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UNIQUENESS OF MEROMORPHIC FUNCTIONS
CONCERNING DIFFERENTIAL POLYNOMIALS

JINDONG LI and QIANG LU

Abstract. In this paper we study the uniqueness of meromorphic functions
concerning differential polynomials, proving the following theorem: Let f(z)
and g(z) be two nonconstant meromorphic functions satisfying Θ(∞, f) > 2

n
,

and let n, k be two positive integers with n ≥ 12k+20. If [fn(z)(f(z)−1)](k) and

[gn(z)(g(z)−1)](k) share 1 IM (ignoring multiplicities), then either [fn(z)(f(z)−
1)](k)[gn(z)(g(z)−1)](k) ≡ 1 or f(z) ≡ g(z). This generalizes and improves some
results given by M.L. Yang, S.S. Bhoosnurmath and R.S. Dyavanal.
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1. INTRODUCTION AND RESULTS

Let f be a nonconstant meromorphic function defined in the whole complex
plane. We use the standard notations in Nevanlinna theory of meromorphic
functions such as the characteristic function T (r, f), the counting function
of the poles N(r, f) and the proximity function m(r, f) and so on. For any
nonconstant meromorphic function f , we denote by S(r, f) any quantity sat-
isfying S(r, f) = o(T (r, f)) as r → +∞ possibly outside a set of r of finite
linear measure. We refer the reader to Hayman [2], Yang [4], Yi and Yang [5]
and for more details.

Let f and g be two nonconstant meromorphic functions. Let a be a fi-
nite complex number. We say that f and g share the value a CM (counting
multiplicities) if f and g have the same a-points with the same multiplici-
ties and we say that f and g share the value a IM (ignoring multiplicities) if
we do not consider the multiplicities. We denote by N11

(
r, 1
f−1

)
the count-

ing function for common simple 1-points of f and g where multiplicity is not
counted. NL

(
r, 1
f (k)−1

)
is the counting function for 1-points of both f (k) and

g(k) about which f (k) has larger multiplicity than g(k), with multiplicity being
not counted. For any constant a, we define

Θ(a, f) = 1− lim
r→∞

N
(
r, 1
f−a

)
T (r, f)

.
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Let f be a nonconstant meromorphic function, a a finite complex number
and k a positive integer. We denote by Nk)

(
r, 1
f−a

)
(or Nk)

(
r, 1
f−a

)
) the

counting function for zeros of f − a with multiplicity ≤ k (ignoring multiplici-
ties), and by N(k

(
r, 1
f−a

)
(or N (k

(
r, 1
f−a

)
) the counting function for zeros of

f − a with multiplicity at least k (ignoring multiplicities). Set

Nk

(
r,

1
f − a

)
= N

(
r,

1
f − a

)
+N (2

(
r,

1
f − a

)
+ . . .+N (k

(
r,

1
f − a

)
.

We further define δk(a, f) = 1− lim
r→∞

Nk

“
r, 1

f−a

”
T (r,f) .

Fang [3] proved the following result.

Theorem 1. Let f(z) and g(z) be two nonconstant entire functions, and
let n, k be two positive integers with n ≥ 2k + 8. If [fn(z)(f(z) − 1)](k) and
[gn(z)(g(z)− 1)](k) share 1 CM, then f(z) ≡ g(z).

Recently, S.S Bhoosnurmath[1] and R.S. Dyavanal extended Theorem 1 and
proved the following theorem.

Theorem 2. Let f(z) and g(z) be two nonconstant meromorphic functions
satisfying Θ(∞, f) > 3

n+1 , and let n, k be two positive integers with n ≥ 3k+13.
If [fn(z)(f(z)− 1)](k) and [gn(z)(g(z)− 1)](k) share 1 CM, then f(z) ≡ g(z).

It is natural to ask the following question: what can be said if CM shared
value is replaced by an IM shared value in Theorem 1 and 2? In this paper,
we answer the question by proving the following theorem.

Theorem 3. Let f(z) and g(z) be two nonconstant meromorphic functions
satisfying Θ(∞, f) > 2

n , let n , k be two positive integers with n ≥ 12k +
20. If [fn(z)(f(z) − 1)](k) and [gn(z)(g(z) − 1)](k) share 1 IM, then either
[fn(z)(f(z)− 1)](k)[gn(z)(g(z)− 1)](k) ≡ 1 or f(z) ≡ g(z).

2. SOME LEMMAS

For the proof of our result we need the following lemmas.

Lemma 1. (See [2]) Let f be nonconstant meromorphic function, and let
a0, a1, . . . , an be finite complex numbers such that an 6= 0. Then

T (r, anfn + an−1f
n−1 + . . .+ a0) = nT (r, f) + S(r, f).

Lemma 2. (See [2]) Let f be a nonconstant meromorphic function, k be a
positive integer, and let c be a nonzero finite complex number. Then

T (r, f) ≤ N(r, f) +N

(
r,

1
f

)
+N

(
r,

1
f (k) − c

)
−N

(
r,

1
f (k+1)

)
+ S(r, f)

≤ N(r, f) +Nk+1

(
r,

1
f

)
+N

(
r,

1
f (k) − c

)
−N0

(
r,

1
f (k+1)

)
+ S(r, f).
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Here N0

(
r, 1
f (k+1)

)
is the counting function which only counts those points

such that f (k+1) = 0 but f(f (k) − c) 6= 0.

Lemma 3. (See [5]) Let f be a transcendental meromorphic function, and
let a1(z), a2(z) be two meromorphic functions such that T (r, ai) = S(r, f), i =
1, 2. Then T (r, f) ≤ N(r, f) +N

(
r, 1
f−a1

)
+N

(
r, 1
f−a2

)
+ S(r, f).

Lemma 4. (See [6]) Let f be a nonconstant meromorphic function, and k, p
be two positve integers. Then Np

(
r 1
f (k)

)
≤ Np+k

(
r 1
f

)
+ kN(r, f) + S(r, f).

Clearly N
(
r 1
f (k)

)
= N1

(
r 1
f (k)

)
.

Lemma 5. Let f(z) and g(z) be two meromorphic functions, and let k be a
positive integer. If f (k) and g(k) share the value 1 IM and

∆ = (2k + 3)Θ(∞, f) + (2k + 4)Θ(∞, g) + (k + 2)Θ(0, f)

+ (2k + 3)Θ(0, g) + δk+1(0, f) + δk+1(0, g) > 7k + 13,
(1)

then either f (k)g(k) ≡ 1 or f ≡ g.

Proof. Let

(2) h(z) =
f (k+2)(z)
f (k+1)(z)

− 2
f (k+1)(z)
f (k)(z)− 1

− g(k+2)(z)
g(k+1)(z)

+ 2
g(k+1)(z)
g(k)(z)− 1

.

If z0 is a common simple 1-point of f (k) and g(k), substituting their Taylor
series at z0 into (2), we see that z0 is a zero of h(z). Thus, we have:

N11

(
r,

1
f (k) − 1

)
= N11

(
r,

1
g(k) − 1

)
≤ N

(
r,

1
h

)
≤ T (r, h) +O(1) ≤ N(r, h) + S(r, f) + S(r, g).

(3)

By our assumptions, h(z) has poles only at zeros of f (k+1) and g(k+1) and poles
of f and g, and those 1-points of f (k) and g(k) whose multiplicities are distinct
from the multiplicities of corresponding 1-points of g(k) and f (k) respectively.
Thus, we deduce from (2) that

N(r, h) ≤ N(r, f) +N(r, g) +N

(
r,

1
f

)
+N

(
r,

1
g

)
+N0

(
r,

1
f (k+1)

)
+N0

(
r,

1
g(k+1)

)
+NL

(
r,

1
f (k) − 1

)
+NL

(
r,

1
g(k) − 1

)
.

(4)

Here N0

(
r, 1
f (k+1)

)
has the same meaning as in Lemma 2. By Lemma 2, we

have:

(5) T (r, f) ≤ N(r, f) +Nk+1

(
r,

1
f

)
+N

(
r,

1
f (k) − c

)
−N0

(
r,

1
f (k+1)

)
+ S(r, f),
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(6) T (r, g) ≤ N(r, g) +Nk+1

(
r,

1
g

)
+N

(
r,

1
g(k) − c

)
−N0

(
r,

1
g(k+1)

)
+ S(r, g).

Since f (k) and g(k) share the value 1 IM, we have:

N

(
r,

1
f (k) − 1

)
+N

(
r,

1
g(k) − 1

)
≤ N11

(
r,

1
f (k) − 1

)
+NL

(
r,

1
g(k) − 1

)
+N

(
r,

1
f (k) − 1

)
≤ N11

(
r,

1
f (k) − 1

)
+NL

(
r,

1
g(k) − 1

)
+ T (r, f (k)) +O(1)

≤ N11

(
r,

1
f (k) − 1

)
+NL

(
r,

1
g(k) − 1

)
+m(r, f)

+m

(
r,
f (k)

f

)
+N(r, f) + kN(r, f) + S(r, f)

≤ N11

(
r,

1
f (k) − 1

)
+NL

(
r,

1
g(k) − 1

)
+ T (r, f) + kN(r, f) + S(r, f).

(7)

Note that by Lemma 4 we have:

N

(
r,

1
f (k)

)
= N1

(
r

1
f (k)

)
≤ N1+k

(
r

1
f

)
+ kN(r, f) + S(r, f)

≤ (k + 1)N
(
r,

1
f

)
+ kN(r, f) + S(r, f),

(8)

NL

(
r,

1
f (k) − 1

)
≤ N

(
r,

1
f (k) − 1

)
−N

(
r,

1
f (k) − 1

)
≤ N

(
r,

f (k)

f (k+1)

)
≤ N

(
r,
f (k+1)

f (k)

)
+ S(r, f) ≤ N(r, f) +N

(
r,

1
f (k)

)
+ S(r, f).

So, we have:

(9) NL

(
r,

1
f (k) − 1

)
≤ (k + 1)N(r, f) + (k + 1)N

(
r,

1
f

)
+ S(r, f).

Similarly

(10) NL

(
r,

1
g(k) − 1

)
≤ (k + 1)N(r, g) + (k + 1)N

(
r,

1
g

)
+ S(r, g).

From (3)–(10) we obtain:

T (r, g) ≤ (2k + 3)N(r, f) + (2k + 4)N(r, g) + (k + 2)N
(
r,

1
f

)
+ (2k + 3)N

(
r,

1
g

)
+Nk+1

(
r,

1
f

)
+Nk+1

(
r,

1
g

)
+ S(r, f) + S(r, g).
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Without loss of generality, we suppose that there exists a set I with infinite
measure such that T (r, f) ≤ T (r, g) for r ∈ I. Hence

T (r, g) ≤ {[(7k + 14)− (2k + 3)Θ(∞, f)− (2k + 4)Θ(∞, g)− (k + 2)Θ(0, f)

− (2k + 3)Θ(0, g)− δk+1(0, f)− δk+1(0, g)] + ε}T (r, g) + S(r, g),
(11)

for r ∈ I and 0 < ε < ∆− (7k + 13). Thus, we obtain from (1) and (11) that
T (r, g) ≤ S(r, g)for r ∈ I, a contradiction. Hence, we get h(z) ≡ 0; that is:

f (k+2)(z)
f (k+1)(z)

− 2
f (k+1)(z)
f (k)(z)− 1

=
g(k+2)(z)
g(k+1)(z)

− 2
g(k+1)(z)
g(k)(z)− 1

.

By solving this equation, we obtain:

(12)
1

f (k) − 1
=
bg(k) + a− b
g(k) − 1

,

where a, b are two constants. Next, we consider three cases.
Case 1: b 6= 0 and a = b.
Subcase 1: b = −1. Then we deduce from (12) that f (k)(z)g(k)(z) ≡ 1.
Subcase 2. b 6= −1. Then we get from (12) that 1

f (k) = bg(k)

(1+b)g(k)−1
, and so

(13) N

(
r,

1
g(k) − 1

1+b

)
≤ N

(
r,

1
f (k)

)
From (13) and (8), we get:

N

(
r,

1
g(k) − 1

1+b

)
≤ (k + 1)N

(
r,

1
f

)
+ kN(r, f) + S(r, f).

By Lemma 2 we have:

T (r, g) ≤ N(r, g) +Nk+1

(
r,

1
g

)
+N

(
r,

1
g(k) − 1

b+1

)
−N0

(
r,

1
g(k+1)

)
≤ N(r, g) +Nk+1

(
r,

1
g

)
+ kN(r, f) + (k + 1)N

(
r,

1
f

)
+ S(r, f) + S(r, g)

≤ (2k + 3)N(r, f) + (2k + 4)N(r, g) + (k + 2)N
(
r,

1
f

)
+ (2k + 3)N

(
r,

1
g

)
+Nk+1

(
r,

1
f

)
+Nk+1

(
r,

1
g

)
+ S(r, f) + S(r, g).

That is T (r, g) ≤ (7k + 14 − ∆)T (r, g) + S(r, g) for r ∈ I. Thus, by (1), we
obtain that T (r, g) ≤ S(r, g) for r ∈ I, a contradiction.

Case 2: b 6= 0 and a 6= b.
Subcase 1. b = −1. Then we obtain from (12) that f (k) = a

−g(k)+a+1
, so

N

(
r,

a

−g(k) + a+ 1

)
= N

(
r, f (k)

)
= N(r, f).
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By Lemma 2 we have:

T (r, g) ≤ N(r, g) +Nk+1

(
r,

1
g

)
+N

(
r,

1
g(k) − (a+ 1)

)
−N0

(
r,

1
g(k+1)

)
+ S(r, g)

≤ N(r, g) +Nk+1

(
r,

1
g

)
+N(r, f) + S(r, f) + S(r, g)

≤ (2k + 3)N(r, f) + (2k + 4)N(r, g) + (k + 2)N
(
r,

1
f

)
+ (2k + 3)N

(
r,

1
g

)
+Nk+1

(
r,

1
f

)
+Nk+1

(
r,

1
g

)
+ S(r, f) + S(r, g).

Using an argument as in Case 1, we get a contradiction.
Subcase 2. b 6= −1. Then we get from (12) that f (k)−(1+ 1

b ) = −a
b2(g(k)+a−b

b
)
.

Therefore

N

(
r,

1
g(k) + a−b

b

)
= N

(
r, f (k) − (1 +

1
b

)
)

= N(r, f).

By Lemma 2, we have:

T (r, g) ≤ N(r, g) +Nk+1

(
r,

1
g

)
+N

(
r,

1
g(k) + a−b

b

)
−N0

(
r,

1
g(k+1)

)
+ S(r, g)

≤ N(r, g) +Nk+1

(
r,

1
g

)
+N(r, f) + S(r, f) + S(r, g)

≤ (2k + 3)N(r, f) + (2k + 4)N(r, g) + (k + 2)N
(
r,

1
f

)
+ (2k + 3)N

(
r,

1
g

)
+Nk+1

(
r,

1
f

)
+Nk+1

(
r,

1
g

)
+ S(r, f) + S(r, g).

Using an argument as in Case 1, we get a contradiction.
Case 3: b = 0. From (12), we obtain:

(14) f =
1
a
g + P (z),

where P (z) is a polynomial. If P (z) 6= 0, then by Lemma 3 we have:

T (r, f) ≤ N(r, f) +N

(
r,

1
f

)
+N

(
r,

1
f − P

)
+ S(r, f)

≤ N(r, f) +N

(
r,

1
f

)
+N

(
r,

1
g

)
+ S(r, f).

(15)

From (14), we obtain T (r, f) = T (r, g) +S(r, f). Hence, substituting this into
(15), we get:

T (r, f) ≤ {3− [Θ(∞, f) + Θ(0, f) + Θ(0, g)] + ε}T (r, f) + S(r, f),
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where

0 < ε < 1− δk+1(0, f) + 1− δk+1(0, g) + (2k + 2)[1−Θ(∞, f)]

+ (2k + 4)[1−Θ(∞, g)] + [1−Θ(0, f)] + 2[1−Θ(0, g)].

Therefore T (r, f) ≤ [7k+14−∆]T (r, f)+S(r, f). Then [∆−(7k+13)]T (r, f) <
S(r, f). Hence, by (1), we deduce that T (r, f) ≤ S(r, f) for r ∈ I, a contra-
diction. Therefore, we deduce that P (z) ≡ 0, that is f = 1

ag. If a 6= 1,
then f (k) and g(k) sharing the value 1 IM, we deduce that g(k) 6= 1. That is
N
(
r, 1
g(k)−1

)
= 0. Next, we can deduce a contradiction as in Case 1. Thus,

we get that a = 1, that is f ≡ g. Thus the proof of Lemma 5 is completed. �

3. PROOF OF THEOREM 3

Let F (z) = fn(f − 1) and G(z) = fn(f − 1). We have:

∆ = (2k + 3)Θ(∞, F ) + (2k + 4)Θ(∞, G) + (k + 2)Θ(0, F )

+ (2k + 3)Θ(0, G) + δk+1(0, F ) + δk+1(0, G).

Consider

Θ(0, F ) = 1− lim
r→∞

N
(
r, 1
fn(f−1)

)
(n+ 1)T (r, F )

= 1− lim
r→∞

N
(
r, 1
f

)
+N

(
r, 1
f−1

)
(n+ 1)T (r, f)

≥ 1− lim
r→∞

2T (r, f)
(n+ 1)T (r, f)

≥ n− 1
n+ 1

.

Similarly we have:

Θ(0, G) ≥ n− 1
n+ 1

, Θ(∞, F ) ≥ n

n+ 1
, Θ(∞, G) ≥ n

n+ 1
.

Next, it follows that

δk+1(0, F ) = 1− lim
r→∞

Nk+1(r, 1
F )

T (r, F )
= 1− lim

r→∞

(k + 1)N(r, 1
fn(f−1))

(n+ 1)T (r, f)

≥ 1− lim
r→∞

(k + 2)T (r, f)
(n+ 1)T (r, f)

≥ 1− k + 2
n+ 1

=
n− (k + 1)
n+ 1

.

Similarly δk+1(0, G) ≥ n−(k+1)
n+1 . From the above equalities we get:

∆ = (2k + 3)
n

n+ 1
+ (2k + 4)

n

n+ 1
+ (k + 2)

n− 1
n+ 1

+ (2k + 3)
n− 1
n+ 1

+
n− (k + 1)
n+ 1

+
n− (k + 1)
n+ 1

.

Since n > 12k+ 20, we get ∆ > 7k+ 13. Considering F (k)(z) = [fn(z)](k) and
G(k)(z) = [gn(z)](k) share the value 1 IM, then by Lemma 5 we deduce that
either F (k)(z)G(k)(z) ≡ 1 or F ≡ G.

Next we consider two cases.
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Case 1. F (k)(z)G(k)(z) ≡ 1, so [fn(z)(f(z)− 1)](k)[gn(z)(g(z)− 1)](k) ≡ 1.
Case 2. F ≡ G, so fn(f − 1) ≡ gn(g − 1).
Suppose f 6= g. Then we consider two cases:
(i) Let H = f

g be a constant. Then it follows that H 6= 1, Hn 6= 1, Hn+1 6= 1
and g = 1−Hn

1−Hn+1 is a constant, which leads to a contradiction.
(ii) Let H = f

g be not a constant. Since f 6= g, we have H 6= 1 and hence we

deduce that g = 1−Hn

1−Hn+1 and f = 1−Hn

1−Hn+1H = (1+H+H2+···+Hn−1)H
1+H+H2+···+Hn , where H

is a non-constant meromorphic function. It follows that T (r, f) = T (r, gH) =
nT (r,H) + S(r, f).

On the other hand, by the second fundamental theorem, we deduce that

N(r, f) =
n∑
j=1

N
(
r, 1
H−αj

)
≥ (n − 2)T (r,H) + S(r, f), where αj 6= 1 (j =

1, 2, . . . , n) are distinct roots of the algebraic equation Hn+1 = 1. We have:

Θ(∞, f) = 1− lim
r→∞

N(r, f)
T (r, f)

≤ 1− lim
r→∞

(n− 2)T (r,H) + S(r, f)
T (r, f)

≤ 1− lim
r→∞

(n− 2)T (r,H) + S(r, f)
nT (r,H) + S(r, f)

≤ 1− n− 2
n

=
2
n
,

which contradicts the assumption Θ(∞, f) > 2
n .

Thus f ≡ g. This completes the proof.
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