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MODULES WITH DEDEKIND FINITE ENDOMORPHISM RINGS
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Abstract. This article is a survey of modules whose endomorphism rings are
Dedekind finite, Hopfian or co-Hopfian. We summarise the properties of such
modules and present unified proofs of known results and generalisations to new
structure theorems.
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1. INTRODUCTION

A unital ring R is called Dedekind (or directly, or von Neumann) finite if
ba = 1 whenever ab = 1. Equivalently, R is Dedekind finite if whenever a
is left or right invertible, then a is invertible. It follows immediately that
commutative rings and unit regular rings (but not regular rings in general)
are Dedekind finite.

Clearly ab = 1 implies that ba is a non-zero idempotent, so R is Dedekind
finite if and only if R is not isomorphic to any proper left or right ideal di-
rect summand. This criterion provides an easy proof that several classes of
rings with other finiteness conditions are Dedekind finite; for example Artinian
and Noetherian rings, rings with finite Goldie dimension, Abelian rings (i.e.,
rings in which all idempotents are central), reduced rings (i.e., rings having
no nilpotent elements), and I-finite rings (i.e., rings having no infinite set of
orthogonal idempotents).

Let R be any unital ring and M a unital R-module. We say that M is
a DF module if its ring of R-endomorphisms, End(M), is Dedekind finite.
Consequently, M is a DF module if and only if M is not isomorphic to any
proper direct summand of itself. An immediate but important consequence
of this is that indecomposable modules are DF. Note that if f, g ∈ End(M)
satisfy fg = 1 then f is necessarily epic and g monic. Hence to show that M
is DF, it suffices to show that in this situation, f is monic or g epic.

By definition, a DF module is one in which every left or right invertible
endomorphism is invertible. One can strengthen this characterization, and
thereby describe a more restrictive class of modules, by requiring that every
monic endomorphism, or every epic endomorphism be invertible. This leads
to the classes of co-Hopfian and Hopfian modules, respectively.
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It is the purpose of this paper to survey what is known about closure prop-
erties of the classes of Dedekind finite rings and DF modules, with special
attention to abelian groups. We relate their properties to those of Hopfian
and co-Hopfian modules and provide unified results for all three classes of
modules.

Henceforth, R denotes a unital ring and M a unital right R-module. When
R is considered as right (left) R-module, we denote it as RR (RR). Clearly, R
is Dedekind finite as a ring if and only if RR is Dedekind finite as R-module.

We denote the center of R by Z(R), its unit group by U(R) and its Jacobson
radical by Rad(R). As usual, the phrase left zero divisor means a non-zero
element a ∈ R such that for some non-zero b ∈ R, ab = 0. The element b is
then a right zero divisor.

The word group will be used to denote an abelian group G; T (G) is its
torsion subgroup and Gp its p-primary component for each prime p. For other
terminology concerning abelian groups we refer to Fuchs [10], and for rings
and modules to Lam [15].

The main results of this paper are the following. Section 2 examines the
closure properties of the class of Dedekind finite rings. In Section 3 we consider
DF modules, summarising known results on and establishing new ones. In
Section 4 we study Hopfian and co-Hopfian modules, and characterize them,
as well as DF modules, as limits of certain ascending and descending series of
submodules.

2. DEDEKIND FINITE RINGS

Throughout this section, R denotes a unital ring and DF the class of
Dedekind finite rings.

Various closure properties of DF are well known or easy to deduce. For
example, DF is closed under direct products, finite direct sums and (unital)
subrings, but not under homomorphic images. Since its defining axioms are
the equations defining a unital ring together with the Horn sentence

∀a, b ∈ R, ab = 1⇒ ba = 1,

DF is a quasi-variety [5, Section VI.4]. An obvious property is that R ∈ DF
if and only if its opposite ring Rop ∈ DF .

By [14, Proposition (4.8)], R/Rad(R) ∈ DF if and only if R ∈ DF . Conse-
quently, local and semilocal rings are in DF . Since the semilocal property is
preserved by matrix rings [9, p. 6], the matrix rings over a semilocal ring are
in DF . Conversely, R is stably finite (see [15, Section 1B]) if all matrix rings
over R are Dedekind finite. In general, however, R ∈ DF does not imply that
matrix rings over R are Dedekind finite. For example Lam [15, Exercise 1.18,
with solution] quotes an example of Shepherdson of the 2× 2 matrix ring over
a Dedekind finite ring which is not Dedekind finite.

There is an elementary sufficient condition for R to be in DF .
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Proposition 2.1. If R has no right or left zero divisors, then R ∈ DF .

Proof. Let ab = 1 in R. Then a 6= 0 and a(ab − ba) = 0, so ba = ab = 1.
The proof for left zero divisors is similar. �

The converse of course is false, as witnessed by any finite ring with zero
divisors. We determine now the polynomial and power series rings in DF .
Let X be a set of indeterminates of arbitrary cardinality. Let R[X] and R[X̃]
denote the rings of polynomials in commuting elements of X and polynomials
in non-commuting elements of X respectively. That is, R[X̃] is the free word
algebra over X with coefficients from R. Let R[[X]] be the power series ring
in X.

Proposition 2.2. The following are equivalent:
(1) R ∈ DF .
(2) R[X] ∈ DF .
(3) R[X̃] ∈ DF .
(4) R[[X]] ∈ DF .

Proof. Since R is a subring, each of (2), (3) and (4) implies (1), so it remains
to show that (1) implies each of (2), (3) and (4). In each case, suppose
f(X)g(X) = 1, and let f0 and g0 be the corresponding terms of degree 0.
Then f0g0 = 1 so g0f0 = 1. In cases (2) and (3), this implies that f0 and
g0 are not zero divisors, so that f(X) and g(X) are invertible. In case (4),
g0f0 = 1 implies immediately that f(X) and g(X) are invertible. �

Corollary 2.3. DF is not closed under homomorphic images.

Proof. Let R have no zero divisors and let R[x, y] be the polynomial ring
over R in non-commuting indeterminates x and y. Let I be the ideal of R[x, y]
generated by xy−1. Then x+I is right invertible but not invertible in R/I. �

Proposition 2.4. Let e2 = e ∈ R. Then R ∈ DF implies eRe ∈ DF .

Proof. Let ab = e for a, b ∈ eRe and e = 1−e. Then (a+e)(b+e) = ab+e =
e+ e = 1 and so (b+ e)(a+ e) = 1. Hence ba = 1− e = e, as desired. �

On the other hand, it is not true that for some idempotent e, eRe and
(1 − e)R(1 − e) ∈ DF imply R ∈ DF . The result Lam [15, Exercise 1.18]
quoted above provides a counterexample. Lam’s result [14, Proposition (4.8)]
on the Jacobson radical noted above readily extends to nilpotent ideals:

Theorem 2.5. Let I be a nilpotent ideal in a ring R. Then R ∈ DF if and
only if R/I ∈ DF .

Proof. Suppose R ∈ DF and let (a + I)(b + I) = ab + I = 1 + I in R/I.
Then ab ∈ 1+I ⊆ U(R), so that a is left invertible and hence invertible. Thus
a+ I is invertible in R/I so that R/I ∈ DF .

Conversely, let R/I ∈ DF and suppose ab = 1. Then (a+I)(b+I) = 1+I =
(b+ I)(a+ I) so ba ∈ U(R). Hence a is left invertible and R ∈ DF . �
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Corollary 2.6. Let R be a ring and let n be a positive integer. Let T (n,R)
be the ring of upper [lower] triangular matrices over R. Then R ∈ DF if and
only if T (n,R) ∈ DF .

Proof. The ideal I of R consisting of the strictly upper triangular matrices
is nilpotent and R/I is isomorphic to the direct sum of n copies of R. By
Lemma 2.5, R is Dedekind finite if and only if T (n,R) is. �

Similarly, we have:

Corollary 2.7. Let A,B be rings and AMB a bimodule. Then the ring

R =
[
A M
0 B

]
is Dedekind finite if and only if A and B are both Dedekind

finite.

3. DEDEKIND FINITE MODULES

Beaumont and Pierce’s 1964 results in [4] concerning abelian groups which
have isomorphic proper summands, can be expressed in terms of DF groups
as follows.

Proposition 3.1. (1) If G is a DF group, then its torsion subgroup
T (G) is a DF group.

(2) If T (G) and G/T (G) are DF groups then G is a DF group.
(3) T (G) is a DF group if and only if every primary component Gp of

T (G) is a DF group,
(4) A reduced p-group G is a DF group if and only if for every positive

integer n, the nth Ulm invariant is finite.
(5) If G is a reduced p-group such that |G| > 2ℵ0, then G is not a DF

group.
(6) Let G = R ⊕D where R is reduced and D divisible. Then G is a DF

group if and only if both R and D are DF groups.
(7) If G is divisible, then G is a DF group if and only if G has finite

torsion-free rank and finite p-rank for every prime p.
(8) If G is reduced and for all primes p, G/pG is finite, then G is a DF

group. The converse is false for both torsion and torsion-free groups.

Other results from [4] are easily modified to apply to DF modules over
arbitrary rings.

Proposition 3.2. Let M be an R-module.
(1) There is a monomorphism f ∈ End(M) with im f a proper direct sum-

mand if and only if there is an epimorphism g ∈ End(M) with ker g a
proper direct summand.

(2) If M is a DF module, then so is any direct summand of M .
(3) If M is the direct sum of infinitely many copies of the same non-zero

module, then M is not a DF module.
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(4) Let f ∈ End(M) be a monomorphism of M onto a direct summand,
and let N be a fully invariant submodule which is a DF module. Then
f(N) = N .

(5) Let N be a fully invariant submodule of M . If N and M/N are DF
modules, then M is a DF module.

(6) If M is the direct sum of fully invariant submodules Ni, then M is a
DF module if and only if every Ni is.

(7) If M is the direct product of (infinitely many) fully invariant submod-
ules Ni, then M is a DF module if and only if every Ni is.

Proof. (1) Suppose such an f exists and let M = K ⊕ im f . Let h : im f →
M be any isomorphism and define g to be zero on K and h on im f . Conversely,
let M = ker g ⊕N . Note that M ∼= M/ ker g = N and let f : M → N be any
isomorphism, regarded as an endomorphism of M .

(2) Let M = N ⊕K. If L is a proper direct summand of N isomorphic to
N , then L⊕K is a direct summand of M isomorphic to M , a contradiction.

(3) Suppose M = ⊕i∈INi for some well-ordered index set I, such that for
all i ∈ I, Ni

∼= N for some module N . Then for all i ∈ I, there exists
an isomorphism ti : Ni → Ni+1. Then the ti induce the right shift map
f : M → M by x 7→ ti(x) for all x ∈ Ni. Similarly, the ti induce the left
shift map g : M → M by x 7→ t−1

i x for all x ∈ Ni+1 and g maps N0 to zero.
Clearly f and g are endomorphisms of M satisfying gf = 1 but fg 6= 1, so M
is not DF.

(4) Let M = f(M) ⊕ H so that f(N) ⊆ N ∩ f(M). By (1), there is an
endomorphism g ∈ End(M) such that gf = 1. Let x ∈M such that f(x) ∈ N .
Then x = gf(x) ∈ N , since N is fully invariant. Hence f(N) = f(M) ∩ N .
Consequently, N = f(N)⊕ (H ∩N). Since N is DF, f(N) = N .

(5) Once again, let f be a monomorphism of M into M such that M =
f(M)⊕H. By (4), it follows that N = f(N) ⊆ f(M). Hence

M/N = f(M)/N ⊕ (H +N)/N and f(M)/N = f(M)/f(N) ∼= M/N

Since M/N is DF, H +N = N = f(N). Thus H = 0 so M is DF.
(6) This follows immediately from (2) and (4).
(7) Let M =

∏
i∈I Ni. If M is DF, then so is each Ni since it is a direct sum-

mand of M . Conversely, suppose each Ni is DF, and let φ be a monomorphism
of M onto a direct summand H. Then for all i ∈ I, φ|Ni is an isomorphism
so that H = M . �

Other known closure properties of DF modules include:

Example 3.3. (1) Let G = A⊕B with Hom(A,B) = 0. Then G is DF if and
only if A and B are DF. (This is an immediate consequence of Proposition 2.7.)

(2) If M is not DF then M contains an infinite direct sum ⊕n∈NNn, where
each Nn

∼= N by [16, Ex 1.8].
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(3) Neither submodules nor factor modules of DF modules need be DF. For
example, the Z-module⊕n∈NZ(pn) is DF but has⊕n∈NZ(p) as both submodule
and factor module.

(4) The class of DF-modules is not closed with respect to general extensions,
finite direct sums or endomorphic images.

We know from [15, Exercise 1.18] that there exists a DF ring R such that
the ring of 2× 2 matrices over R is not DF. Therefore the R-module R⊕R is
not DF. We shall see in Section 4 that there exists a DF abelian group A such
that A ⊕ A is not DF. Let A =

∏
p Z(p). Then A and its torsion subgroup

T (A) are DF, but A/T (A) ∼= Qω is not DF.
(5) The property stated in Proposition 3.1(1) cannot be extended to general

torsion theories. To see this we consider the ring R =
[
K K(I)

0 K

]
, where K is

a field and I is an infinite set. This is a DF ring as a consequence of Corollary
2.7. Then M = (K,K(I)) is DF as a right R-module. However, if we consider
the projective module P = (0,K), the class T = {⊕IP | I is a set} is a
torsion class. Then (0,K(I)) is not a DF module, but it is the torsion part of
M relative to the torsion theory induced by T .

Goodearl [12] discusses in particular injective DF modules. He shows, for
example [12, Section 6 B], that an injective submodule of a DF module is DF,
and that the following conditions are equivalent for any injective module M :
(1) M is DF; (2) M has no proper submodule satisfying M ∼= M2; (3) M
has no proper summand satisfying M ∼= M2. Finally, he shows [12, Theorem
6.14] that if R is a right nonsingular ring, then the direct sum of nonsingular
injective DF modules is DF, whereas this is no longer true [12, Example 6.11]
if the modules are not injective.

Theorem 3.4. Let M be an R-module and N a fully invariant submodule
of M .

(1) If N is an essential DF module, then M is DF .
(2) If N is superfluous and M/N is DF, then M is DF.

Proof. Let f , g be endomorphisms of M such that fg = 1.
(1) The restrictions f ′ = f |N and g′ = g|N are endomorphisms of N such

that f ′g′ = 1N . Since 0 = ker(g′) = ker(g) ∩N , and N is essential, it follows
that ker(g) = 0, and M is DF.

(2) Let f ′ and g′ the induced endomorphisms of M/N . From f ′g′ = 1M/N

we deduce that f ′ is an epimorphism, hence f(M) + N = M . But N is
superfluous, so f(M) = M and hence M is DF. �

For the following corollary, recall that the socle Soc(M) of a module M
is the sum of its minimal submodules, with Soc(M) = 0 if M has no mini-
mal submodules; and the radical Rad(M) is the intersection of its maximal
submodules, with Rad(M) = M if M has no maximal submodules.
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Corollary 3.5. Let M be an R-module.
(1) If Soc(M) is essential and DF then M is DF.
(2) If Rad(M) is superfluous and M/Rad(M) is DF then M is DF.

Example 3.6. Abelian group examples show that both conditions of Corol-
lary 3.5 are necessary:

(1) If M = ⊕n∈NZ(p) then M = Soc(M) is essential but M is not DF. If
M = ⊕n∈NZ then Soc(M) = 0 is DF but M is not DF.

(2) If M = ⊕n∈NQ then M/Rad(M) = 0 is DF but M is not DF. If
M = ⊕n∈NZ then Rad(M) = 0 is superfluous but M is not DF.

The converse of the results of Corollary 3.5 are not valid in general.

Example 3.7. (1) Z is a DF Z-module whose socle, 0 is not essential and
Zp, the group of p-adic integers, is a DF Z-module whose radical pZ is not
superfluous.

(2) The group G = ⊕n>0Z(pn) is DF and its socle is essential, but not DF.
Another example with these properties can be obtained using the module M
from Example 3.3(5).

(3) The group G = ⊕n>0Z(pn) is DF, its radical pG is superfluous, but
G/pG is not DF. Another example with these properties can be obtained
using [16, Exercise 6.1.B].

(4) G. Bergman gave an example of module of finite uniform dimension,
which has a factor module which is not DF (see [16, Exercise 6.1.B]).

Proposition 3.8. [16, Exercise 6.31] Let M be a module. If its injective
envelope E(M) is DF, then M is DF. The converse is valid if M is quasi-
injective.

Proof. Suppose that M is not DF. Then M ∼= M ⊕ N with N 6= 0. Then
E(M) ∼= E(M)⊕ E(N), hence E(M) is not DF, a contradiction.

For the converse, we note that every quasi-injective module is fully invariant
in its injective envelope, hence we can apply the previous results. �

In general, the converse is not valid.

Example 3.9. If p is a prime, the Z-module G = ⊕n>0Z(pn) is DF, but its
injective envelope E(G) = ⊕n>0Z(p∞) is not a DF Z-module.

There are however dual sufficient conditions for an arbitrary submodule or
factor module of a DF module to be DF:

Theorem 3.10. Let N be a submodule of a DF module M .
(1) If Hom(M/N,M) = 0 and every f ∈ End(N) extends to End(M),

then N is DF .
(2) If Hom(M,N) = 0 and every f ∈ End(M/N) lifts to End(M), then

M/N is DF.
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Proof. (1) Let f ∈ End(N) such that fg = 1N . Suppose that g and h
are endomorphisms of M such that g|N = h|N . Then N ⊆ ker(g − h), so
the homomorphism M/ ker(g − h) → M induced by g − h is 0. Then every
endomorphism f of N extends uniquely to an endomorphism f ′ of M . It is
not hard to see that the correspondence f 7→ f ′ is a ring monomorphism, and
it follows that End(M) is DF.

(2) Note that if h ∈ End(M/N) lifts to h and h
′ in End(M), then (h −

h
′)(M) ⊆ N . Hence the condition Hom(M,N) = 0 implies that h lifts

uniquely. As in (1) we observe that h 7→ h defines a ring monomorphism
End(M/N)→ End(M), so M/N is DF. �

We consider now the important class of pure-injective or algebraically com-
pact DF modules. To start with, there is a well known decomposition theorem
[13, Lemma 1.2.24].

Lemma 3.11. Let M be a pure-injective module. Then M = K⊕N where K
is zero or a pure-injective hull of a direct sum of indecomposable pure-injective
modules, and N is zero or a superdecomposable pure-injective module (i.e., N
has no indecomposable direct summands).

It is also well known that indecomposable pure-injectives have local endo-
morphism rings, so that the Krull-Schmidt-Azumaya Theorem applies to direct
sums of indecomposable pure-injective modules. Furthermore, any module is
pure essential in its pure-injective hull, so we have immediately:

Proposition 3.12. Let M be a pure-injective module with no superdecom-
posable direct summand. Then M is a pure-injective hull of a direct sum
⊕i∈IMi of indecomposable pure-injectives Mi and M is DF if and only if each
isomorphism class contains only finitely many Mi.

As far as superdecomposable DF modules are concerned, little is known
except for the case in which End(M) is commutative. It is readily checked that
M is superdecomposable if and only if End(M) has no primitive idempotents,
so we need modules whose endomorphism ring is commutative and has no
primitive idempotents.

Proposition 3.13. There are countable superdecomposable DF groups.

Proof. Corner [6] showed that there is a commutative ring R whose addi-
tive group is free and of countable rank which has no primitive idempotents
and therefore a countable torsion-free group G whose endomorphism ring is
isomorphic with R. Thus G is a countable superdecomposable DF group. �

Moreover, over certain rings there are arbitrarily large DF superdecompos-
able modules. In [11], Fuchs and Göbel construct integral domains R for
which there exist superdecomposable cotorsion-free modules M of arbitrary
rank. For example, let µ denote an infinite cardinal and T1 the monoid whose
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elements are the finite subsets of µ with the commutative multiplication de-
fined via σ ·τ = σ∪τ . The Z-algebra of T1 is superdecomposable and realizable
as the endomorphism ring of a cotorsion-free module.

Beaumont and Pierce [4, Theorem 3.8] proved a structure theorem for
abelian groups G that are not DF. Their proof uses no properties of abelian
groups that are not true for arbitrary modules, so carries over verbatim to
modules that are not DF:

Proposition 3.14. Let M be an R-module which is not DF. Then there
exists a monomorphism φ ∈ EndR(M) such that M = φ(M)⊕H, with H 6= 0.
Let K = ∩n∈Nφ

n(M) and let Hn = φn(H) ∼= H. Let S = ⊕n∈NHn and
P =

∏
n∈NHn. Then φ|K is an automorphism and there is a module T such

that S ⊆ T ⊆ P and M is an extension of K by T .

4. HOPFIAN AND CO-HOPFIAN MODULES

In considering Dedekind finiteness of modules, it is convenient to consider
two stronger concepts. A right (left) R-module M is called right (left) Hopfian
if every surjective R-endomorphism is invertible; it is co-Hopfian if every
injective R-endomorphism is invertible.

In the case that M = RR, since every f ∈ EndR(RR) is realised by a left
multiplication, these definitions imply that RR is right Hopfian if and only if
for all a ∈ R, aR = R implies that Ra = R and RR is right co-Hopfian if and
only if every a ∈ R is either a left zero divisor or invertible. Dual properties
of course occur when right is replaced everywhere by left.

When RR (RR) is right (left) Hopfian, the ring R is called right (left)
Hopfian, and similarly for co-Hopfian. The following results are expressed
for right Hopfian and co-Hopfian rings. Of course corresponding results hold
for the case when right is replaced by left. Let H denote the class of Hopfian,
and co−H the class of co-Hopfian rings. The following relations between these
classes of rings and the class DF are well known (see [17, Section 1]).

Proposition 4.1. co−H ( DF and H = DF .

Proof. Let R ∈ co−H and suppose a, b ∈ R satisfy ab = 1. Then considered
as an endomorphism of R, b is injective and hence invertible. It follows that
ba = 1 so R ∈ DF . To verify that the inclusion is proper, note that Z is
Dedekind finite but not co-Hopfian. More generally, a similar example works
for R any integral domain or Ore ring which is not a division ring.

A similar proof shows that H ⊆ DF . For the reverse inclusion, let R ∈ DF
and suppose that aR = R for some a ∈ R. Then ab = 1 for some b ∈ R so
that ba = 1. Hence for every c ∈ R, c = cba ∈ Ra. �

The equality in the above proposition implies that the Hopficity property
of a ring is left-right symmetric, [17, Theorem 1.3]. However, the co-Hopficity
property is not left-right symmetric, as it is proved in [17, Example 1.6].

We return to the study of Hopfian and co-Hopfian modules.
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Proposition 4.2. If an R-module M is Hopfian or co-Hopfian, then it is
DF.

Proof. Suppose M is not DF, so M has a proper isomorphic summand N .
If M is Hopfian, then the canonical projection of M on N , composed with

an isomorphism of N onto M is an epimorphism in End(M) containing a
non-trivial kernel, a contradiction.

If M is co-Hopfian, then any isomorphism of M onto N is a monomorphism
in End(M) which is not surjective, again a contradiction. �

To see that neither converse holds, note that the abelian group Z is DF but
not co-Hopfian, while Z(p∞) is DF but not Hopfian.

Closure properties for the classes of Hopfian and co-Hopfian modules are
discussed in [17]. For instance, these classes are closed with respect direct
summands, but they are not closed with respect direct sums or finite pow-
ers. Such examples can be constructed even for abelian groups. Corner [7]
provided examples of non-Hopfian torsion-free abelian groups G1, G2 and G3,
necessarily of infinite rank since finite rank groups are Hopfian, such that
Aut(G1) = {1,−1}, G2 = A⊕B with A and B both Hopfian and G3

∼= C⊕C
with C Hopfian.

Let M be a right R-module, and let Mon(M) denote the set of monomor-
phisms in End(M), Epi(M) the set of epimorphisms in End(M), Left(M) the
set of left units in End(M), i.e., {f ∈ End(M) : ∃ g ∈ End(M) such that fg =
1} and Right(M) the set of right units in End(M).

Associated with these sets of endomorphisms of M , there are sets of invari-
ant submodules, namely

P(Mon(M)) = {N ⊆M : f(N) ⊆ N for all f ∈ Mon(M)}
P(Epi(M)) = {N ⊆M : f(N) ⊆ N for all f ∈ Epi(M)}
P(Left(M)) = {N ⊆M : f(N) ⊆ N for all f ∈ Left(M)}.
P(Right(M)) = {N ⊆M : f(N) ⊆ N for all f ∈ Right(M)}.

We also use the following notation: if N ⊆ M is invariant under f ∈
End(M) then fN ∈ End(N) denotes the restriction of f to N ; and fN ∈
End(M/N) denotes the induced endomorphism.

Lemma 4.3. Let N be a submodule of a module M and f ∈ End(M).
(1) If N ∈ P(Mon(M)) and f ∈ Mon(M), then fN ∈ Mon(N).
(2) If N ∈ P(Epi(M)) and f ∈ Epi(M), then fN ∈ Epi(M/N).
(3) If N ∈ P(Left(M)) ∩ P(Right(M)) with fg = 1 in End(M), then

fN ∈ Left(N), gN ∈ Right(N) and fNgN = 1N in End(N).

Proof. (1) and (2). Both cases follow immediately from the definitions of
fN , f

N , Mon(N) and Epi(M/N).
(3) fg = 1 implies that f ∈ Left(M) and g ∈ Right(M). Hence fN and

gN are well-defined. Let n ∈ N and suppose that g(m) = n ∈ N for some
m ∈ M . Then m = fg(m) = f(n) ∈ N . Hence n = fg(n) = fNgN (n), i.e.,
fNgN = 1N . The rest follows from the definitions. �
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Baumslag [3, Theorem 1] proved that an abelian group is Hopfian if and
only if the intersection of the fully invariant subgroups with Hopfian quotient
is zero. The following proposition improves this result and provides a corre-
sponding characterization of co-Hopfian, Hopfian and DF modules.

Proposition 4.4. (1) A module M is co-Hopfian if and only if M is
the union of a family of co-Hopfian submodules H ∈ P(Mon(M)).

(2) A module M is Hopfian if and only if there is a family H of submodules
H ∈ P(Epi(M)) with Hopfian quotients M/H such that ∩H∈HH = 0.

(3) A module M is DF if and only if there is a family H of DF submodules
H ∈ P(Left(M)) ∩ P(Right(M)) such that ∪H∈HH = H.

(4) A module M is DF if and only if there is a family H of submodules
H ∈ P(Left(M)) ∩ P(Right(M)) with DF quotients M/H such that⋂
H∈HH = 0.

Proof. In all four cases, the direct implication is obvious, so we just need
to prove the converses.

(1) Let H be a family of co-Hopfian submodules in P(Mon(M)) such that
M = ∪H∈HH. Let f ∈ Mon(M). If y ∈M then there exists H ∈ H such that
y ∈ H. By Lemma 4.3 (1), the restriction fH ∈ Mon(H) so is an isomorphism.
Thus y ∈ f(M) so f is an isomorphism.

(2) Let H be a family of submodules of M satisfying the condition of state-
ment (2). If f ∈ Epi(M), then by Lemma 4.3 (2), for all H ∈ H, the induced
map fH ∈ Epi(M/H) so is an isomorphism. Hence ker(f) ⊆ H for all H ∈ H,
so that ker(f) = 0 and f is an isomorphism.

(3) Let H be a family of submodules of M satisfying the condition of state-
ment (3). If f and g are endomorphisms of M such that fg = 1, then by
Lemma 4.3 (3), for all H ∈ H the restrictions fH and gH are right, respectively
left invertible as endomorphisms of H. It follows that these restrictions are
automorphisms for H. Then ker(f) ∩H = 0 for all H ∈ H, hence ker(f) = 0.

(4) Let H be a family of submodules of M satisfying the condition of state-
ment (4). If f : M → M is left invertible, then for all H ∈ H, the induced
map fH ∈ End(M/H) is an isomorphism. Then ker(f) ⊆ H for all H ∈ H, so
that ker(f) = 0. �

Baer [1] (using different terminology) also characterised Hopfian and co-
Hopfian groups as limits of ascending and descending chains of subgroups.

Recall that a continuous descending [ascending] filtration of a module M is
a well ordered descending [ascending] chain Nν , ν ≤ κ, of submodules such
that N0 = M [N0 = 0] and Nκ = 0 [Nκ = M ] and if µ ≤ κ is a limit ordinal,
then Nµ =

⋂
ν<µNν [Nµ =

⋃
ν<µNν ]. We now prove a unified version of

Baer’s characterization of co-Hopfian, Hopfian and DF modules in terms of
continuous descending or ascending filtrations.

Theorem 4.5. Let M be a module.
(1) The following are equivalent:
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(a) M is co-Hopfian;
(b) M has a continuous ascending filtration of modules Nν , ν ≤ κ,

in P(Mon(M)) such that for all ν < κ, Nν+1/Nν is co-Hopfian;
(2) The following are equivalent:

(a) M is Hopfian;
(b) M has a continuous descending filtration of modules Nν , ν ≤ κ,

in P(Epi(M)) such that for all ν < κ, Nν/Nν+1 is Hopfian.
(3) The following are equivalent:

(a) M is DF;
(b) M has a continuous ascending filtration of modules Nν , ν ≤ κ in
P(Left)∩P(Right) such that for all ν < κ, Nν and Nν+1/Nν are
DF;

(c) M has a continuous descending filtration of Nν , ν ≤ κ of modules
in P(Left) ∩ P(Right) such that for all ν < κ, Nν/Nν+1 is DF.

Proof. (1) For (a)⇒(b) it is enough to take κ = 1.
(b)⇒(a) Let f : M →M be a monomorphism, and we denote by fν : Nν →

Nν the restrictions on f to Nν . We will prove by induction that all fν are
isomorphisms. It is obvious that f0 is an isomorphism, and suppose that fρ
are isomorphisms for all ρ < ν.

If ν is a limit ordinal then for all n ∈ Nν there is ρ < ν such that n ∈ Nρ,
hence we can find an element m ∈ Nρ ⊆ Nν such that f(m) = n. Then fν is
an isomorphism.

If ν = ρ + 1 then the induced map fν : Nν/Nρ → Nν/Nρ is an isomor-
phism. Moreover, fν(Nρ) = Nρ by the induction hypothesis, hence fν is an
isomorphism. The proof is complete.

(2) (a)⇒(b) is obvious.
(b)⇒(a) Let f : M →M be an epimorphism. We denote by fν : M/Nν →

M/Nν the maps induced by f . We observe that f(N0) = N0 and the map f0 :
M/N0 → M/N0 induced by f is an isomorphism. Suppose that f(Nρ) = Nρ

and that the maps fρ : M/Nρ →M/Nρ are isomorphisms for all ρ < ν.
If ν is a limit ordinal, let n ∈ Nν . There exists m ∈M such that f(m) = n.

Let ρ < ν. Since the map fρ : M/Nρ →M/Nρ induced by f is an isomorphism
and n ∈ Nρ, it follows that m ∈ Nρ. Then m ∈ Nν , hence f(Nν) = Nν .
Moreover, if m ∈ M is such that f(m) ∈ Nν then f(m) ∈ Nρ for all ρ < ν,
and by induction hypothesis m ∈ Nρ for all ρ < ν, hence fν is an isomorphism.

If ν = ρ + 1, then the map f ′ : Nρ/Nν → Nρ/Nν induced by f is an
epimorphism, hence it is an isomorphism. Then for every m ∈ Nρ \ Nν ,
f(m) /∈ Nν . Therefore, if n ∈ Nν and m ∈ Nρ are such that f(m) = n then
m ∈ Nν . Then f(Nν) = Nν . Suppose that fν is not an isomorphism. Let
0 6= m ∈ ker fν . Then there is ρ < ν such that m ∈ Mρ \Mρ+1. The map
f ′ : Nρ/Nρ+1 → Nρ/Nρ+1 induced by f is an epimorphism by the induction
hypothesis. Using the hypothesis it follows that f ′ is an isomorphism, and
this contradicts f ′(m+Mρ+1) = 0. Then fν is an isomorphism.
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Then fκ is an isomorphism, hence M is Hopfian.
To prove (3) we observe that (a) implies (b) and (c) by taking κ = 1.
To show that (b) implies (a), we consider f, g ∈ End(M) such that fg = 1.

Suppose that f is not a monomorphism. Then there is 0 6= m ∈M such that
f(m) = 0. Since m /∈ N0 there is a largest ρ < κ such that m /∈ Nρ, hence
m ∈ Nρ+1. Since Nρ and Nρ+1 are invariant with respect f and g, the maps
f and g induce two endomorphisms f ′ and g′ of Nρ+1/Nρ. It is not hard to
see that f ′g′ = 1, and it follows that Mρ+1/Mρ is not DF, a contradiction.

To show that (c) implies (a), let f, g ∈ End(M) with fg = 1. It suffices
to show that f is injective. If not, then there exists 0 6= m ∈ M such that
f(m) = 0. Note that there exists ν < κ such that m ∈ Nν \ Nν+1. We can
restrict the induced maps f, g : M/Nν+1 → M/Nν+1 to f∗, g∗ : Nν/Nν+1 →
Nν/Nν+1. Since Nν/Nν+1 is DF, f∗g∗ = 1 implies that f∗ is monic, hence
f∗(m+Nν+1) 6= 0, a contradiction. �

Corollary 4.6. Let N ⊆M .
(1) If N ∈ P(Mon(M)) and N and M/N are both co-Hopfian, then M is

co-Hopfian.
(2) If N ∈ P(Epi(M)) and N and M/N are both Hopfian, then M is

Hopfian.
(3) If N ∈ P(Left) ∩ P(Right) and N and M/N are both DF, then M is

DF.

Since fully invariant submodules are contained in P(Mon(M)), P(Epi(M))
and P(Left) ∩ P(Right), we have a generalization of Proposition 3.2 (5):

Corollary 4.7. Let N be fully invariant in M . If N and M/N are each
co-Hopfian, Hopfian or DF, then so is M .

Remark 4.8. Hopfian modules cannot be characterised using ascending
filtrations in a similar manner to Theorem 4.5 (3). To see this, it is enough
to consider the group H = Z(p∞), which is not Hopfian but has an ascending
chain of fully invariant subgroups Hn = H[pn], 0 ≤ n ≤ ω such that each
Hn+1/Hn is Hopfian.

We need instead, using again ideas from [1], to introduce a more restrictive
property of the submodules in the filtration, the class

SP(Epi(M)) = {N ⊆M : f(N) = N for all f ∈ Epi(M)}.

Theorem 4.9. Let M be a module. The following are equivalent:
(1) M is Hopfian;
(2) M has a continuous ascending filtration of modules Nν , ν ≤ κ, in
SP(Epi(M)) such that for all ν < κ, Nν and Nν+1/Nν are Hopfian.

Proof. Suppose that M has a continuous ascending filtration as in (2), and
let f : M → M be an epimorphism. If f is not monic, then there is 0 6=
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m ∈ ker f . Since m /∈ N0, there exists a smallest ordinal ρ such that m ∈
Nρ+1 \Nρ, hence the epimorphism f : Nρ+1/Nρ → Nρ+1/Nρ, induced by f , is
not a monomorphism. Since Nρ+1/Nρ is Hopfian, it follows that f is not an
epimorphism, a contradiction. �
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