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IMPROVED RESULTS FOR CONTINUOUS MODIFIED
NEWTON-TYPE METHODS

IOANNIS K. ARGYROS and HONGMIN REN

Abstract. We provide semilocal convergence results for continuous modified
Newton-type methods to solve nonlinear operator equations in a real Hilbert
space setting. Using a combination of Lipschitz and center Lipschitz continuous
conditions, we provide a finer convergence analysis than before under weaker
conditions, and the same hypotheses and computational cost [1]-[4], [11]-[15]. In
this way we expand the applicability of Newton-type continuous methods under
the same computational cost as before.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution
of equation

(1.1) F (x) = 0,

where F is defined on a closed subset D of a real Hilbert space X with values
in a real Hilbert space Y .

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations,
and their solutions usually represent the states of the systems. For the sake
of simplicity, assume that a time-invariant system is driven by the equation
ẋ = Q(x) for some suitable operator Q, where x is the state. Then the equi-
librium states are determined by solving equation (1.1). Similar equations are
used in the case of discrete systems. The unknowns of engineering equations
can be functions (difference, differential, and integral equations), vectors (sys-
tems of linear or nonlinear algebraic equations), or real or complex numbers
(single algebraic equations with single unknowns). Except in special cases,
the most commonly used solution methods are iterative—when starting from
one or several initial approximations a sequence is constructed that converges
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to a solution of the equation. Iteration methods are also applied for solving
optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the
same recursive structure, they can be introduced and discussed in a general
framework.

Newton-type methods (NTM) are undoubtedly the most popular methods
for generating a sequence approximating a solution of equation (1.1). Recent
results on local as well as semilocal convergence results for (NTM) on a Banach
space setting can be found in [5], [6], [7], and the references there. In a series
of our works [5], [6], [7], we developed a technique which combines a Lipschitz
and a center Lipschitz condition (instead of only a Lipschitz condition used by
researchers) in the computation of the sufficient convergence conditions, and
error estimates for (NTM). This approach leads under the same hypotheses
and computational cost to the following advantages. Semilocal case: Weaker
sufficient convergence conditions, and tighter error bounds on the distances
involved, and an at least as precise information on the location of the solution.
That is the applicability of (NTM) is expanded. Note also that, fewer steps
are required to achieve a given error tolerance.

In this article we show that the above advantages are transferred in a Hilbert
space setting. In Section 2, we first consider the continuous analog of a mod-
ified Newton’s method (MNM)

(1.2) ẋ(t) = −[F ′(x0)]−1F (x(t)), x(0) = x0 ∈ X
along the lines of the elegant works by Airapetyan ([1]), Ram, Smirnora, Favini
[14], [2]-[4], [11]-[13], [15]. We associate (1.2) with the autonomous dynamical
system

(1.3) ẋ(t) = Φ(x(t)), 0 ≤ t < +∞, x(0) = x0,

where x0 is an initial approximation to x?, and x(t) is the trajectory. Then we
improve the results in Section 2 of [14], by simply showing that we can replace
the Lipschitz condition

(1.4) ‖F ′(x)− F ′(y)‖ ≤M‖x− y‖, ∀x, y ∈ U(x0, r) ⊆ D,
where U(x0, r) = {x ∈ X : ‖x − x0‖ ≤ r}, by the actually needed center-
Lipschitz condition

(1.5) ‖F ′(x)− F ′(x0)‖ ≤M0‖x− x0‖, ∀x ∈ U(x0, r) ⊆ D,
where r is a known radius. The results of [14] for the local case are improved
in Section 3 following an analogous way. Note that if condition (1.4) holds,
then M0 exists, M0 ≤ M and M

M0
can be arbitrarily large [5], [6], [7]. The

importance of (NTM) for solving well and ill posed problems, and a short
history of their continuous analogs can be found in [14]. Finally, we provide
numerical examples where (1.5) holds but (1.4) does not, and also cases where
both conditions hold but our results are finer than the ones in [14] as already
stated in the semilocal case above.



3 Continuous modified Newton-type methods 5

2. SEMILOCAL CONVERGENCE OF (MNM): WELL-POSED CASE

We need a slightly modified existence, and uniqueness result for the semilo-
cal convergence of (MNM) [14, p.40].

Lemma 2.1. Let X,Y be real Hilbert spaces, D a closed subset of X, F :
D → Y , and Φ : D → Y . Assume that there exist c1, c2 > 0 such that for

(2.1) r =
c2‖F (x0)‖

c1
,

operators F and Φ are Fréchet differentiable on U(x0, r). Also assume that
for all y ∈ U(x0, r), the following conditions hold:

(2.2) (F ′(y)Φ(y), F (y)) ≤ −c1‖F (y)‖2,

(2.3) ‖Φ(y)‖ ≤ c2‖F (y)‖,

(2.4) U(x0, r) ⊆ D.
Then there is a global solution x = x(t) to system (1.3) in U(x0, r), such that

(2.5) lim
t→+∞

x(t) = x?,

where x? is a solution of equation F (x) = 0 in U(x0, r).
Moreover, the following estimates hold:

(2.6) ‖x(t)− x?‖ ≤ re−c1t,

(2.7) ‖F (x(t))‖ ≤ ‖F (x0)‖e−c1t.

Note that if D = X = Y , Lemma 2.1 reduces to the corresponding one in
[14, p. 40].

We shall show the following semilocal convergence theorem for (MNM)
which relates the asymptotic behavior of a solution x(t) to (1.2), and solu-
tions to (1.1).

Theorem 2.2. Let X,Y be real Hilbert spaces, D be a closed subset of X,
F : D → Y . Assume that the operator F is Fréchet-differentiable, its Fréchet
derivative satisfies (1.5) on U(x0, r),

(2.8) r ∈ {r1, r2},
where provided that

(2.9) hA = 4M0m
2
1‖F (x0)‖ ≤ 1, m1 =

∥∥F ′(x0)−1
∥∥ ,

(2.10) r1 =
1−

√
1− 4M0m2

1‖F (x0)‖
2M0m1

,

(2.11) r2 =
1 +

√
1− 4M0m2

1‖F (x0)‖
2M0m1

,

(2.4) holds, and hA 6= 0, when r = r2.
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Then there exists a unique solution x = x(t), t ∈ [0,+∞), to system (1.3) in
U(x0, r), and limt→+∞ x(t) = x?, where x? is a solution of equation F (x) = 0.
Moreover, the following estimates hold:

(2.12) ‖x(t)− x?‖ ≤ re−c1(r)t, c1(r) = 1−M0m1r,

(2.13) ‖F (x(t))‖ ≤ ‖F (x0)‖e−c1(r)t.

Proof. As in [14], set

(2.14) Φ(x(t)) = −F ′(x0)−1F (x(t)).

Using (1.5) we can obtain in turn for all y ∈ U(x0, r):

(F ′(y)Φ(y), F (y)) = −(F ′(y)[F ′(x0)]−1F (y), F (y))

= −‖F (y)‖2 + ({I − F ′(y)[F ′(x0)]−1}F (y), F (y))

= −‖F (y)‖2 + ({(F ′(x0)− F ′(y))F ′(x0)−1}F (y), F (y))

≤ −‖F (y)‖2 +M0m1r‖F (y)‖2

= −(1−M0m1r)‖F (y)‖2 = −c1(r)‖F (y)‖2,

(2.15)

(2.16) ‖Φ(y)‖ ≤ m1‖F (y)‖.
Choose

(2.17) c1 = c1(r) and c2 = m1.

We have:

(2.18)
c2‖F (x0)‖

c1
=
m1‖F (x0)‖

c1(r)
= r,

which holds true by (2.9), and the choices of r1 and r2. The result now follows
by Lemma 2.1. That completes the proof of Theorem 2.2. �

Remark 2.3. (a) If D = X = Y , and M0 = M , then Theorem 2.2 reduces
to Theorem 2.3 in [14].

(b) The conditions used in [14] under (1.4), and D = X = Y are

(2.19) hR = 4Mm2
1‖F (x0)‖ ≤ 1,

whereas the corresponding error estimates are:

(2.20) ‖x(t)− x?‖ ≤ 2m1‖F (x0)‖e−
t
2 ,

(2.21) ‖F (x(t))‖ ≤ ‖F (x0)‖e−
t
2 .

By comparing (2.9) to (2.19), we see that

(2.22) hR ≤ 1 ⇒ hA ≤ 1,

but not necessarily viceversa unless M0 = M . In view of (2.22), the appli-
cability of (MNM) has been extended. Moreover, in view of (2.12), (2.13),
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(2.20), and (2.21), our error estimates are tighter, and the information on the
location of the solution at least as precise.

(c) In order to obtain a result for the continuous Newton method

(2.23) ẋ(t) = −[F ′(x(t))]−1F (x(t)), x(0) = x0 ∈ X,
set Φ(y) = −[F ′(y)]−1F (y),

(2.24) c2 =
m1

1−m1rM0
and c1 = 1.

Indeed, in view of (1.5), we have:

(2.25) ‖F ′(x0)−1‖‖F ′(x0)− F ′(x)‖ ≤ m1M0‖x− x0‖ ≤ m1M0r < 1.

It follows from (2.25) and the Banach lemma on invertible operators [5], [6],
[7] that F ′(x)−1 exists and

(2.26) ‖F ′(x)−1‖ ≤ m1

1−m1M0r
,

from which the definition of c2 follows.
(d) A simple iteration method is obtained for Φ(y) = −F (y). Simply, choose

F ′ ≥ c1 > 0, and c2 = 1.
(e) The gradient method is obtained for Φ(y) = −[F ′(y)]?F (y). Choose c2 =

M1 = supx∈U(x0,r) ‖F
′(x)‖, and c1 = µ−2

1 . Here µ1 = supx∈U(x0,r) ‖F
′(x)−1‖.

(f) The continuous Gauss-Newton’s method is obtained for
Φ(y) = −[F ′?(y)F ′(y)]−1F ′?(y)F (y).

Set c1 = 1, and c2 = µ2
1M1, where µ1 and M1 are the same as in (e) above.

(g) In order to make the comparison easier with the results in [14], we also
provided the results in non-affine invariant form. However, we note that the
results can be immediately obtained in affine invariant form if the operator F
is replaced by F ′(x0)−1F . In this case one should set m1 = 1.

The advantages of presenting results in affine instead of non-affine invariant
form are well-known in the literatures (see e.g. [7]).

3. LOCAL CONVERGENCE: ILL-POSED CASE

A problem is ill-posed when the Fréchet derivative is not boundedly invert-
ible. It was then suggested in [14] the regularized version of (MNM):

ẋ(t) = −[F ′(x0)+ε(t)I]−1(F (x(t))+ε(t)(x(t)−x0)), x(0) = x0 ∈ H, 0 < ε(t),

where x0 is chosen so that (F ′(x0)y, y) ≥ 0 for all y ∈ D.
By simply exchanging hypothesis (1.5) in Theorem 3.1 [14] by the analog

of (1.4) for the local case, we arrive at:

Theorem 3.1. Let F,D,X, Y be as in Theorem 2.2. Assume that:
(i) x? is a solution of equation F (x) = 0;
(ii) There exists a positive function ε(t) ∈ C1[0,+∞) converging monoton-

ically to zero as t→ +∞, such that ε̇(t)
ε(t) is nondecreasing, and ε(0) > |ε̇(0)|;
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(iii) The operator F is Fréchet-differentiable, and M0-center-Lipschitz:

‖F ′(x)− F ′(x?)‖ ≤M0‖x− x?‖,

with F ′(x) = F ′(x0)G(x0, x), G(x0, x) ∈ L(X), ‖G(x0, x)−I‖ ≤ C(G)‖x−x0‖
for all x, x0 ∈ U(x?, ρ), C(G) > 0,

ρ =
ε(0)− |ε̇(0)|

M0 + C(G)ε(0)
;

(iv) F ′(x0) is non-negative definite: (F ′(x0)y, y) ≥ 0 for all y ∈ X;
(v) there exists v ∈ X such that x? − x0 = F ′(x0)v,

ε(0)− |ε̇(0)| ≥ [M0 + C(G)ε(0)]ε(0)

√
2‖v‖
M0

,

and U(x0, ρ) ⊆ D.
Then there exists a unique solution x = x(t) of (3.1) for all t ∈ [0,+∞)

such that

‖x(t)− x?‖ ≤ ε(0)− |ε̇(0)|
ε(0)[M0 + C(G)ε(0)]

ε(t).

Corollary 3.2. Let the operator F in (1.1) have the form F (x) = Ψ(x)−z.
Assume that Ψ is given, and instead of z, we have a δ-approximation zδ:
‖z − zδ‖ ≤ δ. Then the following estimates hold:

1
2

d
dt
‖x(t)− x?‖2 ≤ −(1− C(G)ρ)‖x(t)− x?‖2 + (ε(t)‖v‖+

δ

ε(t)
)‖x(t)− x?‖

+
M0

2ε(t)
‖x(t)− x?‖3,

ḟ(t) ≤ −(1− C(G)ρ− |ε̇(0)|
ε(0)

)f(t) + 2‖v‖+
M0

2
f2(t), f(0) =

‖x0 − x?‖
ε(0)

,

‖x(τδ)− x?‖ ≤
ρ

ε(0)‖v‖
1
2

δ
1
2 ,

provided that the hypotheses of Theorem 3.1 and the following hold:

ε(0)− |ε̇(0)| ≥ 2[M0 + C(G)ε(0)]ε(0)

√
‖v‖
M0

.

Remark 3.3. If D = X = Y , and M0 = M , then Theorem 3.1 and Corol-
lary 3.2 reduce to the corresponding ones in [14]. Otherwise these results
constitute an improvement with advantages as stated in the local case of the
introduction of this study.
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4. APPLICATIONS

We provide two examples in a Hilbert space setting where Lipschitz condi-
tion (1.4) does not hold but center-Lipschitz condition (1.5) does.

Example 4.1. Let X = Y = R. R is a Hilbert space with the inner product

(4.1) < x, y >= xy.

In fact, from (4.1) we obtain:

(4.2) ‖x‖ =< x, x >
1
2 = (x2)

1
2 = |x|.

Using (4.2) the Euclidean metric is defined by

(4.3) ‖x− y‖ =< x− y, x− y >
1
2 = |x− y|.

Let D = [0,+∞), x0 = 1, and define function F on D by

(4.4) F (x) =
x1+ 1

i

1 + 1
i

+ c1x+ c2,

where c1, c2 ∈ R, and i > 2 is an integer. Then using (4.4), we get:

(4.5) F ′(x) = x
1
i + c1,

which is not Lipschitz in any neighborhood of 0. That is, the operator F ′

is not Lipschitz on D, i.e. (1.4) is not satisfied. However, center-Lipschitz
condition (1.5) holds for M0 = 1. Indeed, using (4.2) we have in turn:

(4.6)
‖F ′(x)− F ′(x0)‖ = |x

1
i − x

1
i
0 |

= |x−x0|

x
i−1

i
0 +x

i−2
i

0 x
1
i +...+x

1
i
0 x

i−2
i +x

i−1
i

≤ ‖x− x0‖,

which shows (1.5).

Example 4.2. Let X = H1[a, b], Y = L2[a, b], where Y is the completion
of the normed space which consists of all continuous real-valued functions on
[a, b] with the norm defined by

(4.7) ‖x‖ =
(∫ b

a
|x(t)|2dt

) 1
2

.

The norm in (4.7) can be obtained from the inner product defined by

(4.8) < x, y >=
∫ b

a
x(t)y(t)dt.

HenceX,Y so defined are Hilbert spaces. Let us consider the integral equation:

(4.9) u(s) = f(s) + λ

∫ b

a
G(s, t)u(t)1+ 1

n dt, n ∈ N.

Here, f is a given continuous function satisfying f(s) > 0, s ∈ [a, b], λ is a real
number, and the kernel G ∈ L∞([a, b]2).
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For example, when G(s, t) is the Green’s kernel, the corresponding integral
equation is equivalent to the boundary value problem

(4.10) u′′ = λu1+ 1
n , u(a) = f(a), u(b) = f(b).

These type of problems have been considered in [7], [8]. Equations of the form
(4.9) generalize equations of the type

(4.11) u(s) =
∫ b

a
G(s, t)u(t)ndt [8].

Instead of (4.9) we solve equation F (u) = 0, where F : D ⊆ X → Y ,
D = {u ∈ X : u(s) ≥ 0, s ∈ [a, b]}, and

(4.12) F (u)(s) = u(s)− f(s)− λ
∫ b

a
G(s, t)u(t)1+ 1

n dt.

The derivative F ′ of the operator F is given by

(4.13) F ′(u)v(s) = v(s)− λ
(

1 +
1
n

)∫ b

a
G(s, t)u(t)

1
n v(t)dt, v ∈ D.

We shall first show that the operator F ′ does not satisfy (1.4) in D. Let
us consider for instance, [a, b] = [0, 1], G(s, t) = 1, and y(t) = 0. Then using
(4.13), we have:

(4.14) ‖F ′(x)− F ′(y)‖2L2 =
(
|λ|
(

1 +
1
n

))2 ∫ 1

0

(∫ 1

0
x(θ)

1
n dθ

)2

dt.

If the operator F ′ satisfies (1.4), then:

(4.15) ‖F ′(x)− F ′(y)‖L2 ≤ A‖x− y‖L∞

for some A > 0, or equivalently:

(4.16)

(∫ 1

0

(∫ 1

0
x(θ)

1
n dθ

)2

dt

) 1
2

≤ B‖x‖L∞ ,

would hold for all x ∈ D, and some constant B > 0. But this is not true.
Consider, for example the functions

(4.17) xj(t) =
t

j
, j ≥ 1, t ∈ [0, 1].

Note that xj(t) ∈ L2[0, 1] j ≥ 1, t ∈ [0, 1]. If these are substituted in (4.16),
we have:

(4.18)
1

j
1
n

(
1 + 1

n

) ≤ B

j
⇔ j1−

1
n ≤ B

(
1 +

1
n

)
for all j ≥ 1,

which does not hold when j →∞. Therefore, condition (1.4) fails in this case.
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However, condition (1.5) holds. In order to show this, let x0 = f(t), d =
mins∈[a,b] f(s), d > 0, d1 = ‖G‖L∞ . Then we have using (4.7):

‖F ′(x)− F ′(x0)‖2L2

≤
(
|λ|
(

1 +
1
n

))2 ∫ b

a

[∫ b

a
G(s, θ)(x(θ)

1
n − x0(θ)

1
n )dθ

]2

dt

≤ d2
1

(
|λ|
(

1 +
1
n

))2 ∫ b

a

∫ b

a

(x(θ)− x0(θ))2dθdt(
x(θ)

n−1
n + x(θ)

n−2
n x0(θ)

1
n + . . .+ x0(θ)

n−1
n

)2
≤ d2

1

(
|λ|
(

1 +
1
n

))2 ∫ b

a

∫ b

a
|x(θ)− x0(θ)|2dθdt = L0‖x− x0‖2L2 ,

where

(4.19) L0 =

(
|λ|(1 + 1

n)
)2
d2

1

d
2(n−1)

n

.

That is (1.5) holds for M0 = L
1
2
0 .

Example 4.3. Let X = H1[0, 1], and Y = L2(0, 1). Consider the operator
F defined on X by F (x)(s) =

∫ 1
0 K(s, t)P (t, x(t))dt − v, s ∈ [0, 1], where

K(s, t) ∈ L∞((0, 1)2), P (t, u) is continuously differentiable with respect to u
on 0 ≤ t, s ≤ 1, −∞ < u < +∞, and v ∈ X is given. Then we get:

(4.20) (F ′(x)h)(s) =
∫ 1

0
K(s, t)Px(t, x(t))h(t)dt.

Moreover, assume

(4.21) ‖Px(t, x(t))− Py(t, y(t))‖L2 ≤M‖x− y‖L∞ for all x, y ∈ X.

Let x0 ∈ X be fixed. Then it follows from (4.21) that there exists M0 such
that M0 ∈ [0,M ], and

(4.22) ‖Px(t, x(t))− Px0(t, x0(t))‖L2 ≤M0‖x− x0‖L∞ for all x ∈ X.
Using (4.20), and (4.21) we obtain in turn:

‖(F ′(x)− F ′(y))h‖L2 =

{∫ 1

0

[∫ 1

0

K(t, θ)Px(t, x(θ)− Py(t, y(θ))h(t)dθ)
]2

dt

} 1
2

≤M‖K‖L∞‖x− y‖L∞‖h‖L2 .

Set M = M‖K‖L∞ . Similarly, using (4.20) and (4.22) we get:

‖(F ′(x)− F ′(x0))h‖L2 ≤M0‖K‖L∞‖x− x0‖L∞‖h‖L2 .

Set M0 = M0‖K‖L∞ . Note that the L∞(0, 1)-norms of x − y, x − x0, and h
can be estimated by their X-norms times some constants, due to Sobolev’s
embedding theorems. Conditions (1.4), (1.5) are now satisfied with the above
choices of M and M0. Clearly, one can now choose K,P, x0 so that: M0 ≤M
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holds as a strict inequality, our condition (2.9) holds but the condition (2.19)
given in [14] is violated.

These advantages extend in the case of the example given in Remark 3.3
[14] related to problem 3.1. Indeed, on top of the above choices of M0 and
M , consider an operator T : H1[0, 1]→ H1[0, 1], and solve equation T (x) = 0.
Clearly, T ′(x0) is non-negative definite. Under the additional assumptions
|Px(t, x0)| ≥ γ > 0 for any t ∈ (0, 1), and y(t, u) ∈ C3((0, 1) × (−∞,+∞)),
we can set as in [14]: (G(x0, x)h)(t) = Px(t,x(t))

Px(t,x0(t))h(t) to obtain (T ′(x)h)(t) =
(T ′(x0)G(x0, x)h)(t). Then for any h ∈ H we get in turn [10], [14]:

‖(G(x0, x)− I)h‖L2 ≤
‖Pxx‖L∞

γ
‖x− x0‖L∞‖h‖L2 ,∥∥∥∥ ddt(G(x0, x)− I)h

∥∥∥∥
L2

≤ ‖Pxx‖L
∞

γ

[
‖x′ − x′0‖L2‖h‖L∞ + ‖x− x0‖L∞‖h′‖L2

]
.

In the remaining examples we work on the more general Banach space set-
ting to show that M0 < M . One can replace, e.g. the space (C[a, b], max
norm) appropriately to obtain in particular examples in the special case of a
Hilbert space (see, for instance Example 4.3).

Example 4.4. Let X = Y = R, x0 = 0, and define scalar functions F by

(4.23) F (x) = c0x+ c1 + c2 sin ec3x,

where ci, i = 1, 2, 3 are given parameters. Using (4.23), it can easily be seen
that for c3 large and c2 sufficiently small, M

M0
can be arbitrarily large.

Example 4.5. Let X = Y = R, x0 = 1, U0 = {x : |x − x0| ≤ 1 − β},
β ∈ [0, 1

2), and define function F on U0 by

(4.24) F (x) = x3 − β.

Using (4.24), (1.4), and (1.5), we get M = 6(2−β), M0 = 3(3−β). Note that
M0 < M .

Example 4.6. Let X = Y = C[0, 1] be the space of real-valued continuous
functions defined on the interval [0, 1] with norm ‖x‖ = max0≤s≤1 |x(s)|.

Let θ ∈ [0, 1] be a given parameter. Consider the “cubic” integral equation

(4.25) u(s) = u3(s) + λu(s)
∫ 1

0
q(s, t)u(t)dt+ y(s)− θ.

Here the kernel q(s, t) is a continuous function of two variables defined on
[0, 1] × [0, 1]; the parameter λ is a real number called the “albedo” for scat-
tering; y(s) is a given continuous function defined on [0, 1] and x(s) is the
unknown function sought in C[0, 1]. Equations of the form (4.25) arise in the
kinetic theory of gasses [7]. For simplicity, we choose u0(s) = y(s) = 1, and
q(s, t) = s

s+t , for all s ∈ [0, 1], and t ∈ [0, 1], with s+ t 6= 0.



11 Continuous modified Newton-type methods 13

If we let D = U(u0, 1− θ), and define the operator F on D by

(4.26) F (x)(s) = x3(s)− x(s) + λx(s)
∫ 1

0
q(s, t)x(t)dt+ y(s)− θ,

for all s ∈ [0, 1], then every zero of F satisfies (4.25). We have the estimate:

max
0≤s≤1

∣∣∣∣∫ 1

0

s

s+ t
dt
∣∣∣∣ = ln 2.

Hence it follows from (1.4), (1.5), and (4.26) that M = 2(|λ| ln 2 + 3(2− θ))
and M0 = 2|λ| ln 2 + 3(3− θ). Note also that M0 < M for all θ ∈ [0, 1).

Example 4.7. Consider the nonlinear boundary value problem [1], [7], [8]:{
u′′ = −u3 − γu2,
u(0) = 0, u(1) = 1.

It is well known that this problem can be formulated as the integral equation:

(4.27) u(s) = s+
∫ 1

0
Q(s, t)(u3(t) + γu2(t))dt,

where Q is the Green function Q(s, t) =
{
t(1− s), t ≤ s
s(1− t), s < t. We observe

that max0≤s≤1

∫ 1
0 |Q(s, t)|dt = 1

8 . Let X = Y = C[0, 1], with norm ‖x‖ =
max0≤s≤1 |x(s)|. Then problem (4.27) is in the form (1.1), where F : D → Y ,

F (x)(s) = x(s)− s−
∫ 1

0
Q(s, t)(x3(t) + γx2(t))dt.

It is easy to verify that the Fréchet derivative of F is defined in the form

[F ′(x)v](s) = v(s)−
∫ 1

0
Q(s, t)(3x2(t) + 2γx(t))v(t)dt.

If we set u0(s) = s, and D = U(x0, R), where R > 0 is a real number, then
since ‖u0‖ = 1, it is easy to verify that U(u0, R) ⊂ U(0, R+ 1).

On the other hand, for x, y ∈ D, we have

[(F ′(x)− F ′(y))v](s) = −
∫ 1

0
Q(s, t)(3x2(t)− 3y2(t) + 2γ(x(t)− y(t)))v(t)dt.

Consequently,

‖F ′(x)− F ′(y)‖ ≤ ‖x− y‖(2γ + 3(‖x‖+ ‖y‖))
8

≤ ‖x− y‖(2γ + 6R+ 6‖u0‖)
8

=
γ + 3R+ 3

4
‖x− y‖,

‖F ′(x)− F ′(u0)‖ ≤ ‖x− u0‖(2γ + 3(‖x‖+ ‖u0‖))
8

≤ ‖x− u0‖(2γ + 3R+ 6‖u0‖)
8

=
2γ + 3R+ 6

8
‖x− u0‖.
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We have M = γ+3R+3
4 and M0 = 2γ+3R+6

8 . Note also that M0 < M .
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