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ON THE DETERMINATION OF 3D AUTONOMOUS
FORCE FIELDS PRODUCING TRAJECTORIES

THAT ARE SOLUTIONS OF A SYSTEM OF ODES

THOMAS KOTOULAS and NICOLAS CARANICOLAS

Abstract. This study is a generalization of a recent work by Bozis and Borghero
(2008) establishing connections between autonomous planar force fields and the
entire two-parametric set of solutions of a given linear second order ODE (solv-
able or not). In this paper we find 3D force fields which give rise to a three-
parametric family of spatial orbits. It is shown that the three-parametric set of
all solutions of any system of linear ordinary differential equations of the type
y′′(x) = f0(x)+yf1(x)+zf2(x)+y′f3(x), z′(x) = g0(x)+yg1(x)+zg2(x)+y′g3(x)
(which may be solvable by quadratures or not) represents a set of regular or-
bits traced by a material point of unit mass, in the presence of at least one
autonomous force field F̄ (X ,Y ,Z ), for adequate initial conditions. The corre-
sponding force field is determined by quadratures on the grounds of the eight
functions fi(x), gk(x) (i, k=0,1,2,3) which specify the above system of ODEs.
Subcases are also studied and pertinent examples are offered.
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1. INTRODUCTION

The inverse problem of dynamics in a broad sense aims at the determination
of forces, parameters and constraints, which are required for the realization of
the motion of a mechanical system with some properties given in advance (Gal-
iulin, 1984). Three-dimensional versions of the inverse problem were studied
for a two-parametric family of orbits by Bozis(1983) (for general force fields),
and by Váradi and Érdi (1983). Other results have been obtained by Bozis
and Nakhla (1986), Shorokov (1988) and Puel (1992). These results are sum-
marized in the review paper of Bozis (1995). Recently, Bozis and Kotoulas
(2004) studied the case of two-parametric families of straight lines (FSL) pro-
duced by genuine three-dimensional potentials. Moreover, the same authors
dealt with the construction of 3D homogeneous potentials which give rise to
two-parametric families of homogeneous orbits in space. Several examples
were given there (Bozis and Kotoulas, 2005). At the same time, Anisiu (2005)
produced in a direct way the two energy-free PDEs of the three-dimensional
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inverse problem and the region where real motion is allowed, presenting also
several families of orbits compatible with 3D potentials.

In all the above mentioned papers the authors studied the following version
of the inverse problem of Dynamics: “A two-parametric family of spatial curves
is given in the form: f(x, y, z) = c1, g(x, y, z) = c2. Find all the potentials
which generate these curves as trajectories”. As it was shown by Bozis and
Kotoulas (2004), there is an one-to-one correspondence between the curves
and the “slope functions” α and β defined by

(1) α =
δ2

δ1
, β =

δ3

δ1
, δ̄ = (δ1, δ2, δ3) = ∇f ×∇g.

Furthermore, Bozis (1983) and Anisiu (2005) extended their study to include
3D autonomous force fields.

In a recent paper, Bozis and Borghero (2008) studied an inverse problem
of different character: They showed that the two-parametric set of all solu-
tions of any linear ODE of the second order y′′ + a(x)y′ + b(x)y = f(x) can
be considered as a set of orbits traced by a material point of unit mass, in
the presence of at least one autonomous force field F̄ (X, Y ), for adequate ini-
tial conditions, and they investigated also the conditions for the existence of
potentials producing such set of orbits. In the present article we extend the
above work in the 3D-space: Neither the analytic expressions of spatial curves
are given in advance, nor the slope functions α and β. We are given only
the “mother system of ODEs” from which these orbits arise. In Section 2 we
present the basic facts for autonomous force fields. We have two equations:
one of them is algebraic and the other one is a PDE (see the equations (4) and
(5) of Section 2), which involve the components X, Y, Z of the corresponding
3D force field and the slope functions. In Section 3 we analyze the system
of two ODEs, which represents the families of spatial curves and we explain
how we establish two algebraic equations, (14) and (16), the first quadratic
in α, and the second cubic in α. Finally, we find a set of seven conditions on
the coefficients of the previous algebraic equations, i.e., a system of PDEs in
the unknown components X, Y, Z of the force field, which must be fulfilled
simultaneously. From these relations we derive results for the components of
the autonomous force field and the slope functions. Pertinent examples are
offered in each case. Finally, conclusions are presented in Section 4.

2. BASIC FACTS FOR GENERAL AUTONOMOUS FORCE FIELDS

We suppose that a test particle of unit mass moves in the 3D space. In the
present paper we deal with three-parametric families of spatial curves given
in the solved form:

(2) f(x, y, z, c3) = c1, g(x, y, z, c3) = c2.

Let us consider the equations of motion of a test particle:

(3) ẍ = X, ÿ = Y, z̈ = Z,
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where the force components X, Y, Z are of C1-class on an open domain in
R3. The equations of the trajectories of (3) read as (Anisiu, 2005):

(4) (αB − βA)X − BY + AZ = 0

and

(5) −Xx +
1
α

Yx − αXy + Yy + qXz + pYz = lX + mY.

The coefficients p, q, l,m are given by

(6)
p = β

α , q = −β,

l = 3A
α − αm, m = Ax+αAy+βAz

αA ,

and

(7) A = αx + ααy + βαz, B = βx + αβy + ββz.

Remark 1. In the above equations we have to assume that A 6=0. Other-
wise, we have to make the transformation (α → β → α) in order to avoid the
zeroing of denominators (Bozis and Kotoulas, 2005).

The above equations (4), (5) are necessary and sufficient conditions for the
autonomous force field F̄ (X,Y, Z) to be compatible with the family (2). For
any admissible triplet < X, Y, Z >, these equations determine also the region
in the 3D-Cartesian space where real motion is allowed to take place. This is
so when the following inequality holds (Anisiu, 2005):

(8)
Y − αX

A
≥ 0

3. ANALYSIS FOR FIRST AND SECOND ORDER ODES

We consider the following system consisting of two linear ordinary differen-
tial equations

(9) y′′ = f0(x) + yf1(x) + zf2(x) + y′f3(x),
z′ = g0(x) + yg1(x) + zg2(x) + y′g3(x).

The system (9) is then identified with the eight sufficiently smooth functions
fi, gk, i, k ∈ {0, 1, 2, 3}. The totality of its solutions constitutes a set of spatial
orbits depending on three parameters:

(10) y = y(x, c1, c2, c3), z = z(x, c1, c2, c3).

Now, we set the following question: Is there any 3D autonomous force field
X = X(x, y, z), Y = Y (x, y, z), Z = Z(x, y, z) which can produce as real
orbits, traced by a unit-mass material point, all the members of the three-
parametric set of families (10)?

We shall show that the answer is always positive, although it is not generally
expected to find an appropriate force field which produces these regular curves
as orbits.
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We proceed as follows: Firstly, we rewrite the system of (9) in terms of α and
β. More precisely, as we had shown in a previous paper (Bozis and Kotoulas,
2004), for one-dimensional curves ~r = x~i + y(x)~j + z(x)~k parametrized by the
coordinate x and defined by f(x, y, z) = c1, g(x, y, z) = c2, we have

(11) y′ = α(x, y, z), z′ = β(x, y, z).

In a similar way we obtain y′′ = A(x, y, z). Thus the system (9) is rewritten
as:

(12) A = f0(x) + yf1(x) + zf2(x) + αf3(x),
β = g0(x) + yg1(x) + zg2(x) + αg3(x).

From (7) and (12) we calculate B and we have:

(13) B = g′0(x) + g′1(x)y + g′2(x)z + g′3(x)a + g1(x)α + g2(x)β + g3(x)A.

We substitute the relations (12) and (13) into (4) and (5) successively and we
obtain two algebraic equations in α. The first one, quadratic in α, reads as:

(14) r2α
2 + r1α + r0 = 0,

where

(15)
r2 = (g′3 + g1 + g2g3)X,
r1 = (Bx − f3B + g2B)X − (g′3 + g1 + g2g3 + f3g3)Y + f3Z,
r0 = ABX + (Bx + g2B + g3A)Y −AZ,

and the second one, cubic in α, is

(16) s3α
3 + s2α

2 + s1α + s0 = 0,

where

(17)

s3 = f3(Xy + g3Xz),
s2 = (f ′

3 + f1 − 2f2
3 + f2g3)X − f3Xx −AXy−

− (f3B + g3A)Xz + f3(Yy + g3Yz),
s1 = (Ax + f2B − 5f3A)X −AXx −ABXz−

− (f ′
3 + f1 + f2

3 + f2g3)Y + f3Yx + AYy + (f3B + g3A)Yz,
s0 = −3A2X − (Ax + f3A + f2B)Y + AYx + ABYz,

and

(18) A = f0(x) + yf1(x) + zf2(x), B = g0(x) + yg1(x) + zg2(x).

The slope functions (α, β) depend on one of the three integration constants
c1, c2, c3 introduced by the general solution (10) of the system (9). This
is so because, in the case of three-parametric families of orbits (see (2)), we
firstly calculate the vector δ̄ from (1) and we see that only one integration
constant, i.e. c3, is included in it. Then we estimate (α, β) from (1) and
we find them as a function of one of the integration constants. Moreover, if
the “slope functions” (α, β) do depend on one of the integration constants,
i.e. c3, then we can find the analytic expression of surfaces in the solved form
f(x, y, z, c3) = c1, g(x, y, z, c3) = c2 integrating the system of ODEs (11).
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On the other hand, the above coefficients must be independent of the in-
tegration constants. They are expressed in terms of the functions fi, gk,
i, k ∈ {0, 1, 2, 3}, and the components of the force field (X, Y, Z), which
depend only on the Cartesian coordinates x, y, z. In order to satisfy the
algebraic equations (14) and (16) for all solutions of the system (9), we must
have:

(19) r2 = r1 = r0 = 0 and s3 = s2 = s1 = s0 = 0.

Our problem then is: “Given the system of ODEs (9), examine if the seven
PDEs (19) in the three unknown functions X, Y, Z are compatible”. To this
end, we start with the equations r2=0 and s3=0 which seem to be the simplest
ones. We determine the quantity

(20) D0 = f2
3 + (g′3 + g1 + g2g3)2

and we distinguish two cases: D0=0 and D0 6=0.

3.1. The case D0=0. If D0=0, then r2=0 and the coefficient r1 reads

(21) (Bx + g2B)X = 0.

Then we check the function

(22) D1 = (g′0 + g0g2)2 + (g′1 + g1g2)2 + (g′2 + g1g2)2.

If D1=0, then the coefficient r0 reads

(23) AZ = g3AY + ABX.

Before simplifying the last equation with A, we check if, for the given functions
f0(x), f1(x) and f2(x), A is zero or not. Equivalently we can check if the
expression

(24) D2 = f2
0 + f2

1 + f2
2

becomes zero or not. If the answer is positive, then we have A=0 and we have
to change the pair of the “slope functions” (α, β). If the answer is negative,
then we can proceed as follows: We eliminate the quantity A from (23) and
we consider the equation

(25) Z = BX + g3Y.

The expression of s3 becomes identically zero and the other three remaining
equations provide us with the results:

(26)
A(Xy + g3Xz) = (f1 + f2g3)X,
(Ax + f2B)X −A(Xx + BXz) + A(Yy + g3Yz) = (f1 + f2g3)Y,
A(Yx + BYz) = 3A2X + (Ax + f2B)Y.

Example 1. We select the functions

(27) f0(x) = k0, f1(x) = −g3(x)f2(x) = k1, f2(x) = k2, f3(x) = 0,
g0(x) = g1(x) = g2(x) = 0, g3(x) = g30 = const.,



170 T. Kotoulas and N.D. Caranicolas 6

where k0, k1, k2 = const. This selection leads to B=0. From the system of
equations (25) and (26) we determine the force field

(28)
X = R(u),
Y = 3x(k0 + k1y + k2z)R(u) + W (u),
Z = g30Y,

where R, W are arbitrary functions of their common argument u = z − g30y.
The system of ODEs (9) becomes

(29) y′′(x) = k0 + (z − g30y)k2, z′(x) = g30y
′(x),

and its solution is

(30) y − 1
2
(k0 + (z − g30y)k2)x2 − c3x = c1, z − g30y = c2

which is compatible with the force field (28).

Example 2. We select the functions

(31) f0(x) = 1
x , f1(x) = f2(x) = f3(x) = 0,

g0(x) = g1(x) = g2(x) = 0, g3(x) = g30 = const.

This selection leads to B=0. In this case we did not manage to solve ana-
lytically the system of equations (25) and (26). Thus we found a particular
solution, namely the force field

(32)

X = −d1
x + d2,

Y = d2y+p0−3d1 log x
x + 3d2,

Z = g30Y,

where d1, d2, p0 are constants. The system of ODEs (9) becomes

(33) y′′(x) =
1
x

, z′(x) = g30y
′(x),

and its general solution is

(34) y − x(log x − 1 + c3) = c1, z − g30y = c2

which is compatible with the force field (32). We note here that c1, c2, c3

are the integration constants and they are different from the other constants
d1, d2, p0.

We shall now examine the case if D1 6=0. Then, from (21), we obtain that

(35) X = 0.

This result leads to the fact that the coefficients r2, s3 and s2 are identically
zero and the other three remaining equations, i.e., r0=0, s1=0, s0=0, give rise
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to:

(36)
AZ = (Bx + g2B + g3A)Y,
A(Yy + g3Yz) = (f1 + f2g3)Y,
A(Yx + BYz) = (Ax + f2B)Y.

Example 3. We are given the functions

(37) f0(x) = x, f1(x) = −g3(x)f2(x), f2(x) = 1, f3(x) = 0,
g0(x) = x, g1(x) = −1, g2(x) = −1, g3(x) = −1 + d1ex,

where d1 =const. The function g3 is selected so that the expression of D0 in
(20) becomes zero. From the system of equations (35) and (36) we determine
the force field

(38)
X = 0,
Y = x + z − g3(x)y,
Z = 1 + (−2 + d1ex)x − d2

1e
2xy + d1ex(2y + z).

The system of ODEs (9) becomes

(39) y′′(x) = x − g3(x)y + z, z′(x) = x − y − z + g3(x)y′.

Although we cannot find analytically the solution of the system (39), we can
assert that all the unknown to us solutions represent orbits generated by the
force field (38).

3.2. The case D0 6=0. Then we specify two cases: f3 =0 and f3 6= 0.

3.2.1. The case f3=0. Then the expression

(40) E1 = g′3 + g1 + g2g3

is not zero. Thus, from the relation r2=0, we obtain

(41) X = 0.

Having fixed that f3=0 and X=0, from r1=0 we obtain

(42) Y = 0.

With X=0 and Y =0, the equation r0=0 gives

(43) AZ = 0.

Consequently, if A=0, or equivalently f2
0 +f2

1 +f2
2 =0, then Z is free. Otherwise,

Z=0 which is trivial.

3.2.2. The case f3 6=0. If this is so, then we have to check the expression
E1 in (40). If E1 6= 0, then, from the equation r2=0, we obtain

(44) X = 0.
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Proceeding in a similar way and using the result (44), the relation r1=0 gives
us

(45) f3Z = (g′3 + g1 + g2g3 + f3g3)Y,

and from the last one, i.e., r0=0, we get

(46) AZ = (Bx + g2B + g3A)Y.

We examine now the other equations si=0, i ∈ {0, 1, 2, 3}. The expression of
s3 becomes identically zero, since X=0 and f3 6= 0. The other three remaining
equations take simpler forms as follows:

(47)
Yy + g3Yz = 0,
f3Yx + AYy + (g3A + f3B)Yz = (f1 + f2

3 + f ′
3 + f2g3)Y,

A(Yx + BYz) = (Ax + f3A + f2B)Y.

Example 4. We consider the functions

(48)
f0(x) = 1

x2 , f1(x) = f0(x), f2(x) = 0, f3(x) = −xf0(x),
g0(x) = 1

x , g1(x) = g0(x), g2(x) = g3(x) = 0.

From the system of equations (44)–(47) we determine the force field

(49) X = 0, Y =
d0

x3
, Z = −d0

x3
, d0 = const.

The system of ODEs (9) becomes

(50) y′′(x) =
1
x2

(1 + y(x) − xy′(x)), z′(x) =
1
x

(1 + y′(x)).

In this case we can find analytically its solution. This is

(51)

1
2(xy − xz + x + c3x) = c1,

y+z+1−c3
2x = c2,

and we can check directly that the system (51) combining with the force field
(49) satisfies the equations (4) and (5).

Example 5. We consider the functions

(52)
f0(x) = 2x

x2+1
, f1(x) = f2(x) = 0, f3(x) = f0(x),

g0(x) = 1 − x2, g1(x) = g2(x) = 0, g3(x) = g0(x).

From the system of equations (44)–(47) we determine the force field

(53) X = 0, Y = d0x, Z = −2d0x
3, d0 = const.

The system of ODEs (9) becomes

(54) y′′(x) =
2x

1 + x2
(1 + y′(x)), z′(x) = (1 − x2)y′(x).
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In this case we can find analytically its solution. This is

(55) y + x − c3x − c3
x3

3 = c1,

z − c3x + c3
x5

5 = c2.

3.2.3. The subcase E1=0. Then the expression of r2 becomes identically
zero, and from the equation s3=0 we obtain

(56) Xy + g3Xz = 0.

We shall use this result in what follows. The equations r1=0 and r0=0 get a
simpler form, more exactly

(57) (Bx + (g2 − f3)B)X − f3g3Y + f3Z = 0,
ABX + (Bx + g2B + g3A)Y −AZ = 0.

As we have explained above, we have s3=0. Then we have to consider again
three equations, namely, s2=0, s1=0, s0=0, which are

(f ′
3 + f1 − 2f2

3 + f2g3)X − f3Xx − f3BXz + f3(Yy + g3Yz) = 0,
(Ax + f2B − 5f3A)X −AXx −ABXz

−(f ′
3 + f1 + f2

3 + f2g3)Y + f3Yx + AYy + (f3B + g3A)Yz = 0,
−3A2X − (Ax + f3A + f2B)Y + AYx + ABYz = 0.

We offer now the last example which completes this case.

Example 6. We consider the functions

(58)
f0(x) = f1(x) = f2(x) = 0, f3(x) = 1

x(1+x2)
,

g0(x) = g1(x) = g2(x) = 0, g3(x) = g30 = const.

From the system of equations (56)–(58) we determine the force field

(59) X =
R(u)
x3

, Y =
W (u)

(1 + x2)3/2
, Z = g30Y (x, y, z),

where R and W are arbitrary functions in the argument u = z − g30y. The
system of ODEs (9) becomes

(60) y′′(x) = f3(x)y′(x), z′(x) = g30y
′(x),

and has the general solution:

(61) y − c3

√
1 + x2 = c1, z − g30y = c2.

In Figure 1 we present an orbit in 3D-space which is one member of the family
(61). The values of parameters are: c1=1, c2=2, c3=1.5, g30=2.
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Fig. 3.1 – One representative orbit which belongs to the family (61) (Example 6). The
values of parameters are: c1=1, c2=2, c3=1.5, g30=2.

4. CONCLUSIONS

Our work is based on a recent paper of Bozis and Borghero (2008). The
authors considered the planar version of the problem and they showed that
the two-parametric set of all solutions of any linear ODE of second order
y′′ + a(x)y′ + b(x)y = f(x) can be considered as a set of orbits traced by a
material point of unit mass, in the presence of at least one autonomous force
field F̄ (X,Y ), for adequate initial conditions. They found several interesting
examples too. Following their idea, we have studied three-dimensional force
fields which are compatible with three-parametric families of spatial orbits. We
have proved that in any case we can find such a field although the equations
of orbits is not given in advance; only the system of two ODEs which accept
as solutions these orbits is given. This set of ODEs (see (9)) is not expected to
can be solved analytically. So, a force field may be taught of as a “mechanical
device” to produce solutions of solvable or non solvable ODE.

We have examined all the cases, starting with the simplest one and tested
the other subcases, also presenting a suitable example. In the most cases we
managed to solve analytically the system of equations (9) and to verify our
examples. The only exception was Example 3 in which the general solution
of the system (9) was not found although we had calculated the correspond-
ing force-field analytically. In all cases the set of orbits is three-parametric;
we have determined the components of the force field through differential
equations. The generalized force fields which are solutions to this problem
must be independent of any integration constants, because they produce the
corresponding three-parametric family of orbits. In each example the three-
parametric family of orbits and the corresponding force field verify the set of
equations (4) and (5). We note here that an interesting point is the study of
potentials which admit three-parametric families of orbits. Since the calcula-
tions are more complex than in the planar problem, we may look at this topic
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in a future work. For all calculations in our paper we have used Mathematica
6.0.
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