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ON STRONGLY STARLIKE AND CONVEX FUNCTIONS
OF ORDER α AND TYPE β

IKKEI HOTTA and MAMORU NUNOKAWA

Abstract. In this note we investigate the inclusion relationship between the
class of strongly starlike functions of order α and type β, α ∈ (0, 1] and β ∈ [0, 1),
which satisfy ˛̨̨̨

arg
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and the class of strongly convex functions of order α and type β which satisfy˛̨̨̨
arg
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in the unit disk, where f is an analytic function defined on the unit disk and
satisfies f(0) = f ′(0) − 1 = 1. Some applications of our main result are also
presented which contains various classical results for the typical subclasses of
starlike and convex functions.
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1. INTRODUCTION

Let A denote the set of functions f(z) = z+
∑∞

n=2 anz
n which are analytic

in the unit disk D = {z ∈ C : |z| < 1}.
Let α be a real number with α ∈ (0, 1]. A function f ∈ A is called strongly

starlike of order α if it satisfies∣∣∣∣arg
{
zf ′(z)
f(z)

}∣∣∣∣ < π

2
α

for all z ∈ D, and strongly convex of order α if∣∣∣∣arg
{

1 +
zf ′′(z)
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}∣∣∣∣ < π

2
α

for all z ∈ D. Let us denote by S∗(α) the class of functions strongly starlike
of order α, and by K(α) the class of functions strongly convex of order α.
The class S∗(α) was introduced first by Stankiewicz [13] and by Brannan
and Kirwan [2], independently. It is clear from the definitions that S∗(α1) ⊂
S∗(α2) and K(α1) ⊂ K(α2) for 0 < α1 < α2 ≤ 1. The case when α = 1,
i.e., S∗(1) and K(1) correspond to well known classes of starlike and convex
functions respectively, and therefore all the functions which belong to S∗(α)
or K(α) are univalent in D. We denote by S∗ and K the classes of starlike and
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convex functions. For the general reference of classes of starlike and convex
functions, see, for instance [3].

Mocanu [9] obtained the following result (see also [11]). Here, set

(1) ρ(α) = Tan−1
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]
and γ(α) = α+ 2

πρ(α).

Theorem A. K(γ(α)) ⊂ S∗(α) for each α ∈ (0, 1].

We remark that the function γ(α) is continuous and strictly increases from
0 to 1 when α moves from 0 to 1. Further investigations for the above theorem
can be found in [5].

Now we shall introduce the class of functions S∗(α, β) andK(α, β), α ∈ (0, 1]
and β ∈ [0, 1), whose members satisfy the conditions:∣∣∣∣arg

{
zf ′(z)
f(z)

− β
}∣∣∣∣ < π

2
α and
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for all z ∈ D, respectively. We call a function f ∈ S∗(α, β) strongly starlike of
order α and type β. In the same way, a function f ∈ K(α, β) is strongly convex
of order α and type β. It is obvious that S∗(α, 0) = S∗(α) and K(α, 0) = K(α).
Also the following relations are true from the definitions:

(2)

i) S∗(α1, β) ⊂ S∗(α2, β),
ii) K(α1, β) ⊂ K(α2, β),

iii) S∗(α, β1) ⊃ S∗(α, β2),
iv) K(α, β1) ⊃ K(α, β2),

for 0 < α1 < α2 ≤ 1 and 0 ≤ β1 < β2 < 1. That is why all functions belong
to S∗(α, β) or K(α, β) are univalent on D.

A sufficient condition for which f ∈ A lies in S∗(α, β) was proved by the
second author et al. [12]. The authors also proposed in [12] the open problem
about a inclusion relationship between K(α, β) and S∗(α, β). However, it
seems that no results concerning this question have been known.

Our main result is the following:

Theorem 1. K(γ(α), β) ⊂ S∗(α, β) for each α ∈ (0, 1] and β ∈ [0, 1).

The above theorem includes Theorem A as the case when β = 0.
We should notice the reader that this estimation is not sharp for each α ∈

(0, 1] and β ∈ [0, 1) (see also [5]). We will discuss about this problem in section
2 with the proof of Theorem 1. Our main theorem yields several applications
which will be shown in the last section.
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2. PROOF OF THEOREM 1

Our proof relies on the following lemma which was obtained by the second
author [10, 11].

Lemma B. Let p(z) be analytic and satisfies p(0) = 1, p(z) 6= 0 in D. Let
us assume that there exists a point z0 ∈ D such that | arg p(z)| < πα/2 for
|z| < |z0| and | arg p(z0)| = πα/2 where α > 0. Then we have:

z0p
′(z0)

p(z0)
= iαk,

where k ≥ 1
2

(
a+ 1

a

)
when arg p(z0) = πα/2 and k ≤ −1

2

(
a+ 1

a

)
when

arg p(z0) = −πα/2, where p(z0)1/α = ±ia and a > 0.

The next result will be used later:

Lemma 2. Tan−1α ≥ ρ(α) for all α ∈ (0, 1], where ρ is defined by (1).

Proof. Put φ(α) = (1/(1− α)) ((1− α)/(1 + α))
1+α

2 . It is enough to prove
that

α ≥ αφ(α) sin [π(1− α)/2]
1 + αφ(α) cos [π(1− α)/2]

for all α ∈ (0, 1]. Since φ(α) < 1, because of φ(0) = 1 and φ′(α) < 0, we
obtain α > αφ(α) and therefore

α sin [π(1− α)/2]
1 + α cos [π(1− α)/2]

>
αφ(α) sin [π(1− α)/2]

1 + αφ(α) cos [π(1− α)/2]
.

It remains to show that

α ≥ α sin [π(1− α)/2]
1 + α cos [π(1− α)/2]

for all α ∈ (0, 1] and this is clear. �

Proof of Theorem 1. Let us suppose that f satisfies the assumption of the
theorem and let

p(z) =
1

1− β

(
zf ′(z)
f(z)

− β
)
.

Then p(0) = 1, and calculations show that

(3) 1 +
zf ′′(z)
f ′(z)

− β = (1− β)p(z)

1 +
zp′(z)
p(z)

(1− β)p(z) + β

 .

We note that p(z) 6= 0 holds for all z ∈ D since 1 + zf ′′(z)/f ′(z)− β 6=∞ on
D from our assumption.

Now we derive a contradiction by using Lemma B. If there exists a point
z0 such that | arg p(z)| < πα/2 for |z| < |z0| and | arg p(z0)| = πα/2, where
α ∈ (0, 1], then by Lemma B, p must satisfy z0p

′(z0)/p(z0) = iαk where
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−πα/2, where p(z0)1/α = ±ia and a > 0.
First we suppose that arg p(z0) = πα/2. Then from (3) we have:
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We shall estimate the second term of the second line of above. Geometric
observations show that the point 1 + [iαk/{(1 − β)p(z0) + β}] lies on the
subarc C of the circle which passes through 1, 1 + iαk and 1 + [iαk/p(z0)],
where C connects 1 + iαk and 1 + [iαk/p(z0)] and does not pass through 1.
Further, we can find out that the value {arg z : z ∈ C} attains its minimum
at the end points of C. Therefore we have:
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Here, the first value in the above minimum can be evaluated by arg{1 +
iαk} ≥ Tan−1α since k ≥ 1. For the second value, we note that a1−α + a−1−α
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√
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By Lemma 2 we conclude that
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and this contradicts our assumption.
In the same fashion, if arg p(z0) = −πα/2 then a similar argument shows

that

arg
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This also contradicts our assumption and our proof is completed. �

We remark that we expect this theorem to be room for improvement in our
method, because the inequality (4) is a rough estimation except the case when
β = 0, whereas it seems to be not easy to give a precise estimation for the left
hand side of (4).
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3. APPLICATIONS

We would like to give a further discussion to the relationship between
S∗(α, β) and K(α, β) by using Theorem 1.

3.1. It is well known that a convex function is a starlike function, that is,
K ⊂ S∗. Furthermore, Mocanu [8] showed that K(α) ⊂ S∗(α) for all α ∈ (0, 1].
Now we give the next result which includes these properties as special cases.

Corollary 3. K(α, β) ⊂ S∗(α, β) for each α ∈ (0, 1] and β ∈ [0, 1).

Proof. Since α ≤ γ(α) for all α ∈ (0, 1], K(α, β) ⊂ K(γ(α), β) ⊂ S∗(α, β)
by ii) in (2) and Theorem 1 which is our desired inclusion. �

Corollary 3 yields the following property.

Corollary 4. If zf ′(z) ∈ S∗(α, β), then f ∈ S∗(α, β).

Proof. It is obvious that g ∈ K(α, β) if and only if zg′(z) ∈ S∗(α, β). Thus
if zg′(z) ∈ S∗(α, β) then g ∈ K(α, β) ⊂ S∗(α, β) from Corollary 3. Hence our
assertion follows if we put f(z) = zg′(z). �

This corollary is equivalent to the following: S∗(α, β) is preserved by the
Alexander transformation, where the Alexander transformation [1] is the inte-
gral transformation defined by f(z) 7→

∫ z
0
f(u)
u du for f ∈ A.

3.2. If α = 1, then the class S∗(1, β) and K(1, β) is called starlike of order β
and convex of order β, respectively. It is easy to see that f ∈ S∗(1, β) satisfies
Re
{
zf ′(z)
f(z)

}
> β and f ∈ K(1, β) satisfies Re

{
1 + zf ′′(z)

f ′(z)

}
> β. Marx [7]

and Strohhäcker [14] showed that K(1, 0) ⊂ S∗(1, 1/2). Jack [4] proposed
the more general problem: What is the largest number β0 which satisfies
K(1, β) ⊂ S∗(1, β0)? Later MacGregor [6] and Wilken and Feng [15] answered
the problem to give the exact value of β0.

Theorem C. K(1, β) ⊂ S∗(1, δ(β)) for all β ∈ [0, 1), where

δ(β) =


1− 2β

22−2β(1− 22β−1)
if β 6= 1

2
1

2 log 2
if β =

1
2
.

This estimation is sharp for each β ∈ [0, 1).

Setting β = 0, we have the result of Marx and Strohhäcker. We can obtain
a similar estimation to above that “K(γ(α), δ(β)) ⊂ S∗(α, β) for all α ∈ (0, 1]
and β ∈ [0, 1)” by Theorem 1 since β < δ(β) for all β ∈ [0, 1). However, the
following problem is still open.

Open Problem. K(γ(α), β) ⊂ S∗(α, δ(β)) for each α ∈ (0, 1] and β ∈
[0, 1).
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This problem implies Theorem 1, because S∗(α, δ(β)) ⊂ S∗(α, β) for all
α ∈ (0, 1] and β ∈ [0, 1), and Theorem C as the case when α = 1.
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