.
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The relation between the spaces W12(Q;v,v1) and X4 is given by the
ellipticity condition

(A) l[ul|3 > 2K |ul|? . for every u € X4,

V0,V1
with some positive constant K > 0;

Furthermore we consider the following assumptions on f, g:

(F1) f(-,0) = 0 and |f(z,s)] < fo(z) + fi(z)|s|P"L forz € Q, s € R,
where p €]2,2*[ and fo, f1 are positive measurable functions satisfying

1

fo € Lﬁ(ﬂ;wfp), fo(z) < Crw(x) and fi(z) < Crw(x) for a.e.
x € ), with an appropiate constant C';

. flz,s) . .
F2) lim =0, uniformly in x € Q;
F2) % ool Y
F(z,s)

(F3) m;ligp To@)s] < 0 uniformly in z € Q and |£I‘1§EL]}\(4 F(-,5) € LY(Q), for

all M > 0, where F(z,u) = / f(z,s)ds;

0
(F4) there exist zg € 2, sp € R and Ry > 0 such that | mi|n F(x,s9) > 0.
rz—xo|<R

(G) 9(-.0) = 0 and |g(z,s)| < go(x) + gi(2)[s|]*" ", forz € T, s € R,

where ¢ €]2,2*[ and ¢, g1 are positive measurable functions satisfying
1

Jgo € Lq%l(F;wﬂ), go(z) < Cyw(x) and g1(z) < Cqw(x), a.e. .z €T,
with an appropiate constant C,.

The main result of this paper is the following

THEOREM 2. Let f : @ xR — R and g : I' x R — R be Carathéodory
functions satisfying the conditions (F1)-(F4) and (G). Then there exists a
nondegenerate interval [a,b] C]0,+o0o] and a number r > 0, such that for
every A € [a,b] there exists po €]0, A + 1] such that for each p € [0, pol, the
problem (Py ;) has at least three distinct solutions with X s-norms less than .

3. AUXILIARY RESULTS AND PROOF OF THEOREM 2

In this section first we present some auxiliary results. These properties
guarantee that all the assumptions of Theorem 1 are satisfied, so we can apply
it obtaining our main result.

First, we define the functionals Jg, Jg : X4 — R by

JF(u):/QF(:C,u(x))da:, Ja(u) :/FG(x,u(x))dI‘,

u
where G(z,u) = / g(z,s)dl’, then the energy functional &£, , : X4 — R
0

associated to (Py ) by Exu(u) = 5|[ul|} — Ap(u) — pJe(u).
In the next result we use the Nemytskii operator of a Carathéodory function
h:Q xR — R, defined by Np(u) = h(x,u(z)).
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LEMMA 1. [6, Lemma 2.1] Assume that the conditions (F1), (G) are sa-

1
tisfied. Then, the Nemytskii operators Ny : LP(;w) — L#(Q;wﬁ), Np :
LP(Qw) — LNQ), N, : Li(T;w) — LoT(Tywia) and Ng : LI(T;w) —

LY(T') are bounded and continuous.

LEMMA 2. [10, Lemma 8] The energy functional €, : X4 — R is Fréchet
differentiable and its derivative is given by

@)<&¢wwwﬂwwA—yéﬂaw@mex—gAﬂamwwmmv
for every v € Xy4.

Due to this result, one can see that the critical points of £, , are exactly
the weak solutions of (Py ). Therefore, instead of looking for weak solutions
of problem (P) ,), we are seeking for the critical points of &£y ,,.

LEMMA 3. Assume that the conditions (F1)-(F3) are satisfied. Then, for
every A > 0 the functional o : X4 — R defined by a(u) = {|u||} — AJrp(u) is
coercive.

Proof. Let us fix A > 0 arbitrarily and n > 0 such that
K

—— > 1.
ACrCEg

By the conditions (F2),(F3) there exist a positive function k € L' (£2;w) such
that
9) |F(z,8)| < nfo(z)|s]* + k(x)w(x), V(z,s)e€QxR.

Thus, using the relation (9), the embedding (1) and the (A) ellipticity condi-
tions, for every u € X 4 we obtain:

1
aw = llullh = [ nio@)lu@)Pds = [ koyu(z)da
1
> Sl = MCllul g — Nkl o

1
> Sllullh = MnCrClaullullsy,e = Alkll0m

1 1
> 5 (1= MO Chage ) Il = Nkl

Since k € L1(Q;w), we have that ||k||1.q.is finite. Therefore, by the choice of
n it follows, that &y ,(u) — oo as [|u|[4 — oco. Hence &, ;, is coercive. O
LEMMA 4. Let the conditions (F1) and (F2) be satisfied. Then

lim sup{Jp(u) : u € Xa,||u|} < 2t} _
t—0t+ t

0.
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Proof. From the assumptions (F1), (F2) it results the existence of é(g) > 0,
such that, for every € > 0 we have:

(10) |f(x,5)] < Efo(x)ls] + &) fulw)[sP~", for p €]2,27].

Then integrating with respect to the second variable, from 0 to u(z), we get
the existence of ¢(¢) > 0, such that, for every £ > 0 we have:

(A1) P u(@)] < fo@lu(@) +e(e) fil@)u@)P, for p €]2,27]
Now, fix ¢ > 0 and p €]2,2*[ arbitrarily. Then from (11) and the ellipticity
condition (A), it follows that:
Jr(w) < eCrCigllulll, v, + c(€)CrChgllulll

V0,v1
P

< 80 02 HuHi +C(E)C Cp HuH?‘l 2
= 2.0 2K VXY 2K :
Therefore, we have:
[l 5 CiClq  c(e)CrChq o
sup{J,(u) : 2A<p}§€ P Kgp p2.
Since p > 2 and ¢ is chosen arbitrarily, by dividing this last inequality with p
and taking the limit whenever p — 0, we get the required equality. U

The next lemma can be proved arguing as in [7, Lemma 3.2].

LEMMA 5. Assume that (F4) is satisfied. Then there exists a function
ug € X4 such that Jp(ug) > 0.

The result of Lemma 5 is deeply employed in the next lemma.
LEMMA 6. There exists pp € R such that
sup inf (lulls = AU(w) = o)) < i sup (Gl = AU (0) = o))
Proof. Let us define the function 5 :]0,00) — R by
B(t) = sup{Jr(u) : u € Xy, ||ul} < 2t}.

Then, from the assumption (F2), we have that §(t) > 0, for every ¢ > 0 and
Lemma 4 yields that
t
(12) tim 28 _ g,
tN\O T
We consider the function ug € X4 provided from Lemma 5, i.e. Jp(up) > 0.
Therefore we can choose a number v > 0 such that

(13) 0<vy<Jr(ug) s
[luol %
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By (12) we get the existence of a number ¢y € (0, %) such that ((tp) <
~to. Thus by (13) we have:

(14) B(to) < Jp(uo) 77— to-
[|uoll%
Then, we can find a number pg > 0 such that
2
(15) ﬁ(to) < po < JF(U()>727§0.
[luol %

Hence, by the choice of ty we have:
(16) B(to) < po < Jp(uo).
Now, we define the function ¢ : X4 x [0,00[— R by
o) = P8z — )
and we claim that

17 sup inf ¢(u, ) < inf su U, ).
(17) Ajéuexf( ) ueXMjS“’( )

The function [0,00[> A +— inf,ecx, (HUQH?“ + Apo — Jp(u))) is upper semi-
continuous on [0, co[. By the choice of pg in (16) it follows that:
o - (Nluol %
1 f <1 — — = —00.
Jim inf pu,A) < lim ( 5 T Alpo = Jr(uo)) 00
Therefore we can choose a number \ € [0, oo such that
: . lulld | 5
f = inf (—= — .
(18) sup inf e(u, A) Jnf ( 5 T AP = Jr(u)

From the definition of § we have that Jp(u) < S(tp), for all u € X4 with
|ul|}4 < 2tp. Then by the choice of po, it follows that pg > Jp(u), for every

2
u € X, with |[u]| < 2to. Hence tg < %,for u € Xg,po < Jp(u), therefore:

2
(19) toginf{ngu:ueXA,pogJF(u)}.
On the other hand,
inf  sup ¢(u,\) = inf M + sup {A(po — Jr(u))}
wEXA Ac[000] ueXa | 2 AE[0,00]
, lull%
= N < .

Therefore, inequality (19) is equivalent to

(20) to < inf sup p(u,\).
u€X A \e[0,00]
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Now, we consider two cases. First, when 0 < A\ < ;—g, then we have:

2
mfﬂﬂu+xm—hmm}=nﬁ¢m®g¢@®=xm<m

ueX A ueX g

Combining this inequality with (18) and (20) the claim follows.
Now, if A > ;—g, applying the inequality (15) we have:

ug {1485 ) < Ll
in 00 r(u)) ¢ < 5 + Apo + Jr(up))

ueX A 2
At A0t
< HUOHA + 70(00 — Jr(ug)) = to + (HUOHA _ OJF(“O)) < to.
2 Po 2 PO
Using the relations (18) and (20), we obtain (20), which completes the
proof. O

In the sequel, for a 7 > 0, let h: R — R be a bounded C! function from G,
and for A\, > 0let E) , : X4 — R be the functional defined by

1
Ey, = §||u\|?4 — Ap(u) — p(hoJg)(u),u € Xa.

LEMMA 7. The functional E) ,, satisfies the Palais-Smale condition for every
A>0 and p e [0, A+ 1].

Proof. Let {u,} C X4 be an arbitrary Palais-Smale sequence for E) ,, i.e.

(a) {Ex(un)} is bounded;

(b) B} (1) — 0.

We have to prove that {u,} contains a strongly convergent subsequence in
X4.

By Lemma 3, we have that a(u) = %||u|[} — AJp(u) is coercive. Then by
the choice of h, we have that E) , is coercive as well. Therefore the sequence
{un} is bounded. X4 is a reflexive Banach space, so taking a subsequence if
necessary (denoted in the same way), we get an element u € X4 such that
Uy, — u weakly in X 4.

Because the embeddings (1) and (2) are compact for p €]2,2*[ and ¢q €]2, 2*],
we have that u, — u strongly in LP(Q;w) and LI(T";w), i.e.

(21) ||wn — ullp.ow — 0 and ||u, — ullgrw — 0, whenever n — oo.

From the condition (b) we have that |(E} (un), m>‘ <eg, foreverye >0
and large n € N. Then

(U, Up) A — /\/Qf(x,un(m))un(x)dac — ,uh’(Jg(un))/Fg(a?,un(w))un(x)df

< &lfunl|a-
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Rearranging this inequality and taking u,, — u instead of u,,, we obtain:

(tn — v, un —u) 4 < [{un, un — u) al + [{u, un — ) 4l

< 2¢ffun —ulla + A ‘/Q f (@, un(2)) (un () — u(z))dz

(22) | [ (o)) o) — u(w)) e

1|1 () | 002 (nr) u<x>>dr\

J
11 () [ e u(a)) o) - u(w))dr].

Using Holder’s inequality we get:

\ [ 5 o)) o) — ua))a
S/ £ un(@))(e) || (a) — u(e)uw(a)

< ([ e (e uie) Fac)’ ’ (f |un<x>—u<x>|pw<w>dx)‘l’
</[fxun P w(a lpdx) s — ]

and arguing in the same way for g, we obtain:

/ 9, tn (1)) (un () — u(2))dz

(/!gwun )| ()1qu> |tn — u

Since {uy,} is bounded, by Lemma 1 it follows the existence of the constants
My, My > 0 such that

/ 1@ (@) P w() o < My, / | (&, u(@)P (@) P de < My,
Q Q

dx

p,Q2w

q,I'w-

/ ]g(a;,un(x))|q/w(a:)ﬁdf* < Mg,/ |g(:c,u(a:))]q/w($)ﬁdf < M,,
r r

and by the choice of the functional h, we obtain another positive constant M},
such that |h/(Ja(un))| < Mp,.
Therefore the inequality (22) becomes:

[l — uHi < 2¢||uy, — ulla + 22AMy||uy, + 20 My Mp ||ty — ul|grw-

By (21) we have that ||u, — ul||p 0w and ||u, — ul|qrw tend to zero and since
€ > 0 is arbitrary, it follows that u, converges strongly to u in X 4, whenever
n — 0o. g
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Proof of Theorem 2. We choose X = Xa, || -[| = || - |4, X, = LP(Qw),
with p €]2,2*[, Xy = LY(T;w), with ¢ €]2,2*[,A = [0,00[ and h(t) = t2/2,
t > 0. Using the Lemmas from this section, all the assumptions of Theorem 1

are satisfied, so we can apply it, achieving the claimed result. O
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