ON A k-COMPLEX MOMENT PROBLEM

LUMINIŢA LEMNETE-NINULESCU

Abstract

In this paper we give a necessary and sufficient condition on a sequence $\left\{\Gamma_{\alpha, \beta}=\left(s_{i j}(\alpha, \beta)\right)_{1 \leq i, j \leq k}, \alpha, \beta \in \mathbb{N}^{n}\right\}_{\alpha, \beta}$ of (k, k) matrices with complex entries, $k \in \mathbb{N}^{*}$, to be a complex moment sequence with respect to a (k, k) positive defined matrix of Borel measures on the unit polydisc. The proof in this note is different from the proof of a similar result in [Theorem 1.4.8, 19] in case that $\Gamma_{\alpha, \beta}$ are bounded operators acting on an arbitrary Hilbert space, with $\Gamma_{\alpha, \beta}=\Gamma_{\beta, \alpha}^{*}$. The proof in this note also omits the condition $\Gamma_{\alpha, \beta}=\Gamma_{\beta, \alpha}^{*}$ on the sequence of matrices $\left\{\Gamma_{\alpha, \beta}\right\}_{\alpha, \beta \in \mathbb{N}^{n}}$ from the hypothesis of [Theorem 1.4.8, 19]. MSC 2010. Primary 47A57, 44A60.

Key words. Complex moments, positive defined matrix of measures, subnormal operator.

1. INTRODUCTION

Let $\left\{\Gamma_{\alpha, \beta}=\left(s_{i j}(\alpha, \beta)_{1 \leq i, j \leq k} \in M(k, \mathbb{C})\right\}_{\alpha, \beta \in \mathbb{N}^{n}, k \in \mathbb{N}^{*}}\right.$ be a multisequence of k-dimensional matrices with complex entries. In this note, we give a necessary and sufficient condition for the existence of a positive defined matrix of complex Borel measures $\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq k}$ defined on the closed unit poly$\operatorname{disc} D_{1}^{n}=\left\{z=\left(z_{1}, \ldots, z_{n}\right),\left|z_{i}\right| \leq 1, \forall 1 \leq i \leq n\right\}$, such that we have the representations: $\Gamma_{\alpha, \beta}=\left(\int_{D_{1}^{n}} z^{\alpha} \overline{z^{\beta}} \mathrm{d} \lambda_{i j}(z)\right)_{1 \leq i, j \leq k} \stackrel{\text { not }}{=} \int_{D_{1}^{n}} z^{\alpha} \overline{z^{\beta}} \mathrm{d} \Lambda(z)$ for all $\alpha, \beta \in \mathbb{N}^{n}$. The problem formulated above will be called the k-dimensional complex moment problem. A different solution of this problem in the case that $\left\{\Gamma_{\alpha, \beta}\right\}_{\alpha, \beta \in \mathbb{N}^{n}}$ is a sequence of bounded operators acting on an arbitrary complex Hilbert space \mathbf{H} with $\Gamma_{\alpha, \beta}=\Gamma_{\beta, \alpha}^{*}$ for all $\alpha, \beta \in \mathbb{N}^{n}$ was given in [Theorem 1.4.8, 19]. Sections 1 and 2 contain some preliminaries, definitions and notations needed in this note. In Section 3 we give a necessary and sufficient condition for the existence of a solution of the k-complex moment problem.

2. THE \boldsymbol{k}-COMPLEX MOMENT PROBLEM

Let $z=\left(z_{1}, \ldots, z_{n}\right)$ denote the complex variable in \mathbb{C}^{n} and D_{1}^{n} the closed n-dimensional unit polydisc; for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}$, we denote with $z^{\alpha}=z_{1}^{\alpha_{1}} \ldots z_{n}^{\alpha_{n}}, \bar{z}^{\beta}={\overline{z_{1}}}^{\beta_{1}} \ldots{\overline{z_{n}}}^{\beta_{n}}$.

Definition 2.1. A k-dimensional matrix $\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq k}$ of complex measures is positive defined on D_{1}^{n} if the following conditions hold:
(a) $\Lambda(M)=\left(\lambda_{i j}(M)\right)_{1 \leq i, j \leq k}$ is a nonnegative matrix for each Borel set $M \in \operatorname{Bor}\left(D_{1}^{n}\right)$,
(b) for all $1 \leq i, j \leq k$, the positive Borel measures $\left|\lambda_{i j}\right|$ on D_{1}^{n} have complex moments of all orders.

Definition 2.2. The multisequence of k-dimensional matrices $\left\{\Gamma_{\alpha, \beta}\right\}_{\alpha, \beta \in \mathbb{N}^{n}}$ is called a k-complex moment sequence if there exists a k-dimensional matrix of complex measures $\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq k}$, positive defined on D_{1}^{n}, such that

$$
\Gamma_{\alpha, \beta}=\left(s_{i j}(\alpha, \beta)\right)_{1 \leq i, j \leq k}=\left(\int_{D_{1}^{n}} z^{\alpha} \bar{z}^{\beta} \mathrm{d} \lambda_{i j}(z)\right)_{1 \leq i, j \leq k}=\int_{D_{1}^{n}} z^{\alpha} \bar{z}^{\beta} \mathrm{d} \Lambda(z)
$$

for all $\alpha, \beta \in \mathbb{N}^{n}$.
Let \wp be the \mathbb{C}-vector space of polynomials in z, \bar{z} with complex coefficients and the \mathbb{C}-linear mapping L associated with $\left\{\Gamma_{\alpha, \beta}\right\}_{\alpha, \beta \in \mathbb{N}^{n}}, L: \wp \rightarrow M(k, \mathbb{C})$, $L(p)=\left(l_{i j}(p)\right)_{1 \leq i . j \leq k}$, defined by $L(p)=\sum_{\alpha, \beta \in H} a_{\alpha \beta} \Gamma_{\alpha, \beta}$ with $p(z, \bar{z})=$ $\sum_{\alpha, \beta \in H} a_{\alpha \beta} z^{\alpha} \overline{z^{\beta}}$, where $H \subset \mathbb{N}^{n}$ is finite.

Definition 2.3. The linear mapping $L()=.\left(l_{i j}(.)\right)_{1 \leq i, j \leq k}$ from \wp into $M(k, \mathbb{C})$ is called positive on the compact D_{1}^{n} if $\sum_{1 \leq i, j \leq k} l_{i j}(p) t_{i} \overline{t_{j}} \geq 0$, for all elements $t_{i}, t_{j} \in \mathbb{C}$, and all polynomials $p \in \wp$ with $p(z, \bar{z}) \geq 0$, for all $z \in D_{1}^{n}$.

3. EXISTENCE OF A SOLUTION

Proposition 3.1. Let $\left\{\Gamma_{\alpha, \beta}=\left(s_{i j}(\alpha, \beta)\right)_{1 \leq i, j \leq k} \in M(k, \mathbb{C})\right\}_{\alpha, \beta \in \mathbb{N}^{n}}$ be a multisequence of k-dimensional matrices and $L()=.\left(l_{i j}(.)\right)_{1 \leq i, j \leq k}$ be the associated linear mapping from \wp into $M(k, \mathbb{C})$. Then the following assertions are equivalent:
(i) L is positive defined on the compact D_{1}^{n}.
(ii) $\left\{\Gamma_{\alpha, \beta}\right\}_{\alpha, \beta \in \mathbb{N}^{n}}$ is a k-complex moment sequence on D_{1}^{n}.

Proof. (i) \Rightarrow (ii) Let $p \in \wp, p(z, \bar{z})=\sum_{\alpha, \beta \in H \subset \mathbb{N}^{n}} a_{\alpha \beta} z^{\alpha} \bar{z}^{\beta}, H$ a finite set in \mathbb{N}^{n} with $p(z, \bar{z}) \geq 0$ for all $z \in D_{1}^{n}$. By (i), we have that $\sum_{1 \leq i, j \leq k} l_{i j}(p) t_{i} \bar{t}_{j} \geq$ 0 for any $t_{i}, t_{j} \in \mathbb{C}$. It follows that $l_{i i}(p) \geq 0$, for any $1 \leq i \leq k$, and $\sum_{i=1}^{k} l_{i i}(p) \geq 0$. Put in the previous inequality $t_{i}=x, x \in \mathbb{R}, t_{j}=1$, and $t_{r}=0$ for any $r \in \overline{1, k}, r \neq i, j$. In this case we obtain:

$$
\begin{equation*}
l_{i i}(p) x^{2}+\left[l_{i j}(p)+l_{j i}(p)\right] x+l_{j j}(p) \geq 0, \forall x \in \mathbb{R} \tag{1}
\end{equation*}
$$

Inequality (1) implies

$$
\operatorname{Im}\left[l_{i j}(p)\right]=-\operatorname{Im}\left[l_{j i}(p)\right]
$$

and
($\left.1^{\prime \prime}\right) \quad\left[\operatorname{Re}\left(l_{i j}(p)+l_{j i}(p)\right)\right]^{2} \leq 4 l_{i i}(p) l_{j j}(p)$, for all $p \in \wp$ with $p(z, \bar{z}) \geq 0$.
If we take also $t_{i}=x, x \in \mathbb{R}, t_{j}=\mathrm{i}$, and $t_{r}=0$ for any $r \in \overline{1, k}, r \neq i, j$, we obtain

$$
\begin{equation*}
l_{i i}(p) x^{2}+\mathrm{i} x\left[l_{j i}(p)-l_{i j}(p)\right]+l_{j j}(p) \geq 0 \tag{2}
\end{equation*}
$$

From this inequality we have

$$
\operatorname{Re}\left(l_{i j}(p)\right)=\operatorname{Re}\left(l_{j i}(p)\right)
$$

and

$$
\left[\operatorname{Im}\left(l_{j i}(p)-l_{i j}(p)\right)\right]^{2} \leq 4 l_{i i}(p) l_{j j}(p)
$$

From $\left(1^{\prime}\right),\left(1^{\prime \prime}\right),\left(2^{\prime}\right)$, and $\left(2^{\prime \prime}\right)$ we get

$$
\begin{equation*}
\left|\operatorname{Re}\left(l_{i j}(p)\right)\right|^{2} \leq l_{i i}(p) l_{j j}(p) \tag{3}
\end{equation*}
$$

and

$$
\left|\operatorname{Im}\left(l_{i j}(p)\right)\right|^{2} \leq l_{i i}(p) l_{j j}(p)
$$

inequalities that are true for all $p \in \wp$ with $p(z, \bar{z}) \geq 0$, when $z \in D_{1}^{n}$. Consequently, from (3) and (3^{\prime}) we get

$$
\begin{equation*}
\left|l_{i j}(p)\right| \leq 2 l_{i i}^{\frac{1}{2}}(p) l_{j j}^{\frac{1}{2}}(p) \leq l_{i i}(p)+l_{j j}(p) \leq \sum_{i=1}^{k} l_{i i}(p) \tag{4}
\end{equation*}
$$

for all $i, j \in \overline{1, k}$, and for all $p \in \wp$ with $p(z, \bar{z}) \geq 0$, when $z \in D_{1}^{n}$.
Let

$$
\wp_{a n}=\left\{p(z)=\sum_{\alpha \in H \subset \mathbb{N}^{n}} a_{\alpha} z^{\alpha}, H \text { finite and } a_{\alpha} \in \mathbb{C}\right\}
$$

be the analytical polynomials. For any $p \in \wp_{a n}$, we define

$$
\widetilde{p}(z, \bar{z})=p(z) \overline{p(z)}=|p(z)|^{2}
$$

From the previous assertions and notations we have $l_{i i}(\widetilde{p}) \geq 0$, for all $1 \leq$ $i \leq k$, and $l_{i j}\left(z^{\alpha} \bar{z}^{\beta}\right)=s_{i j}(\alpha, \beta)$, for any $\alpha, \beta \in \mathbb{N}^{n}$. If we consider $p(z)=$ $\sum_{\alpha \in H \subset \mathbb{N}^{n}} a_{\alpha} z^{\alpha}, H$ finite, and $\widetilde{p}(z, \bar{z})=|p(z)|^{2}=\sum_{\alpha, \beta \in H \subset \mathbb{N}^{n}} a_{\alpha} \overline{a_{\beta}} z^{\alpha} \overline{z^{\beta}}$, we obtain

$$
0 \leq l_{i i}(\widetilde{p}(z, \bar{z}))=\sum_{\alpha, \beta \in H \subset \mathbb{N}^{n}} a_{\alpha} \overline{a_{\beta}} l_{i i}\left(z^{\alpha} \overline{z^{\beta}}\right)=\sum_{\alpha, \beta \in H \subset \mathbb{N}^{n}} a_{\alpha} \overline{a_{\beta}} s_{i i}(\alpha, \beta)
$$

We consider on the \mathbb{C}-vector space $\wp_{a n}$ the inner products:

$$
<p, q>_{s_{i i}}=\sum_{p, q \in H \subset \mathbb{N}^{n}} a_{p} \overline{b_{q}} s_{i i}(p, q), \quad \forall 1 \leq i \leq k
$$

when $p(z)=\sum_{p \in H_{1} \subset \mathbb{N}^{n}} a_{p} z^{p}$ and $q(z)=\sum_{q \in H_{2} \subset \mathbb{N}^{n}} b_{q} z^{q}$ with H_{1}, H_{2} finite subsets in \mathbb{N}^{n}. With these inner products we organize $\wp_{a n}$ as pre-Hilbert spaces. Let $\mathbf{H}_{\mathbf{i}}$ be the Hilbert spaces obtained as the separate completions of $\wp_{a n}$ with respect to these inner products for all $1 \leq i \leq k$. We define on the pre-Hilbert spaces $\left(\wp_{a n},<,>_{s_{i i}}\right)$ the operators $S_{j}^{i}:\left(\wp_{a n}<,>_{s_{i i}}\right) \rightarrow$ $\left(\wp_{a n},<,>_{s_{i i}}\right), S_{j}^{i} p=z_{j} p$, for all $1 \leq j \leq n$ and all $1 \leq i \leq k$. Since for any $p \in \wp_{a n}$ and any $z \in D_{1}^{n}$ we have $|p(z)|^{2}\left(1-\left|z_{j}\right|^{2}\right) \geq 0$, the inequalities $l_{i i}\left(|p(z)|^{2}\right) \geq l_{i i}\left(\left|z_{j}\right|^{2}|p(z)|^{2}\right), \forall 1 \leq i \leq k$, are also true. That means that all operators S_{j}^{i} are contractions on $\left(\wp_{a n},<,>_{s_{i i}}\right)$ when $1 \leq i, j \leq k$. We denote
the extensions of S_{j}^{i} to $\mathbf{H}_{\mathbf{i}}$ also with S_{j}^{i}, for all $1 \leq j \leq n$; for the extended operators, we have also $\left\|S_{j}^{i}\right\|_{\mathbf{H}_{\mathbf{i}}} \leq 1$. The bounded, commuting multioperator $\left(S_{1}^{i}, \ldots, S_{n}^{i}\right) \in L\left(\mathbf{H}_{\mathbf{i}}\right)^{n}$ verifies Ito's necessary and sufficient condition to be a subnormal-tuple, that is:

$$
\begin{aligned}
& \sum_{I=\left(i_{1}, \ldots, i_{n}\right), J=\left(j_{1}, \ldots, j_{n}\right)}<\left(S_{1}^{i}\right)^{i_{1}} \ldots\left(S_{n}^{i}\right)^{i_{n}} p_{J},\left(S_{1}^{i}\right)^{j_{1}} \ldots\left(S_{n}^{i}\right)^{j_{n}} p_{I}>_{s_{i i}} \geq 0 \\
& \Leftrightarrow l_{i i}\left(\left|\sum_{J=\left(j_{1}, \ldots, j_{n}\right) \in H} \overline{z_{1}^{j_{1}} \ldots z_{n}^{j_{n}}} p_{J}(z)\right|^{2}\right) \geq 0,
\end{aligned}
$$

for all finite sets of polynomials $\left\{p_{J}\right\}_{J \in H}, H$ finite, $p_{J} \in \wp_{a n}$. Hence, from Theorem 1 in [5], we know that there exist Hilbert spaces $\mathrm{K}_{i} \subset \mathbf{H}_{\mathbf{i}}, 1 \leq i \leq k$, and normals $N_{j}^{i}: \mathrm{K}_{i} \rightarrow \mathrm{~K}_{i}$, for all $1 \leq j \leq n$, such that $N_{j}^{i}\left(\mathbf{H}_{\mathbf{i}}\right) \subset \mathbf{H}_{\mathbf{i}}$, $\left.N_{j}^{i}\right|_{\mathbf{H}_{\mathbf{i}}}=S_{j}^{i}$, and $N_{j}^{i}=\int_{D_{1}^{n}} z_{j} \mathrm{~d} E^{i}\left(z_{1}, \ldots, z_{n}\right)$, with E^{i} the joint spectral measure of the bounded and commuting multioperator $\left(N_{1}^{i}, \ldots, N_{n}^{i}\right), 1 \leq i \leq k$. Let $\left[l_{0}\right]_{i}$ be the unit element of $\wp_{a n} \subset \mathbf{H}_{\mathbf{i}}$. We define, for any $B \in \operatorname{Bor}\left(D_{1}^{n}\right)$, the positive scalar measures

$$
\lambda_{i}(B)=<E^{i}(B)\left[l_{0}\right]_{i},\left[l_{0}\right]_{i}>s_{s i}, 1 \leq i \leq k .
$$

We get the following representations with respect to these measures:

$$
\begin{aligned}
& l_{i i}\left(z^{\alpha} \bar{z}^{\beta}\right)=s_{i i}(\alpha, \beta) \\
& =<\left(S_{1}^{i}\right)^{\alpha_{1}} \ldots\left(S_{n}^{i}\right)^{\alpha_{n}}\left[l_{0}\right]_{i},\left(S_{1}^{i}\right)^{\beta_{1}} \ldots\left(S_{n}^{i}\right)^{\beta_{n}}\left[l_{0}\right]_{i}>_{s_{i i}} \\
& =\int_{D_{1}^{n}} z^{\alpha} \bar{z}^{\beta} \mathrm{d} \lambda_{i}(z), \forall \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right) \in \mathbb{N}^{n}, \forall 1 \leq i \leq k .
\end{aligned}
$$

More details about this construction are given in the papers [7], [8]. Let $\lambda_{\Lambda}=\sum_{i=1}^{k} \lambda_{i}$ be the trace measure; from (4) we have

$$
\left|l_{i j}(p)\right| \leq l_{i i}(p)+l_{j j}(p) \leq \sum_{s=1}^{k} l_{s s}(p)=\int_{D_{l}^{n}} p(z, \bar{z}) \mathrm{d} \lambda_{\Lambda}(z)
$$

for all $p \in \wp$ with $p(z, \bar{z}) \geq 0$, when $z \in D_{1}^{n}$. Let $f \in \wp$ be an arbitrary polynomial. We then have $f(z, \bar{z})=f_{1}(z, \bar{z})+\mathrm{i} f_{2}(z, \bar{z})$, with $f_{i}(z, \bar{z})$ polynomials in z, \bar{z} with real coefficients. If we consider the real coordinates x_{j}, y_{j}, when $z_{j}=x_{j}+\mathrm{i} y_{j}, 1 \leq j \leq n$, we obtain

$$
f_{j}(z, \bar{z})=f_{j}^{1}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)+\mathrm{i} f_{j}^{2}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right), j \in\{1,2\}
$$

with $f_{j}^{k} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$, for all $k, j \in\{1,2\}$. As in the papers [3], [14], [19], there exist, for any $f_{j}^{k} \in \mathbb{R}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$, decompositions of the form

$$
f_{j}^{k}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots y_{n}\right)=q_{j, 1}^{k}(z, \bar{z})-q_{j, 2}^{k}(z, \bar{z}),
$$

where

$$
\begin{equation*}
q_{j, r}^{k}(z, \bar{z})=\sum_{j \in H \subset \mathbb{N}}\left[\alpha_{j}\left|p_{j}(z)\right|^{2} \prod_{i=1}^{n}\left(1-\left|z_{i}\right|^{2}\right)^{k_{i}^{j}}\right], \tag{5}
\end{equation*}
$$

with $p_{j} \in \wp_{a n}, k_{i}^{j} \in \mathbb{N}, \alpha_{j} \in \mathbb{R}, \alpha_{j} \geq 0, H$ finite, $\forall k, j, r \in\{1,2\}$. Hence we obtain

$$
f_{1}(z, \bar{z})=\left(q_{11}^{1}-q_{12}^{1}\right)+\mathrm{i}\left(q_{11}^{2}-q_{12}^{2}\right)
$$

and

$$
f_{2}(z, \bar{z})=\left(q_{21}^{1}-q_{22}^{1}\right)+\mathrm{i}\left(q_{21}^{2}-q_{22}^{2}\right),
$$

with $q_{j r}^{k}$, for all $j, k, r \in\{1,2\}$, as in (5). Using these decompositions, we get

$$
\begin{align*}
& \left|l_{i j}\left(f_{1}\right)\right| \leq\left|l_{i j}\left[\left(q_{11}^{1}-q_{12}^{1}\right)+\mathrm{i}\left(q_{11}^{2}-q_{12}^{2}\right)\right]\right| \\
& \leq\left|l_{i j}\left(q_{11}^{1}-q_{12}^{1}\right)\right|+\left|l_{i j}\left(q_{11}^{2}-q_{12}^{2}\right)\right| \leq 2 \int_{D_{1}^{n}}\left|f_{1}\right| \mathrm{d} \lambda_{\Lambda}(z) . \tag{6}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
\left|l_{i j}\left(f_{2}\right)\right| \leq 2 \int_{D_{1}^{n}}\left|f_{2}\right| \mathrm{d} \lambda_{\Lambda}(z) . \tag{7}
\end{equation*}
$$

From the inequalities (6) and (7) we obtain

$$
\begin{equation*}
\left|l_{i j}(f)\right| \leq\left|l_{i j}\left(f_{1}\right)\right|+\left|l_{i j}\left(f_{2}\right)\right| \leq 4 \int_{D_{1}^{n}}|f| \mathrm{d} \lambda_{\Lambda}(z), \text { for any } f \in \wp . \tag{8}
\end{equation*}
$$

Using the Hahn-Banach extension theorem in the complex case, we define $l_{i j}$ on $L^{1}\left(\mathrm{~d} \lambda_{\Lambda}\right)$, preserving the same inequality (8). The \mathbb{C}-linear functionals $l_{i j}, 1 \leq i, j \leq k$, are bounded on $L^{1}\left(\mathrm{~d} \lambda_{\Lambda}\right)$. Then there exist $g_{i j} \in L^{\infty}\left(\mathrm{d} \lambda_{\Lambda}\right)$ such that $l_{i j}(f)=\int_{D_{1}^{n}} f(z) g_{i j}(z) \mathrm{d} \lambda_{\Lambda}(z)$, for all $i, j \in\{1, \ldots, k\}$. Because of this equality and assumption (i), we have

$$
\begin{aligned}
0 \leq \sum_{1 \leq i, j \leq k} l_{i j}(f) t_{i} \overline{t_{j}} & =\sum_{1 \leq i, j \leq k} \int_{D_{1}^{n}} f(z) g_{i j}(z) t_{i} \overline{t_{j}} \mathrm{~d} \lambda_{\Lambda}(z) \\
& =\int_{D_{1}^{n}} f(z) \sum_{1 \leq i, j \leq k} g_{i j}(z) t_{i} \overline{t_{j}} d \lambda_{\Lambda}(z)
\end{aligned}
$$

for any $f \in \wp$, with $f(z, \bar{z}) \geq 0$ on D_{1}^{n}, and any $t_{i}, t_{j} \in \mathbb{C}$. With a routine measure theoretical argument, we get that the matrix $\left(g_{i j}\right)_{1 \leq i, j \leq k}$ is nonnegative $\mathrm{d} \lambda_{\Lambda}$ a.e. on D_{1}^{n}. If we take $\lambda_{i j}=g_{i j} \mathrm{~d} \lambda_{\Lambda}$, for all $1 \leq i, j \leq k$, we obtain that the matrix $\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq k}$ is positive defined on D_{1}^{n}, as required.
(ii) \Rightarrow (i). We assume the existance of a positive defined matrix of measures $\Lambda=\left(\lambda_{i j}\right)_{1 \leq i, j \leq k}$ on D_{1}^{n} for which we have the representations

$$
\Gamma_{\alpha, \beta}=\left(s_{i j}(\alpha, \beta)\right)_{1 \leq i, j \leq k}=\int_{D_{1}^{n}} z^{\alpha} \bar{z}^{\beta} \mathrm{d} \Lambda(z),
$$

for all $\alpha, \beta \in \mathbb{N}^{n}$. In these conditions, let $g_{i j}$ be the Radon-Nikodym derivative of $\lambda_{i j}$ with respect to the trace measure $\lambda_{\Lambda}=\sum_{i=1}^{n} \lambda_{i i}$. For the \mathbb{C}-linear map $L()=.\left(l_{i j}(.)\right)_{i, j=1}^{k}$ associated with $\Gamma_{\alpha, \beta}$ we then have

$$
\sum_{i, j=1}^{k} l_{i j}(p) t_{i} \overline{t_{j}}=\int_{D_{1}^{n}} p(z, \bar{z})\left(\sum_{i, j=1}^{k} g_{i j}(z) t_{i} \overline{t_{j}}\right) \mathrm{d} \lambda_{\Lambda}(z) \geq 0
$$

for any $p \in \wp$ with $p(z, \bar{z}) \geq 0$, when $z \in D_{1}^{n}$. Thus L is positive defined on D_{1}^{n}, as required in (i).

Remark 3.2. Let

$$
\left\{\Gamma_{\alpha, \beta}=\left(s_{i j}(\alpha, \beta)_{1 \leq i, j \leq k} \in M(k, \mathbb{C})\right\}_{\alpha, \beta \in \mathbb{N}^{n}, k \in \mathbb{N}^{*}}\right.
$$

be a multisequence of k-dimensional matrices with complex entries, for which the \mathbb{C}-linear map associated with it, denoted by $L: \wp \rightarrow M(k, \mathbb{C})$,

$$
L(p)=\left[l_{i j}(p)\right]_{1 \leq i, j \leq k}=\sum_{\alpha, \beta \in H} a_{\alpha \beta}\left[s_{i j}(\alpha, \beta)\right]_{1 \leq i, j \leq k}=\sum_{\alpha, \beta \in H} a_{\alpha \beta} \Gamma_{\alpha, \beta},
$$

when $p(z, \bar{z})=\sum_{\alpha, \beta \in H} a_{\alpha \beta} z^{\alpha} \bar{z}^{\beta}, H$ finite, $H \subset \mathbb{N}^{n}$, is positive definite on D_{1}^{n} (i.e., satisfies condition (i) of Proposition 3.1). Then ${ }^{t} \bar{\Gamma}_{\alpha, \beta}=\Gamma_{\beta, \alpha}$, that is $s_{i j}(\alpha, \beta)=\overline{s_{j i}(\beta, \alpha)}$, for all $1 \leq i, j \leq k$ and all $\alpha, \beta \in \mathbb{N}^{n}$.

Proof. Since the \mathbb{C}-linear map $L=\left(l_{i j}(.)\right)_{1 \leq i, j \leq k}$ associated with $\left\{\Gamma_{\alpha, \beta}\right\}$ is positive on D_{1}^{n}, from assertion (i) of $\operatorname{Proposition~} 3.1$ we have $l_{i i}(p) \geq 0$, for all $1 \leq i \leq k$ and all $p \in \wp$ with $p(z, \bar{z}) \geq 0$, when $z \in D_{1}^{n}$. As in [3], [14], [19], and as in the proof of Proposition 3.1, all polynomials $p \in \wp$ admit a decomposition of the form $p(z, \bar{z})=\left(q_{1}-q_{2}\right)+\mathrm{i}\left(q_{3}-q_{4}\right)$ with

$$
q_{s}(z, \bar{z})=\sum_{j \in H \subset \mathbb{N}}\left[\alpha_{j}\left|p_{j}(z)\right|^{2} \prod_{i=1}^{n}\left(1-\left|z_{i}\right|^{2}\right)^{k_{i}^{j}}\right],
$$

with $p_{j} \in \wp_{a n}, k_{i}^{j} \in \mathbb{N}, \alpha_{j} \in \mathbb{R}, \alpha_{j} \geq 0, H$ finite, $\forall s \in\{1,4\}$.
Let $p(z, \bar{z})=z^{\alpha} \bar{z}^{\beta}=\left(q_{1}-q_{2}\right)+\mathrm{i}\left(q_{3}-q_{4}\right)$ be the corresponding decomposition.

Case a: $i=j$. Then we have

$$
l_{i i}\left(z^{\alpha} \bar{z}^{\beta}\right)=\left[l_{i i}\left(q_{1}\right)-l_{i i}\left(q_{2}\right)\right]+\mathrm{i}\left[l_{i i}\left(q_{3}\right)-l_{i i}\left(q_{4}\right)\right]
$$

and

$$
\begin{aligned}
l_{i i}\left(z^{\beta} \bar{z}^{\alpha}\right) & =\left[l_{i i}\left(\overline{q_{1}}\right)-l_{i i}\left(\overline{q_{2}}\right)\right]-\mathrm{i}\left[l_{i i}\left(\overline{q_{3}}\right)-l_{i i}\left(\overline{q_{4}}\right)\right] \\
& =\left[l_{i i}\left(q_{1}\right)-l_{i i}\left(q_{2}\right)\right]-\mathrm{i}\left[l_{i i}\left(q_{3}\right)-l_{i i}\left(q_{4}\right)\right] .
\end{aligned}
$$

From this we obtain

$$
l_{i i}\left(z^{\alpha} \bar{z}^{\beta}\right)=\overline{l_{i i}\left(z^{\beta} \bar{z}^{\alpha}\right)} \Leftrightarrow s_{i i}(\alpha, \beta)=\overline{s_{i i}(\beta, \alpha)} .
$$

Case $b: i \neq j$. Then, according to the equivalence of the assertions (i) and (ii) of Proposition 3.1, the following equalities hold

$$
\begin{equation*}
\left(\operatorname{Im}\left(l_{i j}(p)\right)=-\operatorname{Im}\left(l_{j i}(p)\right)\right. \tag{1b}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\operatorname{Re}\left(l_{i j}(p)\right)=\operatorname{Re}\left(l_{j i}(p)\right)\right), \tag{2b}
\end{equation*}
$$

when $p \in \wp$, with $p(z, \bar{z}) \geq 0$ on D_{1}^{n}. From the properties of the calculus with complex numbers, we have

$$
\begin{align*}
\operatorname{Re}\left(l_{i j}\left(z^{\alpha} \bar{z}^{\beta}\right)\right) & =\operatorname{Re}\left[l_{i j}\left(q_{1}-q_{2}\right)+\mathrm{i} l_{i j}\left(q_{3}-q_{4}\right)\right] \tag{9}\\
& =\operatorname{Re}\left(l_{i j}\left(q_{1}\right)\right)-\operatorname{Re}\left(l_{i j}\left(q_{2}\right)\right)-\operatorname{Im}\left(l_{i j}\left(q_{3}\right)\right)+\operatorname{Im}\left(l_{i j}\left(q_{4}\right)\right)
\end{align*}
$$

and

$$
\begin{equation*}
\operatorname{Im}\left(l_{i j}\left(z^{\alpha} \bar{z}^{\beta}\right)\right)=\operatorname{Im}\left(l_{i j}\left(q_{1}\right)\right)-\operatorname{Im}\left(l_{i j}\left(q_{2}\right)+\operatorname{Re}\left(l_{i j}\left(q_{3}\right)\right)-\operatorname{Re}\left(l_{i j}\left(q_{4}\right)\right) .\right. \tag{10}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
\operatorname{Re}\left(l_{j i}\left(\bar{z}^{\alpha} z^{\beta}\right)\right) & =\operatorname{Re}\left[l_{j i}\left(q_{1}\right)-l_{j i}\left(q_{2}\right)\right]+\operatorname{Re}\left[-\mathrm{i}\left(l_{j i}\left(q_{3}\right)-l_{j i}\left(q_{4}\right)\right)\right] \\
& =\operatorname{Re}\left(l_{j i}\left(q_{1}\right)\right)-\operatorname{Re}\left(l_{j i}\left(q_{2}\right)\right)+\operatorname{Im}\left(l_{j i}\left(q_{3}\right)\right)-\operatorname{Im}\left(l_{j i}\left(q_{4}\right)\right)
\end{align*}
$$

and
$\left(10^{\prime}\right) \quad \operatorname{Im}\left(l_{j i}\left(\bar{z}^{\alpha} z^{\beta}\right)\right)=\operatorname{Im}\left[l_{j i}\left(q_{1}\right)\right]-\operatorname{Im}\left[l_{j i}\left(q_{2}\right)\right]-\operatorname{Re}\left[l_{j i}\left(q_{3}\right)\right]+\operatorname{Re}\left[l_{j i}\left(q_{4}\right)\right]$.
Applying the equalities (1b) and (2b) in the relations (9) and (9^{\prime}), respectively in (10) and (10^{\prime}), we obtain

$$
\operatorname{Re}\left(l_{i j}\left(z^{\alpha} \bar{z}^{\beta}\right)\right)=\operatorname{Re}\left(l_{j i}\left(\bar{z}^{\alpha} z^{\beta}\right)\right)
$$

and

$$
\operatorname{Im}\left(l_{i j}\left(z^{\alpha} \bar{z}^{\beta}\right)\right)=-\operatorname{Im}\left(\left(\bar{z}^{\alpha} z^{\beta}\right)\right),
$$

that is

$$
s_{i j}(\alpha, \beta)=\overline{s_{j i}(\beta, \alpha)}, \forall 1 \leq i, j \leq k \Leftrightarrow \Gamma_{\alpha, \beta}={ }^{t} \bar{\Gamma}_{\beta, \alpha}, \forall \alpha, \beta \in \mathbb{N}^{n}
$$

which is the required statement.

REFERENCES

[1] Akhiezer, N.I., The Classical Moment Problem and Some Related Questions in Analysis, Oliver and Boyd, Edinburgh, 1965.
[2] Akhiezer, N.I. and Krein, M.G., Some Question in the Theory of Moments, Transl. Math. Monographs, vol. 2, American Math. Soc., Providence, R.I., 1963.
[3] Cassier, G., Problèmes des moments sur un compact de R^{n} et décomposition des polynômes à plusieurs variables, J. Funct. Anal., 58 (1984), 254-266.
[4] Cristescu, R., Analiză funcţională (in Romanian), Editura Didactică şi Pedagogică, Bucureşti, 1984.
[5] Ito, T., On the Commuting Family of Subnormal Operators, J. Hokkaido Univ. Educ. Nat. Sci., 14 (1958), 1-15.
[6] Lemnete, L., An operator-valued moment problem, Proc. Amer. Math. Soc., 112, 4 (1991), 1023-1028.
[7] Lemnete, L., Moment problems in complex spaces, Rev. Roumaine Math. Pures Appl., 39 (1994), 905-911.
[8] Lemnete, L., A multidimensional moment problem in the unit polydisc, Rev. Roumaine Math. Pures Appl., 39 (1994), 911-915.
[9] Lemnete-Ninulescu, L. and Olteanu, O., Applying the solution of an abstract moment problem to the classical moment problem, Math. Rep. (Bucur.), 4 (54) (2002), 207-217.
[10] Lemnete-Ninulescu, L. and O.Olteanu, O., Extension of linear operators distanced convex sets and the moment problem, Mathematica, 46 (2004), 81-88.
[11] Lemnete-Ninulescu, L., Olteanu, A. and Olteanu, O., Applications of the solutions of two abstract moment problems to the classical moment problem, Mathematica, 48 (2006), 173-182.
[12] Lemnete-Ninulescu, L., Using the solution of an abstract moment problem to the classical complex moment problem, Rev. Roumaine Math. Pures Appl., 51, 5-6 (2006), 703-710.
[13] Lemnete-Ninulescu, L., Operator-valued trigonometric and L-moment problem, Rev. Roumaine Math. Pures Appl., 54, 5-6 (2009), 473-482.
[14] Lemnete-Ninulescu, L. and Zlatescu, A., Some new aspects of the L-moment problem, Rev. Roumaine Math. Pures Appl., 55, 3 (2010), to appear.
[15] Lemnete-Ninulescu, L., Positive-definite operator-valued functions and the moment problem, Proceedings of the 22nd Conference in Operator Theory (July 3-8, 2008, West University Timisoara, Romania), Editura Theta, 2010, 113-123.
[16] NAGy, B.Sz., A moment problem for self-adjoint operators, Acta Math. Hungar., 3 (1952), 258-292.
[17] Putinar, M., A two-dimensional Moment Problem, J. Funct. Anal., 80 (1988), 1-8.
[18] Schmüdgen, K., On a generalization of the classical moment problem, J. Math. Anal. Appl., 125 (1987), 461-470.
[19] Vasilescu, F.H., Spectral measures and moment problems, Theta Ser. Adv. Math., Spectral Analysis and its Applications (aniversary volume), 2003, 173-215.
[20] Vasilescu, F.H., Iniţiere în teoria operatorilor liniari (in Romanian), Editura Tehnică, Bucureşti, 1987.

Received February 22, 2009
Accepted April 22, 2010

"Politehnica" University of Bucharest Splaiul Independenţei 313
060042 Bucharest, Romania
E-mail: luminita_lemnete@yahoo.com

