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A FAMILY OF HARMONIC UNIVALENT FUNCTIONS
ASSOCIATED WITH A CONVOLUTION OPERATOR

K.K. DIXIT, A.L. PATHAK, S. PORWAL and S.B. JOSHI

Abstract. In this paper we introduce and investigate a new class of harmonic
univalent functions defined by convolution. Among other results, we obtain
coefficient conditions, extreme points, distortion bounds, convolution conditions
and convex combinations for the above family of harmonic functions.
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1. INTRODUCTION

A continuous complex-valued function f = u + iv defined in a simply con-
nected complex domain D is said to be harmonic in D if both u and v are
real harmonic in D. In any simply connected domain D, function f can be
written as f = h + g, where h and g are analytic in D. Then h is called the
analytic part of f and g is called the co-analytic part of f . A necessary and
sufficient condition for f to be locally univalent and sense-preserving in D is
that |h′(z)| > |g′(z)| in D.

As usual, let SH denote the family of functions f = h+g that are harmonic
univalent and sense-preserving in the unit disc U = {z : |z| < 1} for which
f(0) = fz(0) − 1 = 0. Then for f = h + g belonging to SH we may express
the analytic functions h and g as

(1.1) h(z) = z +
∞∑
k=2

akz
k, g(z) =

∞∑
k=1

bkz
k, |b1| < 1.

The class SH reduces to the class S of analytic and univalent functions in
the open unit disk U , if the co-analytic part is g ≡ 0.

In 1984, Clunie and Sheil-Small [3] investigated the class SH and studied
some sufficient bounds. Since then there have been several papers published
related to SH and its subclasses. In fact, by introducing new subclasses Ahuja
[1], Jahangiri [7], Sheil Small [12], Silverman [13], Silverman and Silvia [14]
presented a systematic and unified study of harmonic univalent functions.
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Furthermore we refer to Duren [4], Ponnusamy [9] and references therein for
basic results on the subjects.

In [2], Ahuja, Aghalary and Joshi introduced and studied the classGH(k, β, t)
consisting of functions which are k-uniformly starlike harmonic univalent func-
tions satisfying the condition:

Re
(
zf ′(z)
z′ft(z)

)
≥ k

∣∣∣∣ zf ′(z)z′ft(z)
− 1
∣∣∣∣+ β,

where z′ = ∂
∂θ (z = reiθ), f ′(z) = ∂

∂θf(reiθ) = i(h′(z) − zg′(z)), ft(z) = (1 −
t)z + t(h(z) + g(z)), 0 ≤ t ≤ 1, 0 ≤ β < 1 and k ≥ 0.

The convolution or Hadamard product of two functions f(z) = z+
∑∞

n=2 anz
n

and φ(z) = z +
∑∞

n=2 λnz
n is defined by

(1.2) (f ∗ φ)(z) = z +
∞∑
n=2

anλnz
n.

For a detailed study see [11].
Recently Rosy et al. [10] defined the subclass GH(γ) ⊂ SH consisting of

harmonic univalent functions f(z) satisfying the condition:

Re
{

(1 + eiα)
zf ′(z)
z′f(z)

− eiα

}
≥ γ, 0 ≤ γ < 1, α ∈ R.

They proved that if f = h+ g is given by (1.1) and if

(1.3)
∞∑
n=1

[
(2n− 1− γ)

(1− γ)
|an|+

(2n+ 1 + γ)
(1− γ)

|bn|
]
≤ 2, 0 ≤ γ < 1,

then f is in GH(γ).
This condition is proved to be also necessary by Rosy et al. if h and g are

of the form:

(1.4) h(z) = z −
∞∑
n=2

|an|zn, g(z) =
∞∑
n=1

|bn|zn.

Motivated by the work of Rosy et al. [10], now we introduce a class k-
SH(φ, ψ; γ; t) of functions f = h+g of the form (1.1) that satisfy the following
condition:

(1.5) Re

{
(1 + keiα)[φ(z) ∗ h(z)− ψ(z) ∗ g(z)]

ft(z)
− keiα

}
≥ γ,

where φ(z) = z +
∞∑
n=2

λnz
n, ψ(z) = z +

∞∑
n=2

µnz
n with λn, µn ≥ 0, 0 ≤ k <

∞, α ∈ R, 0 ≤ γ < 1 and ft(z) = (1− t)z + t(h(z) + g(z)) with 0 ≤ t ≤ 1.
We further let k-TSH(φ, ψ; γ; t) denote the subclass of k-SH(φ, ψ; γ; t) con-

sisting of functions f = h + g ∈ SH such that h and g are of the form (1.4).
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The family k-TSH(φ, ψ; γ; t) is of special interest because it contains various
classes of well known harmonic univalent functions as well as many new ones.

It is worthy to mention that by specializing the various parameters, we
obtain the following interesting classes studied in earlier research.

(1) 0-SH(φ, ψ; γ; 1) = SH(φ, ψ; γ) and 0 − TH(φ, ψ; γ; 1) ≡ TSH(φ, ψ; γ),
comprehensive family of harmonic univalent functions studied by Frasin [5].

(2) 0-SH

(
z

(1− z)2
,

z

(1− z)2
; γ; 1

)
≡ TH(γ), starlike harmonic functions

studied by Jahangiri [7].

(3) 1-SH

(
z

(1− z)2
,

z

(1− z)2
; γ; 1

)
≡ GH(γ), Goodman-Ronning type har-

monic univalent functions studied by Rosy et al. [10].

(4) k-SH

(
z

(1− z)2
,

z

(1− z)2
; γ; t

)
≡ G(k, γ, t) studied by Ahuja, Aghalary

and Joshi [2].
Thus, in this paper we make a systematic and unified study by introducing

the above mentioned new and interesting classes. Coefficient bounds, distor-
tion bounds, extreme points, convolution conditions and convex combination
for functions in k-TSH(φ, ψ; γ; t) are obtained.

2. MAIN RESULTS

In our first theorem we prove a sufficient coefficient bound for harmonic
functions in k-SH(φ, ψ; γ; t).

Theorem 2.1. Let f = h+ g be given by (1.1). If

(2.1)
∞∑
n=2

λn(k + 1)− t(k + γ)
1− γ

|an|+
∞∑
n=1

µn(k + 1) + t(k + γ)
1− γ

|bn| ≤ 1,

where λn ≥ 0, µn ≥ 0, n(1 − γ) ≤ λn(k + 1) − t(k + γ) and n(1 − γ) ≤
µn(k + 1) + t(k + γ) with 0 ≤ t ≤ 1 and 0 ≤ γ < 1, then f is sense-preserving
harmonic univalent in U and f ∈ k-SH(φ, ψ; γ; t).

Proof. Note that f is sense-preserving. For this, we have:

|h′(z)| ≥ 1−
∞∑
n=2

n|an| |z|n−1 ≥ 1−
∞∑
n=2

n|an|

≥ 1−
∞∑
n=2

λn(k + 1)− t(k + γ)
1− γ

|an| ≥
∞∑
n=1

µn(k + 1) + t(k + γ)
1− γ

|bn|

>
∞∑
n=1

n|bn| · |z|n−1 ≥ |g′(z)|.
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Also, f is locally univalent. For this, we have:

∣∣∣∣f(z1)− f(z2)
h(z1)− h(z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g(z1)− g(z2)
h(z1)− h(z2)

∣∣∣∣ ≥ 1−

∞∑
n=1

n|bn|

1−
∞∑
n=2

n|an|

≥ 1−

∞∑
n=1

µn(k + 1) + t(k + γ)
1− γ

|bn|

1−
∞∑
n=2

λn(k + 1)− t(k + γ)
1− γ

|an|
≥ 0.

Using the fact that Re w ≥ γ if and only if |1−γ+w| ≥ |1+γ−w|, it sufficies
to show that:

|(1− γ)ft(z) + (1 + keiα)[φ ∗ h− g ∗ ψ]− keiαft(z)|
− |(1 + γ)ft(z)− (1 + keiα)[φ ∗ h− g ∗ ψ] + keiαft(z)|

≥ (2− γ)|z| −
∞∑
n=2

{(1− γ)t+ (1 + k)λn − kt}|an| |z|n

−
∞∑
n=1

{−(1− γ)t+ (1 + k)µn + kt}|bn| |z|n − γ|z|

−
∞∑
n=2

{(1 + k)λn − kt− (1 + γ)t}|an| |z|n

−
∞∑
n=1

{(1 + γ)t+ (k + 1)µn + kt}|bn| |z|n

> 2(1− γ)

[
1−

∞∑
n=2

{(k + 1)λn − (k + γ)t}
1− γ

|an|

−
∞∑
n=1

{(k + 1)µn + (k + γ)t}
1− γ

|bn|

]
.

The last expression is non-negative by (2.1), so the proof is complete.
The harmonic functions

f(z) = z +
∞∑
n=2

(1− γ)
(k + 1)λn − (k + γ)t

xnz
n

+
∞∑
n=1

(1− γ)
(k + 1)µn + (k + γ)t

ynz
n,
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where
∞∑
n=2

|xn|+
∞∑
n=1

|yn| = 1, show that the coefficient bound given by (2.1) is

sharp. �

Our next theorem shows that the above sufficient condition is also necessary
for functions in k-TSH(φ, ψ; γ; t).

Theorem 2.2. Let f = h+ g be given by (1.4). Then f ∈ k-TSH(φ, ψ; γ; t)
if and only if

(2.2)
∞∑
n=2

{
λn(k+ 1)− (k+ γ)t

}
|an|+

∞∑
n=1

{
(k+ 1)µn + (k+ γ)t

}
|bn| ≤ 1− γ.

Proof. Since k-T SH(φ, ψ; γ; t) ⊂ k-SH(φ, ψ; γ; t), we only need to prove the
“only if” part of Theorem 2.2. To this end, for functions f of the form (1.4),
we notice that the condition (1.5) is equivalent to

Re


(1− γ)z −

∞∑
n=2

[(1 + keiα)λn − (keiα + γ)t]|an|zn

z −
∞∑
n=2

|an|tzn +
∞∑
n=1

|bn|tzn



− Re



∞∑
n=1

{(1 + keiα)µn + (keiα + γ)t}|bn|zn

z −
∞∑
n=2

|an|tzn +
∞∑
n=1

|bn|tzn

 ≥ 0.

The above condition must hold for all values of z, |z| = r < 1. Upon choosing
the values of z on the positive real axis, where 0 ≤ z = r < 1, we must have:

Re


(1− γ)r −

∞∑
n=2

(λn − γt)|an|rn −
∞∑
n=1

(µn + γt)|bn|rn

r −
∞∑
n=2

|an|trn +
∞∑
n=1

|bn|trn



− Re


eiα

{ ∞∑
n=2

k(λn − t)|an|rn +
∞∑
n=1

k(µn + t)|bn|rn
}

r −
∞∑
n=2

|an|trn +
∞∑
n=1

|bn|trn

 ≥ 0.
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Since Re(−eiα) ≥ −|eiα| = −1, the above inequality reduces to the following:

(1− γ)−
∞∑
n=2

{(k + 1)λn − (k + γ)t}|an|rn−1

1−
∞∑
n=2

|an|trn−1 +
∞∑
n=1

|bn|trn−1

−

∞∑
n=1

{(k + 1)µn + (k + γ)t}|bn|rn−1

1−
∞∑
n=2

|an|trn−1 +
∞∑
n=1

|bn|trn−1

≥ 0.

(2.3)

If the condition (2.2) does not hold, then the numerator in (2.3) is negative for r
sufficiently close to 1. Thus there exists z0 = r0 in (0, 1) for which the quotient
(2.3) is negative. This contradicts the condition for f ∈ k-SH(φ, ψ; γ; t) and
hence the result is proved. �

Now we determine the extreme points of the class k-TSH(φ, ψ; γ; t).

Theorem 2.3. Let f be given by (1.4). Then f ∈ k-TSH(φ, ψ; γ; t) if and
only if

f(z) =
∞∑
n=1

{
xnhn(z) + yngn(z)

}
,

where h1(z) = z, hn(z) = z − (1−γ)
{(k+1)λn−(k+γ)t}z

n (n = 2, 3, . . .), gn(z) =

z+ (1−γ)
{(k+1)µn+(k+γ)t}z

n (n = 1, 2, 3, . . .) with
∞∑
n=1

(xn + yn) = 1, xn ≥ 0, yn ≥ 0.

Therefore the extreme points of the class k-TSH(φ, ψ; γ; t) are {hn} and {gn}.

Proof. For functions f of the form (1.4), we have:

f(z) =
∞∑
n=1

{xnhn(z) + yngn(z)}

=
∞∑
n=1

(xn + yn)z −
∞∑
n=2

(1− γ)
(k + 1)λn − (k + γ)t

xnz
n

+
∞∑
n=1

(1− γ)
(k + 1)µn + (k + γ)t

ynz
n.
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Then f ∈ k-TSH(φ, ψ; γ; t), because
∞∑
n=2

(k + 1)λn − (k + γ)t
(1− γ)

|an|+
∞∑
n=1

(k + 1)µn + (k + γ)t
(1− γ)

|bn|

=
∞∑
n=2

xn +
∞∑
n=1

yn = 1− x1 ≤ 1.

Conversely, suppose that f ∈ k-TSH(φ, ψ; γ; t). Then:

|an| ≤
(1− γ)

(k + 1)λn − (k + γ)t
, |bn| ≤

(1− γ)
(k + 1)µn + (k + γ)t

.

Set

xn =
(k + 1)λn − (k + γ)t

(1− γ)
(n ≥ 2), yn =

(k + 1)µn + (k + γ)t
(1− γ)

(n ≥ 1).

Then note that by Theorem 2.2, 0 ≤ xn ≤ 1 (n ≥ 2) and 0 ≤ yn ≤ 1, (n ≥ 1).

Define x1 = 1 −
∞∑
n=2

xn −
∞∑
n=1

yn ≥ 0, by Theorem 2.2. Consequently, we see

that f(z) can be expressed as f(z) =
∞∑
n=1

{xnhn(z)+yngn(z)}, as required. �

Theorem 2.4. Let f ∈ k-TSH(φ, ψ; γ; t). Then for |z| = r < 1, we have:

|f(z)| ≤ (1 + |b1|)r +
(

1− γ
(k + 1)λ2 − (k + γ)t

− (k + 1)µ1 + (k + γ)t
(k + 1)λ2 − (k + γ)t

|b1|
)
r2

and

|f(z) ≥ |(1− |b1|)r −
(

1− γ
(k + 1)λ2 − (k + γ)t

− (k + 1)µ1 + (k + γ)t
(k + 1)λ2 − (k + γ)t

|b1|
)
r2.

Proof. We only prove the right hand side inequality. The proof for the left
hand side inequality is similar and will be omitted. Let f ∈ k-TSH(φ, ψ; γ; t).
Taking the absolute value of f , we obtain:

|f(z)| ≤ (1 + |b1|)r +
∞∑
n=2

(|an|+ |bn|)rn

≤ (1 + |b1|)r +
(1− γ)

λ2(k + 1)− (k + γ)t

∞∑
n=2

{
λn(k + 1)− (k + γ)t

(1− γ)
|an|

+
µn(k + 1) + (k + γ)t

(1− γ)
|bn|
}
r2

≤ (1 + |b1|)r +
[

(1− γ)
λ2(k + 1)− (k + γ)t

− µ1(k + 1) + (k + γ)t
(1− γ)

|b1|
]
r2,

as required. �
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The following covering result follows from the left hand side inequality of
Theorem 2.4.

Corollary 2.5. Let f ∈ k-TSH(φ, ψ; γ; t) and λ2 − γ ≤ λn − γ ≤ µn + γ,
for n ≥ 2. Then{

w : |w| < (k + 1)λ2 − (k + γ)t− (1− γ)
(k + 1)λ2 − (k + γ)t

− (k + 1)(λ2 − µ1)− 2(k + γ)t
(k + 1)λ2 − (k + γ)t

|b1|
}

is included in f(U).

We next show that the class k-TSH(φ, ψ; γ; t) is invariant under convolution
and convex combinations of its functions.

For this purpose, we need to define the convolution of two harmonic func-
tions. For harmonic functions of the form:

f(z) = z −
∞∑
n=2

|an|zn +
∞∑
n=1

|bn|zn,

F (z) = z −
∞∑
n=2

|An|zn +
∞∑
n=1

|Bn|zn,

we define the convolution of f(z) and F (z) as:

(f ∗ F )(z) = f(z) ∗ F (z) = z −
∞∑
n=2

|an| · |An|zn +
∞∑
n=1

|bn| · |Bn|zn.(2.4)

Theorem 2.6. For 0 ≤ β ≤ γ < 1, let f ∈ k-TSH(φ, ψ; γ; t) and F ∈ k-
TSH(φ, ψ;β; t). Then f ∗ F ∈ k-TSH(φ, ψ; γ; t) ⊂ k-TSH(φ, ψ;β; t).

Proof. Let f(z) = z−
∞∑
n=2

|an|zn+
∞∑
n=1

|bn|zn ∈ k-TSH(φ, ψ; γ; t) and F (z) =

z−
∞∑
n=2

|An|zn +
∞∑
n=1

|Bn|zn ∈ k-TSH(φ, ψ;β; t). Then the convolution of f ∗F

is given by (2.4). We wish to show that the coefficients of f ∗ F satisfy the
required condition given in Theorem 2.2. For F ∈ k-TSH(φ, ψ;β; t), we note
that |An| ≤ 1 and |Bn| ≤ 1. Now, for the convolution function f ∗ F , we
obtain:

∞∑
n=2

λn(k + 1)− (k + γ)t
(1− γ)

|an| · |An|+
∞∑
n=1

µn(k + 1) + (k + γ)t
(1− γ)

|bn| · |Bn|

≤
∞∑
n=2

λn(k + 1)− (k + γ)t
(1− γ)

|an|+
∞∑
n=1

µn(k + 1) + (k + γ)t
(1− γ)

|bn| ≤ 1,

since f ∈ k-TSH(φ, ψ; γ; t). Therefore we have f ∗ F ∈ k-TSH(φ, ψ; γ; t) ⊂ k-
TSH(φ, ψ;β; t). �

Theorem 2.7. The family k-TSH(φ, ψ; γ; t) is closed under convex combi-
nations.
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Proof. For i = 1, 2, . . . , suppose that fi(z) ∈ k-TSH(φ, ψ; γ; t), where fi(z) =

z −
∞∑
n=2

|ain|zn +
∞∑
n=1

|bin|zn. Then by Theorem 2.2 we have:

(2.5)
∞∑
n=2

λn(k + 1)− (k + γ)t
(1− γ)

|ain|+
∞∑
n=1

µn(k + 1) + (k + γ)t
(1− γ)

|bin| ≤ 1.

For
∞∑
i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑
i=1

tifi(z) = z −
∞∑
n=2

( ∞∑
i=1

ti|ain|

)
zn +

∞∑
n=1

( ∞∑
i=1

ti|bin|

)
zn.

Then by (2.5) we have:
∞∑
n=2

λn(k + 1)− (k + γ)t
(1− γ)

( ∞∑
i=1

ti|ain|

)

+
∞∑
n=1

µn(k + 1) + (k + γ)t
(1− γ)

( ∞∑
i=1

ti|bin|

)

=
∞∑
i=1

ti

( ∞∑
n=2

λn(k + 1)− (k + γ)t
(1− γ)

|ain|+
∞∑
n=1

µn(k + 1) + (k + γ)t
(1− γ)

|bin|

)

≤
∞∑
i=1

ti = 1,

and therefore we have
∞∑
i=1

tifi(z) ∈ k-TSH(φ, ψ; γ; t) by Theorem 2.2. �
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