UNIQUENESS OF MEROMORPHIC FUNCTIONS CONCERNING DIFFERENTIAL POLYNOMIALS

JINDONG LI and QIANG LU

Abstract

In this paper we study the uniqueness of meromorphic functions concerning differential polynomials, proving the following theorem: Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions satisfying $\Theta(\infty, f)>\frac{2}{n}$, and let n, k be two positive integers with $n \geq 12 k+20$. If $\left[f^{n}(z)(f(z)-1)\right]^{(k)}$ and $\left[g^{n}(z)(g(z)-1)\right]^{(k)}$ share 1 IM (ignoring multiplicities), then either $\left[f^{n}(z)(f(z)-\right.$ $1)]^{(k)}\left[g^{n}(z)(g(z)-1)\right]^{(k)} \equiv 1$ or $f(z) \equiv g(z)$. This generalizes and improves some results given by M.L. Yang, S.S. Bhoosnurmath and R.S. Dyavanal.

MSC 2010. 30D35.
Key words. Meromorphic function, sharing values, differential polynomials.

1. INTRODUCTION AND RESULTS

Let f be a nonconstant meromorphic function defined in the whole complex plane. We use the standard notations in Nevanlinna theory of meromorphic functions such as the characteristic function $T(r, f)$, the counting function of the poles $N(r, f)$ and the proximity function $m(r, f)$ and so on. For any nonconstant meromorphic function f, we denote by $S(r, f)$ any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow+\infty$ possibly outside a set of r of finite linear measure. We refer the reader to Hayman [2], Yang [4], Yi and Yang [5] and for more details.

Let f and g be two nonconstant meromorphic functions. Let a be a finite complex number. We say that f and g share the value a CM (counting multiplicities) if f and g have the same a-points with the same multiplicities and we say that f and g share the value a IM (ignoring multiplicities) if we do not consider the multiplicities. We denote by $N_{11}\left(r, \frac{1}{f-1}\right)$ the counting function for common simple 1-points of f and g where multiplicity is not counted. $\bar{N}_{L}\left(r, \frac{1}{f^{(k)}-1}\right)$ is the counting function for 1-points of both $f^{(k)}$ and $g^{(k)}$ about which $f^{(k)}$ has larger multiplicity than $g^{(k)}$, with multiplicity being not counted. For any constant a, we define

$$
\Theta(a, f)=1-\varlimsup_{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f-a}\right)}{T(r, f)}
$$

[^0]Let f be a nonconstant meromorphic function, a a finite complex number and k a positive integer. We denote by $N_{k)}\left(r, \frac{1}{f-a}\right)\left(\right.$ or $\left.\bar{N}_{k)}\left(r, \frac{1}{f-a}\right)\right)$ the counting function for zeros of $f-a$ with multiplicity $\leq k$ (ignoring multiplicities), and by $N_{(k}\left(r, \frac{1}{f-a}\right)\left(\right.$ or $\left.\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)\right)$ the counting function for zeros of $f-a$ with multiplicity at least k (ignoring multiplicities). Set

$$
N_{k}\left(r, \frac{1}{f-a}\right)=\bar{N}\left(r, \frac{1}{f-a}\right)+\bar{N}_{(2}\left(r, \frac{1}{f-a}\right)+\ldots+\bar{N}_{(k}\left(r, \frac{1}{f-a}\right)
$$

We further define $\delta_{k}(a, f)=1-\varlimsup_{r \rightarrow \infty} \frac{N_{k}\left(r, \frac{1}{f-a}\right)}{T(r, f)}$.
Fang [3] proved the following result.
THEOREM 1. Let $f(z)$ and $g(z)$ be two nonconstant entire functions, and let n, k be two positive integers with $n \geq 2 k+8$. If $\left[f^{n}(z)(f(z)-1)\right]^{(k)}$ and $\left[g^{n}(z)(g(z)-1)\right]^{(k)}$ share $1 C M$, then $f(z) \equiv g(z)$.

Recently, S.S Bhoosnurmath[1] and R.S. Dyavanal extended Theorem 1 and proved the following theorem.

THEOREM 2. Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions satisfying $\Theta(\infty, f)>\frac{3}{n+1}$, and let n, k be two positive integers with $n \geq 3 k+13$. If $\left[f^{n}(z)(f(z)-1)\right]^{(k)}$ and $\left[g^{n}(z)(g(z)-1)\right]^{(k)}$ share $1 C M$, then $f(z) \equiv g(z)$.

It is natural to ask the following question: what can be said if CM shared value is replaced by an IM shared value in Theorem 1 and 2? In this paper, we answer the question by proving the following theorem.

THEOREM 3. Let $f(z)$ and $g(z)$ be two nonconstant meromorphic functions satisfying $\Theta(\infty, f)>\frac{2}{n}$, let n, k be two positive integers with $n \geq 12 k+$ 20. If $\left[f^{n}(z)(f(z)-1)\right]^{(k)}$ and $\left[g^{n}(z)(g(z)-1)\right]^{(k)}$ share 1 IM, then either $\left[f^{n}(z)(f(z)-1)\right]^{(k)}\left[g^{n}(z)(g(z)-1)\right]^{(k)} \equiv 1$ or $f(z) \equiv g(z)$.

2. SOME LEMMAS

For the proof of our result we need the following lemmas.
Lemma 1. (See [2]) Let f be nonconstant meromorphic function, and let $a_{0}, a_{1}, \ldots, a_{n}$ be finite complex numbers such that $a_{n} \neq 0$. Then

$$
T\left(r, a_{n} f^{n}+a_{n-1} f^{n-1}+\ldots+a_{0}\right)=n T(r, f)+S(r, f)
$$

LEMMA 2. (See [2]) Let f be a nonconstant meromorphic function, k be a positive integer, and let c be a nonzero finite complex number. Then

$$
\begin{aligned}
T(r, f) & \leq \bar{N}(r, f)+N\left(r, \frac{1}{f}\right)+N\left(r, \frac{1}{f^{(k)}-c}\right)-N\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+N_{k+1}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}-c}\right)-N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f) .
\end{aligned}
$$

Here $N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)$ is the counting function which only counts those points such that $f^{(k+1)}=0$ but $f\left(f^{(k)}-c\right) \neq 0$.

Lemma 3. (See [5]) Let f be a transcendental meromorphic function, and let $a_{1}(z), a_{2}(z)$ be two meromorphic functions such that $T\left(r, a_{i}\right)=S(r, f), i=$ 1, 2. Then $T(r, f) \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f-a_{1}}\right)+\bar{N}\left(r, \frac{1}{f-a_{2}}\right)+S(r, f)$.

Lemma 4. (See [6]) Let f be a nonconstant meromorphic function, and k, p be two positve integers. Then $N_{p}\left(r \frac{1}{f^{(k)}}\right) \leq N_{p+k}\left(r \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f)$. Clearly $\bar{N}\left(r \frac{1}{f^{(k)}}\right)=N_{1}\left(r \frac{1}{f^{(k)}}\right)$.

Lemma 5. Let $f(z)$ and $g(z)$ be two meromorphic functions, and let k be a positive integer. If $f^{(k)}$ and $g^{(k)}$ share the value 1 IM and

$$
\begin{align*}
\Delta & =(2 k+3) \Theta(\infty, f)+(2 k+4) \Theta(\infty, g)+(k+2) \Theta(0, f) \\
& +(2 k+3) \Theta(0, g)+\delta_{k+1}(0, f)+\delta_{k+1}(0, g)>7 k+13 \tag{1}
\end{align*}
$$

then either $f^{(k)} g^{(k)} \equiv 1$ or $f \equiv g$.
Proof. Let

$$
\begin{equation*}
h(z)=\frac{f^{(k+2)}(z)}{f^{(k+1)}(z)}-2 \frac{f^{(k+1)}(z)}{f^{(k)}(z)-1}-\frac{g^{(k+2)}(z)}{g^{(k+1)}(z)}+2 \frac{g^{(k+1)}(z)}{g^{(k)}(z)-1} . \tag{2}
\end{equation*}
$$

If z_{0} is a common simple 1-point of $f^{(k)}$ and $g^{(k)}$, substituting their Taylor series at z_{0} into (2), we see that z_{0} is a zero of $h(z)$. Thus, we have:

$$
\begin{align*}
N_{11}\left(r, \frac{1}{f^{(k)}-1}\right) & =N_{11}\left(r, \frac{1}{g^{(k)}-1}\right) \leq \bar{N}\left(r, \frac{1}{h}\right) \tag{3}\\
& \leq T(r, h)+O(1) \leq N(r, h)+S(r, f)+S(r, g)
\end{align*}
$$

By our assumptions, $h(z)$ has poles only at zeros of $f^{(k+1)}$ and $g^{(k+1)}$ and poles of f and g, and those 1-points of $f^{(k)}$ and $g^{(k)}$ whose multiplicities are distinct from the multiplicities of corresponding 1-points of $g^{(k)}$ and $f^{(k)}$ respectively. Thus, we deduce from (2) that

$$
\begin{align*}
N(r, h) & \leq \bar{N}(r, f)+\bar{N}(r, g)+\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)+N_{0}\left(r, \frac{1}{f^{(k+1)}}\right) \tag{4}\\
& +N_{0}\left(r, \frac{1}{g^{(k+1)}}\right)+\bar{N}_{L}\left(r, \frac{1}{f^{(k)}-1}\right)+\bar{N}_{L}\left(r, \frac{1}{g^{(k)}-1}\right)
\end{align*}
$$

Here $N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)$ has the same meaning as in Lemma 2. By Lemma 2, we have:
(5) $T(r, f) \leq \bar{N}(r, f)+N_{k+1}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f^{(k)}-c}\right)-N_{0}\left(r, \frac{1}{f^{(k+1)}}\right)+S(r, f)$,
(6) $T(r, g) \leq \bar{N}(r, g)+N_{k+1}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}-c}\right)-N_{0}\left(r, \frac{1}{g^{(k+1)}}\right)+S(r, g)$.

Since $f^{(k)}$ and $g^{(k)}$ share the value 1 IM, we have:

$$
\begin{aligned}
& \bar{N}\left(r, \frac{1}{f^{(k)}-1}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}-1}\right) \\
& \leq N_{11}\left(r, \frac{1}{f^{(k)}-1}\right)+\bar{N}_{L}\left(r, \frac{1}{g^{(k)}-1}\right)+N\left(r, \frac{1}{f^{(k)}-1}\right) \\
& \leq N_{11}\left(r, \frac{1}{f^{(k)}-1}\right)+\bar{N}_{L}\left(r, \frac{1}{g^{(k)}-1}\right)+T\left(r, f^{(k)}\right)+O(1) \\
& \leq N_{11}\left(r, \frac{1}{f^{(k)}-1}\right)+\bar{N}_{L}\left(r, \frac{1}{g^{(k)}-1}\right)+m(r, f) \\
& +m\left(r, \frac{f^{(k)}}{f}\right)+N(r, f)+k \bar{N}(r, f)+S(r, f) \\
& \leq N_{11}\left(r, \frac{1}{f^{(k)}-1}\right)+\bar{N}_{L}\left(r, \frac{1}{g^{(k)}-1}\right)+T(r, f)+k \bar{N}(r, f)+S(r, f) .
\end{aligned}
$$

Note that by Lemma 4 we have:

$$
\begin{align*}
\bar{N}\left(r, \frac{1}{f^{(k)}}\right) & =N_{1}\left(r \frac{1}{f^{(k)}}\right)
\end{aligned} \quad \leq N_{1+k}\left(r \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f), ~ \begin{aligned}
& \leq(k+1) \bar{N}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f), \tag{8}\\
\bar{N}_{L}\left(r, \frac{1}{f^{(k)}-1}\right) & \leq N\left(r, \frac{1}{f^{(k)}-1}\right)-\bar{N}\left(r, \frac{1}{f^{(k)}-1}\right) \leq N\left(r, \frac{f^{(k)}}{f^{(k+1)}}\right) \\
& \leq N\left(r, \frac{f^{(k+1)}}{f^{(k)}}\right)+S(r, f) \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f^{(k)}}\right)+S(r, f) .
\end{align*}
$$

So, we have:

$$
\text { (9) } \quad \bar{N}_{L}\left(r, \frac{1}{f^{(k)}-1}\right) \leq(k+1) \bar{N}(r, f)+(k+1) \bar{N}\left(r, \frac{1}{f}\right)+S(r, f) \text {. }
$$

Similarly

$$
\begin{equation*}
\bar{N}_{L}\left(r, \frac{1}{g^{(k)}-1}\right) \leq(k+1) \bar{N}(r, g)+(k+1) \bar{N}\left(r, \frac{1}{g}\right)+S(r, g) . \tag{10}
\end{equation*}
$$

From (3)-(10) we obtain:

$$
\begin{aligned}
T(r, g) & \leq(2 k+3) \bar{N}(r, f)+(2 k+4) \bar{N}(r, g)+(k+2) \bar{N}\left(r, \frac{1}{f}\right) \\
& +(2 k+3) \bar{N}\left(r, \frac{1}{g}\right)+N_{k+1}\left(r, \frac{1}{f}\right)+N_{k+1}\left(r, \frac{1}{g}\right)+S(r, f)+S(r, g)
\end{aligned}
$$

Without loss of generality, we suppose that there exists a set I with infinite measure such that $T(r, f) \leq T(r, g)$ for $r \in I$. Hence

$$
\begin{align*}
T(r, g) & \leq\{[(7 k+14)-(2 k+3) \Theta(\infty, f)-(2 k+4) \Theta(\infty, g)-(k+2) \Theta(0, f) \\
& \left.\left.-(2 k+3) \Theta(0, g)-\delta_{k+1}(0, f)-\delta_{k+1}(0, g)\right]+\varepsilon\right\} T(r, g)+S(r, g), \tag{11}
\end{align*}
$$

for $r \in I$ and $0<\varepsilon<\Delta-(7 k+13)$. Thus, we obtain from (1) and (11) that $T(r, g) \leq S(r, g)$ for $r \in I$, a contradiction. Hence, we get $h(z) \equiv 0$; that is:

$$
\frac{f^{(k+2)}(z)}{f^{(k+1)}(z)}-2 \frac{f^{(k+1)}(z)}{f^{(k)}(z)-1}=\frac{g^{(k+2)}(z)}{g^{(k+1)}(z)}-2 \frac{g^{(k+1)}(z)}{g^{(k)}(z)-1} .
$$

By solving this equation, we obtain:

$$
\begin{equation*}
\frac{1}{f^{(k)}-1}=\frac{b g^{(k)}+a-b}{g^{(k)}-1}, \tag{12}
\end{equation*}
$$

where a, b are two constants. Next, we consider three cases.
Case 1: $b \neq 0$ and $a=b$.
Subcase 1: $b=-1$. Then we deduce from (12) that $f^{(k)}(z) g^{(k)}(z) \equiv 1$.
Subcase 2. $b \neq-1$. Then we get from (12) that $\frac{1}{f^{(k)}}=\frac{b g^{(k)}}{(1+b) g^{(k)}-1}$, and so

$$
\begin{equation*}
\bar{N}\left(r, \frac{1}{g^{(k)}-\frac{1}{1+b}}\right) \leq \bar{N}\left(r, \frac{1}{f^{(k)}}\right) \tag{13}
\end{equation*}
$$

From (13) and (8), we get:

$$
\bar{N}\left(r, \frac{1}{g^{(k)}-\frac{1}{1+b}}\right) \leq(k+1) \bar{N}\left(r, \frac{1}{f}\right)+k \bar{N}(r, f)+S(r, f) .
$$

By Lemma 2 we have:

$$
\begin{aligned}
T(r, g) & \leq \bar{N}(r, g)+N_{k+1}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}-\frac{1}{b+1}}\right)-N_{0}\left(r, \frac{1}{g^{(k+1)}}\right) \\
& \leq \bar{N}(r, g)+N_{k+1}\left(r, \frac{1}{g}\right)+k \bar{N}(r, f)+(k+1) \bar{N}\left(r, \frac{1}{f}\right)+S(r, f)+S(r, g) \\
& \leq(2 k+3) \bar{N}(r, f)+(2 k+4) \bar{N}(r, g)+(k+2) \bar{N}\left(r, \frac{1}{f}\right)+(2 k+3) \bar{N}\left(r, \frac{1}{g}\right) \\
& +N_{k+1}\left(r, \frac{1}{f}\right)+N_{k+1}\left(r, \frac{1}{g}\right)+S(r, f)+S(r, g) .
\end{aligned}
$$

That is $T(r, g) \leq(7 k+14-\Delta) T(r, g)+S(r, g)$ for $r \in I$. Thus, by (1), we obtain that $T(r, g) \leq S(r, g)$ for $r \in I$, a contradiction.

Case 2: $b \neq 0$ and $a \neq b$.
Subcase 1. $b=-1$. Then we obtain from (12) that $f^{(k)}=\frac{a}{-g^{(k)}+a+1}$, so

$$
\bar{N}\left(r, \frac{a}{-g^{(k)}+a+1}\right)=\bar{N}\left(r, f^{(k)}\right)=\bar{N}(r, f) .
$$

By Lemma 2 we have:

$$
\begin{aligned}
T(r, g) & \leq \bar{N}(r, g)+N_{k+1}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}-(a+1)}\right)-N_{0}\left(r, \frac{1}{g^{(k+1)}}\right)+S(r, g) \\
& \leq \bar{N}(r, g)+N_{k+1}\left(r, \frac{1}{g}\right)+\bar{N}(r, f)+S(r, f)+S(r, g) \\
& \leq(2 k+3) \bar{N}(r, f)+(2 k+4) \bar{N}(r, g)+(k+2) \bar{N}\left(r, \frac{1}{f}\right)+(2 k+3) \bar{N}\left(r, \frac{1}{g}\right) \\
& +N_{k+1}\left(r, \frac{1}{f}\right)+N_{k+1}\left(r, \frac{1}{g}\right)+S(r, f)+S(r, g) .
\end{aligned}
$$

Using an argument as in Case 1, we get a contradiction.
Subcase 2. $b \neq-1$. Then we get from (12) that $f^{(k)}-\left(1+\frac{1}{b}\right)=\frac{-a}{b^{2}\left(g^{(k)}+\frac{a-b}{b}\right)}$. Therefore

$$
\bar{N}\left(r, \frac{1}{g^{(k)}+\frac{a-b}{b}}\right)=\bar{N}\left(r, f^{(k)}-\left(1+\frac{1}{b}\right)\right)=\bar{N}(r, f) .
$$

By Lemma 2, we have:

$$
\begin{aligned}
T(r, g) & \leq \bar{N}(r, g)+N_{k+1}\left(r, \frac{1}{g}\right)+\bar{N}\left(r, \frac{1}{g^{(k)}+\frac{a-b}{b}}\right)-N_{0}\left(r, \frac{1}{g^{(k+1)}}\right)+S(r, g) \\
& \leq \bar{N}(r, g)+N_{k+1}\left(r, \frac{1}{g}\right)+\bar{N}(r, f)+S(r, f)+S(r, g) \\
& \leq(2 k+3) \bar{N}(r, f)+(2 k+4) \bar{N}(r, g)+(k+2) \bar{N}\left(r, \frac{1}{f}\right)+(2 k+3) \bar{N}\left(r, \frac{1}{g}\right) \\
& +N_{k+1}\left(r, \frac{1}{f}\right)+N_{k+1}\left(r, \frac{1}{g}\right)+S(r, f)+S(r, g) .
\end{aligned}
$$

Using an argument as in Case 1, we get a contradiction.
Case 3: $b=0$. From (12), we obtain:

$$
\begin{equation*}
f=\frac{1}{a} g+P(z), \tag{14}
\end{equation*}
$$

where $P(z)$ is a polynomial. If $P(z) \neq 0$, then by Lemma 3 we have:

$$
\begin{align*}
T(r, f) & \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-P}\right)+S(r, f) \\
& \leq \bar{N}(r, f)+\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{g}\right)+S(r, f) . \tag{15}
\end{align*}
$$

From (14), we obtain $T(r, f)=T(r, g)+S(r, f)$. Hence, substituting this into (15), we get:

$$
T(r, f) \leq\{3-[\Theta(\infty, f)+\Theta(0, f)+\Theta(0, g)]+\varepsilon\} T(r, f)+S(r, f),
$$

where

$$
\begin{aligned}
0<\varepsilon & <1-\delta_{k+1}(0, f)+1-\delta_{k+1}(0, g)+(2 k+2)[1-\Theta(\infty, f)] \\
& +(2 k+4)[1-\Theta(\infty, g)]+[1-\Theta(0, f)]+2[1-\Theta(0, g)]
\end{aligned}
$$

Therefore $T(r, f) \leq[7 k+14-\Delta] T(r, f)+S(r, f)$. Then $[\Delta-(7 k+13)] T(r, f)<$ $S(r, f)$. Hence, by (1), we deduce that $T(r, f) \leq S(r, f)$ for $r \in I$, a contradiction. Therefore, we deduce that $P(z) \equiv 0$, that is $f=\frac{1}{a} g$. If $a \neq 1$, then $f^{(k)}$ and $g^{(k)}$ sharing the value 1 IM , we deduce that $g^{(k)} \neq 1$. That is $\bar{N}\left(r, \frac{1}{g^{(k)}-1}\right)=0$. Next, we can deduce a contradiction as in Case 1. Thus, we get that $a=1$, that is $f \equiv g$. Thus the proof of Lemma 5 is completed.

3. PROOF OF THEOREM 3

Let $F(z)=f^{n}(f-1)$ and $G(z)=f^{n}(f-1)$. We have:

$$
\begin{aligned}
\Delta & =(2 k+3) \Theta(\infty, F)+(2 k+4) \Theta(\infty, G)+(k+2) \Theta(0, F) \\
& +(2 k+3) \Theta(0, G)+\delta_{k+1}(0, F)+\delta_{k+1}(0, G)
\end{aligned}
$$

Consider

$$
\begin{aligned}
\Theta(0, F) & =1-\overline{\lim _{r \rightarrow \infty}} \frac{\bar{N}\left(r, \frac{1}{f^{n}(f-1)}\right)}{(n+1) T(r, F)}=1-\overline{\lim }_{r \rightarrow \infty} \frac{\bar{N}\left(r, \frac{1}{f}\right)+\bar{N}\left(r, \frac{1}{f-1}\right)}{(n+1) T(r, f)} \\
& \geq 1-\overline{\lim }_{r \rightarrow \infty} \frac{2 T(r, f)}{(n+1) T(r, f)} \geq \frac{n-1}{n+1} .
\end{aligned}
$$

Similarly we have:

$$
\Theta(0, G) \geq \frac{n-1}{n+1}, \quad \Theta(\infty, F) \geq \frac{n}{n+1}, \quad \Theta(\infty, G) \geq \frac{n}{n+1}
$$

Next, it follows that

$$
\begin{aligned}
\delta_{k+1}(0, F) & =1-\varlimsup_{r \rightarrow \infty} \frac{N_{k+1}\left(r, \frac{1}{F}\right)}{T(r, F)}=1-\varlimsup_{r \rightarrow \infty} \frac{(k+1) N\left(r, \frac{1}{f^{n}(f-1)}\right)}{(n+1) T(r, f)} \\
& \geq 1-\varlimsup_{r \rightarrow \infty} \frac{(k+2) T(r, f)}{(n+1) T(r, f)} \geq 1-\frac{k+2}{n+1}=\frac{n-(k+1)}{n+1}
\end{aligned}
$$

Similarly $\delta_{k+1}(0, G) \geq \frac{n-(k+1)}{n+1}$. From the above equalities we get:

$$
\begin{aligned}
\Delta & =(2 k+3) \frac{n}{n+1}+(2 k+4) \frac{n}{n+1}+(k+2) \frac{n-1}{n+1} \\
& +(2 k+3) \frac{n-1}{n+1}+\frac{n-(k+1)}{n+1}+\frac{n-(k+1)}{n+1}
\end{aligned}
$$

Since $n>12 k+20$, we get $\Delta>7 k+13$. Considering $F^{(k)}(z)=\left[f^{n}(z)\right]^{(k)}$ and $G^{(k)}(z)=\left[g^{n}(z)\right]^{(k)}$ share the value 1 IM, then by Lemma 5 we deduce that either $F^{(k)}(z) G^{(k)}(z) \equiv 1$ or $F \equiv G$.

Next we consider two cases.

Case 1. $F^{(k)}(z) G^{(k)}(z) \equiv 1$, so $\left[f^{n}(z)(f(z)-1)\right]^{(k)}\left[g^{n}(z)(g(z)-1)\right]^{(k)} \equiv 1$.
Case 2. $F \equiv G$, so $f^{n}(f-1) \equiv g^{n}(g-1)$.
Suppose $f \neq g$. Then we consider two cases:
(i) Let $H=\frac{f}{g}$ be a constant. Then it follows that $H \neq 1, H^{n} \neq 1, H^{n+1} \neq 1$ and $g=\frac{1-H^{n}}{1-H^{n+1}}$ is a constant, which leads to a contradiction.
(ii) Let $H=\frac{f}{g}$ be not a constant. Since $f \neq g$, we have $H \neq 1$ and hence we deduce that $g=\frac{1-H^{n}}{1-H^{n+1}}$ and $f=\frac{1-H^{n}}{1-H^{n+1}} H=\frac{\left(1+H+H^{2}+\cdots+H^{n-1}\right) H}{1+H+H^{2}+\cdots+H^{n}}$, where H is a non-constant meromorphic function. It follows that $T(r, f)=T(r, g H)=$ $n T(r, H)+S(r, f)$.

On the other hand, by the second fundamental theorem, we deduce that $\bar{N}(r, f)=\sum_{j=1}^{n} \bar{N}\left(r, \frac{1}{H-\alpha_{j}}\right) \geq(n-2) T(r, H)+S(r, f)$, where $\alpha_{j} \neq 1(j=$ $1,2, \ldots, n)$ are distinct roots of the algebraic equation $H^{n+1}=1$. We have:

$$
\begin{aligned}
\Theta(\infty, f) & =1-\overline{\lim _{r \rightarrow \infty}} \frac{\bar{N}(r, f)}{T(r, f)} \leq 1-\overline{\lim _{r \rightarrow \infty}} \frac{(n-2) T(r, H)+S(r, f)}{T(r, f)} \\
& \leq 1-\varlimsup_{r \rightarrow \infty} \frac{(n-2) T(r, H)+S(r, f)}{n T(r, H)+S(r, f)} \leq 1-\frac{n-2}{n}=\frac{2}{n}
\end{aligned}
$$

which contradicts the assumption $\Theta(\infty, f)>\frac{2}{n}$.
Thus $f \equiv g$. This completes the proof.

REFERENCES

[1] Bhoosnurmath, S.S. and Dyavanal, R.S., Uniqueness and value-sharing of meromorphic functions, Comput. Math. Appl., 53 (2007), 1191-1205.
[2] Hayman, W.K., Meromorphic Functions, Clarendon Press, Oxford, 1964.
[3] FANG, M.L., Uniqueness and value-sharing of entire functions, Comput. Math. Appl., 44 (2002), 823-831.
[4] Yang, L., Distribution Theory, Spinger-Verlag, Berlin, 1993.
[5] Yi, H.X. and Yang, C.C., Unicity Theory of Meromorphic Functions, Science Press, Beijing, 1995.
[6] Zhang, Q.C., Meromorphic function that share one small function with its derivative, JIPAM J. Inequal. Pure Appl. Math., 6 (2005), Art.116.

Received September 8, 2009
Accepted January 31, 2011
Chengdu University of Technology
Department of Mathematics
Chengdu, Sichuan, 610059, P.R. China
E-mail: jd-li86cdut@163.c0m
Southwest University of Science and Technology
College of Sciences
Mianyang, Sichuan, 637002, P.R. China
E-mail: luqiankuo1965@hotmail.com

[^0]: The authors would like to thank the referee for some suggestions to improve the paper.

