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HARMONIC FUNCTIONS WHICH ARE STARLIKE OF
COMPLEX ORDER WITH RESPECT TO CONJUGATE POINTS

AINI JANTENG and SUZEINI ABDUL HALIM

Abstract. Let H denote the class of functions f which are harmonic, orientation
preserving and univalent in the open unit disc D = {z : |z| < 1}. This paper
defines and investigates a family of complex-valued harmonic functions that are
orientation preserving and univalent in D and are related to the functions starlike
of complex order with respect to conjugate points. The authors obtain coefficient
conditions and growth result.
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1. INTRODUCTION

Let f = u + iv be a continuous complex-valued harmonic function in a
complex domain E if both u and v are real harmonic in the domain E. There
is a close inter-relation between analytic functions and harmonic functions. For
example, for real harmonic functions u and v there exist analytic functions U
and V so that u = Re (U) and v = Im (V ). Then, we can write f(z) =
h(z) + g(z), where h and g are analytic in E. The mapping z 7→ f(z) is
orientation preserving and locally univalent in E if and only if the Jacobian of
f given by Jf (z) = |h′(z)|2 − |g′(z)|2 is positive in E. The function f = h+ g
is said to be harmonic univalent in E if the mapping z 7→ f(z) is orientation
preserving, harmonic and one-to-one in E. We call h the analytic part and g
the co-analytic part of f = h+ g.

LetH denote the family of functions f = h+g that are harmonic, orientation
preserving and univalent in the open unit disc D = {z : |z| < 1} with the
normalisation

(1) h(z) = z +
∞∑
n=2

anz
n, g(z) =

∞∑
n=1

bnz
n, |b1| < 1.

In [3], Clunie and Sheil-Small investigated the classH plus some of it geometric
subclasses and obtained some coefficient bounds. Since then, there have been
many authors which looked at related subclasses, see [9] and [10] to name a
few. In particular, refer to Duren [4], which provides comprehensive reference
in the theory of harmonic functions. Furthermore, Jahangiri in [5] considered

The authors are partially supported by FRG0118-ST-1/2007, Malaysia.



58 A. Janteng and S. Abdul Halim 2

a subclass of H consisting of functions which are starlike of α, for 0 ≤ α < 1.
We denote such class as HS?(α). Specifically, a function f of the form (1)
is harmonic starlike of order α, 0 ≤ α < 1, for z ∈ D if (see Sheil-Small [7])
∂
∂θ (arg f(reiθ)) ≥ α, |z| = r < 1. Next, we denote further the class H, a
subclass of H such that the functions h and g in f = h+ g are of the form:

(2) h(z) = z −
∞∑
n=2

|an|zn, g(z) =
∞∑
n=1

|bn|zn, |b1| < 1.

Also let HS?(α) = HS?(α) ∩H.
In [6], Nasr and Aouf introduced the class of starlike functions of complex

order b. Denote S∗(b) to be the class consisting of functions which are analytic
and starlike of complex order b(b is a non-zero complex number) and satisfying
the following condition:

Re
{

1 +
1
b

(
zf ′(z)
f(z)

− 1
)}

> 0, z ∈ D.

In [1], Abdul Halim and Janteng were motivated to form a new subclass of
H based on Nasr and Aouf’s class. A function f of the form (1) is harmonic
starlike of complex order, for 0 ≤ α < 1, b non-zero complex number with
|b| ≤ 1 and z ∈ D, if and only if

Re
{

1 +
1
b

(
zf ′(z)
z′f(z)

− 1
)}
≥ α, |z| = r < 1,

where z′ = ∂
∂θ (z = reiθ), f ′(z) = ∂

∂θ (f(z) = f(reiθ)), 0 ≤ r < 1 and 0 ≤ θ <
2π. The class of these functions is denoted by HS?(b, α).

If f takes the form (2) then we denote it as HS?(b, α). The constraint
|b| ≤ 1 is to ensure Jf (z) > 0 so that f is univalent.

Now, we define new class of functions as follows:

Definition. Let f ∈ H. Then f ∈ HS?c(b, α) is said to be harmonic
starlike of complex order with respect to conjugate points if for 0 ≤ α < 1 and
b non-zero complex number with |b| ≤ 1, z′ = ∂

∂θ (z = reiθ), f ′(z) = ∂
∂θ (f(z) =

f(reiθ)), 0 ≤ r < 1 and 0 ≤ θ < 2π,

(3) Re

{
1 +

1
b

(
2zf ′(z)

z′(f(z) + f(z))
− 1

)}
≥ α, |z| = r < 1.

Also, we let HS?c(b, α) = HS?c(b, α) ∩H.

2. MAIN RESULTS

Avci and Zlotkiewicz [2] proved that the coefficient condition
∑∞

n=2 n(|an|+
|bn|) ≤ 1 is a sufficient condition for functions f = h+g to be in HS?(1, 0) with
b1 = 0. Silverman [8] also proved that this condition is also a necessary when
an and bn are negative, as well as b1 = 0. In the following theorem, Jahangiri
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in 1999 [5], obtained analogue sufficient condition for f ∈ HS?(1, α), where b1
is not necessarily 0.

Theorem 1 ([5]). Let f = h+ g be given by (1). Furthermore, let
∞∑
n=1

(
n− α
1− α

|an|+
n+ α

1− α
|bn|
)
≤ 1,

where a1 = 1 and 0 ≤ α < 1. Then f is harmonic univalent in D and
f ∈ HS?(1, α).

Jahangiri also proved that the condition in Theorem 1 is a necessary con-
dition for f = h+ g given by (2) and belongs to HS?(1, α).

The following theorem proved by Abdul Halim and Janteng in [1] will be
used throughout in this paper.

Theorem 2. Let f = h+ g be given by (1). If

(4)
∞∑
n=2

(
n− 1 + |b| − α|b|

(1− α)|b|

)
|an|+

∞∑
n=1

(
n+ 1− |b|+ α|b|

(1− α)|b|

)
|bn| ≤ 1,

where 0 ≤ α < 1 and b a non-zero complex number with |b| ≤ 1 then f is
harmonic univalent in D and f ∈ HS?(b, α). Condition (4) is also necessary
if f ∈ HS?(b, α).

In this paper we give sufficient coefficient conditions for functions f = h+g
of the form (1) to be in HS?c(b, α), where 0 ≤ α < 1 and b is a non-zero
complex number such that |b| ≤ 1. We also show that these conditions are
necessary when f ∈ HS?c(b, α).

Theorem 3. Let f = h+ g be given by (1). If

(5)
∞∑
n=2

(
n+ (|b| − α|b| − 1)

(1− α)|b|

)
|an|+

∞∑
n=1

(
n− (|b| − α|b| − 1)

(1− α)|b|

)
|bn| ≤ 1,

where 0 ≤ α < 1 and b a non-zero complex number with |b| ≤ 1 then f is
harmonic univalent in D and f ∈ HS?c(b, α).

Proof. It follows from Theorem 2 that f ∈ HS?(b, α) and hence f is locally
univalent and orientation preserving in D. Next, we show that f ∈ HS?c(b, α).
To do so, we need to show that when (4) holds, then (3) also holds true.
Letting

w(z) = 1 +
1
b

(
2zf ′(z)

z′(f(z) + f(z))
− 1

)

= 1 +
1
b

(
2(zh′(z)− zg′(z))− (h(z) + g(z) + h(z̄) + g(z̄))

h(z) + g(z) + h(z̄) + g(z̄)

)
,
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where z = reiθ, 0 ≤ θ < 2π, 0 ≤ r < 1, z′ = ∂
∂θ (z = reiθ), f ′(z) =

∂
∂θ (f(reiθ)), condition (3) is equivalent to Re w(z) ≥ α. And since Re w(z) ≥ α
if and only if |1− α+ w| ≥ |1 + α− w| for 0 ≤ α < 1, it suffices to show that

(6) |A(z) + ((2− α)b− 1)B(z)| − |(αb+ 1)B(z)−A(z)| ≥ 0,

where A(z) = 2(zh′(z) − zg′(z)) and B(z) = h(z) + g(z) + h(z̄) + g(z̄). Sub-
stituting for A(z) and B(z) in (6) gives:

|A(z) + (2b− αb− 1)B(z)| − |(αb+ 1)B(z)−A(z)|

=

∣∣∣∣∣(2b− αb− 1)

(
2z +

∞∑
n=2

2 an zn +
∞∑
n=1

2bn (z)n
)

+

(
2z +

∞∑
n=2

2nan zn −
∞∑
n=1

2nbn (z)n
)∣∣∣∣∣

−

∣∣∣∣∣(αb+ 1)

(
2z +

∞∑
n=2

2an zn +
∞∑
n=1

2bn (z)n
)

−

(
2z +

∞∑
n=2

2nan zn −
∞∑
n=1

2nbn (z)n
)∣∣∣∣∣

=

∣∣∣∣∣2(2− α)bz +
∞∑
n=2

2[((2− α)b− 1) + n] an zn

+
∞∑
n=1

2[((2− α)b− 1)− n] bn (z)n
∣∣∣∣∣

−

∣∣∣∣∣2αbz −
∞∑
n=2

2(n− (αb+ 1)) an zn +
∞∑
n=1

2(n+ (αb+ 1)) bn (z)n
∣∣∣∣∣

≥ 2(2− α)|b||z| −
∞∑
n=2

2|n+ ((2− α)b− 1)| |an| |z|n

−
∞∑
n=1

2|n− ((2− α)b− 1)| |bn| |z|n − 2α|b||z|

−
∞∑
n=2

2|n− (αb+ 1)| |an| |z|n −
∞∑
n=1

2|n+ (αb+ 1)| |bn| |z|n

= 4(1− α)|b||z| −
∞∑
n=2

2
(
|n− (αb+ 1)|+ |n+ ((2− α)b− 1)|

)
|an| |z|n

−
∞∑
n=1

2
(
|n+ (αb+ 1)|+ |n− ((2− α)b− 1)|

)
|bn| |z|n
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= 4(1− α)|b||z|

[
1−

∞∑
n=2

(
2|n− (αb+ 1)|+ 2|n+ ((2− α)b− 1)|

4(1− α)|b|

)
|an||z|n−1

−
∞∑
n=1

(
2|n+ (αb+ 1)|+ 2|n− ((2− α)b− 1)|

4(1− α)|b|

)
|bn||z|n−1

]

≥ 4(1− α)|b||z|
{

1−
∞∑
n=2

(n+ (|b| − α|b| − 1))
(1− α)|b|

|an|

−
∞∑
n=1

(n− (|b| − α|b| − 1))
(1− α)|b|

|bn|
}
≥ 0

by (4). �

The functions

f(z) = z +
∞∑
n=2

(
(1− α)|b|

(n+ (|b| − α|b| − 1))

)
xnz

n

+
∞∑
n=1

(
(1− α)|b|

(n− (|b| − α|b| − 1))

)
ynz

n,

where
∑∞

n=2 |xn| +
∑∞

n=1 |yn| = 1, show that the coefficient bound in (4) is
sharp.

The next theorem shows that condition (4) is necessary for f ∈ HS?c(b, α).

Theorem 4. Let f = h + g be given by (2). Then f ∈ HS?c(b, α) if and
only if

(7)
∞∑
n=2

(
n+ (|b| − α|b| − 1)

(1− α)|b|

)
|an|+

∞∑
n=1

(
2n− (|b| − α|b| − 1)

(1− α)|b|

)
|bn| ≤ 1,

where 0 ≤ α < 1, b a non-zero complex number such that |b| ≤ 1.

Proof. Since HS?c(b, α) ⊂ HS?s(b, α), the “if” part follows from Theorem 2.
To prove the “only if” part, we show that when (7) does not hold, f is not in
HS

?
c(b, α). First, if f ∈ HS?c(b, α), then:

Re

{
1 +

1
b

(
2zf ′(z)

z′(f(z) + f(z))
− 1

)}
− α

= Re

{
(1− α) +

1
b

(
2(zh′(z)− zg′(z))− (h(z) + g(z) + h(z̄) + g(z̄))

h(z) + g(z) + h(z̄) + g(z̄)

)}

= Re

{
(1− α)b(h(z) + g(z) + h(z̄) + g(z̄)) + 2(zh′(z)− zg′(z))

b(h(z) + g(z) + h(z̄) + g(z̄))
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− (h(z) + g(z) + h(z̄) + g(z̄))
b(h(z) + g(z) + h(z̄) + g(z̄))

}

= Re
{

2(1− α)bz −
∑∞

n=2 2(((1− α)b− 1) + n) |an| zn

2b (z −
∑∞

n=2 |an| zn +
∑∞

n=1 |bn| (z) n)

−
∑∞

n=1 2(n− ((1− α)b− 1)) |bn| (z)n

2b (z −
∑∞

n=2 |an| zn +
∑∞

n=1 |bn| (z) n)

}
= Re

{
(1− α)|b|2 −

∑∞
n=2(n+ ((1− α)b− 1))b |an| zn−1

|b|2 (1−
∑∞

n=2 |an| zn−1 +
∑∞

n=1 |bn| z n−1)

−
∑∞

n=1(n− ((1− α)b− 1))b |bn| zn−1

|b|2 (1−
∑∞

n=2 |an| zn−1 +
∑∞

n=1 |bn| z n−1)

}
≥ 0

for all values of z, |z| = r < 1 and any b such that 0 < |b| < 1. Choose z
to be on the positive real axis, where z = r < 1. Thus, the above condition
becomes:

(1− α)|b|2 −
∑∞

n=2(n+ ((1− α)b− 1)) b |an| rn−1

|b|2 (1−
∑∞

n=2 |an| rn−1 +
∑∞

n=1 |bn| rn−1)

−
∑∞

n=1(n− ((1− α)b− 1)) b |bn| rn−1

|b|2 (1−
∑∞

n=2 |an| rn−1 +
∑∞

n=1 |bn| rn−1)
≥ 0.

(8)

It is easily established that the denominator is positive when r → 1. We need
to show that the numerator is also positive for any z ∈ D and any b 6= 0, |b| ≤ 1.
In the case when b = |b| (real and positive), the numerator becomes:(

(1− α)|b|2 −
∞∑
n=2

(n+ ((1− α)b− 1)) |b| |an| rn−1

−
∞∑
n=1

(n− ((1− α)b− 1))|b|) |b| |bn| rn−1

)

= |b|

(
(1− α)|b| −

∞∑
n=2

(n+ ((1− α)b− 1)) |an| rn−1

−
∞∑
n=1

(n− ((1− α)b− 1)) |bn| rn−1

)
,

which is negative if condition (7) does not hold. Thus, there exists some point
z0 = r0 in (0,1) and some b such that b = |b| for which the quotient in (8)
is negative, which contradicts the condition that f ∈ HS?c(b, α). Hence, the
proof is complete. �

Next, growth estimates of HS?c(b, α) are determined.
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Theorem 5. If f ∈ HS?c(b, α) then for |z| = r < 1,

|f(z)| ≤ (1 + |b1|)r +
(

(1− α)|b|
|b| − α|b|+ 1

− 2− (|b| − α|b|)
|b| − α|b|+ 1

|b1|
)
r2

and

|f(z)| ≥ (1− |b1|)r −
(

(1− α)|b|
|b| − α|b|+ 1

− 2− (|b| − α|b|)
|b| − α|b|+ 1

|b1|
)
r2.

Proof. Let f ∈ HS?c(b, α). Taking the absolute value of f , by (7) we have:

|f(z)| ≤ (1 + |b1|)r +
∞∑
n=2

(|an|+ |bn|) rn

≤ (1 + |b1|)r +
∞∑
n=2

(|an|+ |bn|) r2

= (1 + |b1|)r

+
(1− α)|b|
|b| − α|b|+ 1

∞∑
n=2

(
|b| − α|b|+ 1

(1− α)|b|
|an|+

3− |b|+ α|b|
(1− α)|b|

|bn|
)
r2

≤ (1 + |b1|)r +
(1− α)|b|
|b| − α|b|+ 1

∞∑
n=2

(n+ (|b| − α|b| − 1)
(1− α)|b|

|an|

+
n− (|b| − α|b| − 1)

(1− α)|b|
|bn|
)
r2

≤ (1 + |b1|)r +
(1− α)|b|
|b| − α|b|+ 1

(
1− 1− (|b| − α|b| − 1)

(1− α)|b|
|b1|
)
r2

= (1 + |b1|)r +
(

(1− α)|b|
|b| − α|b|+ 1

− 2− (|b| − α|b|)
|b| − α|b|+ 1

|b1|
)
r2.

The second inequality follows similarly. �

The upper and lower bounds given in Theorem 5 are respectively attained
for the following functions:

f(z) = z + |b1|z +
(

(1− α)|b|
|b| − α|b|+ 1

− 2− (|b| − α|b|)
|b| − α|b|+ 1

|b1|
)
z 2

and

f(z) = (1− |b1|)z −
(

(1− α)|b|
|b| − α|b|+ 1

− 2− (|b| − α|b|)
|b| − α|b|+ 1

|b1|
)
z 2.
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