
MATHEMATICA, Tome 52 (75), No 2, 2010, pp. 153–164

ON NON-NORMALIZED SUBORDINATION CHAINS IN Cn

IAN GRAHAM, HIDETAKA HAMADA and GABRIELA KOHR

Abstract. In this paper we consider non-normalized univalent subordination
chains f(z, t) = exp(

R t

0
A(τ)dτ)z + · · · and we present the connection with the

notion of generalized A-asymptotic spirallikeness on the Euclidean unit ball Bn

in Cn, where A : [0,∞) → L(Cn, Cn) is a measurable operator that satisfies
certain natural conditions.
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1. INTRODUCTION AND PRELIMINARIES

Let Cn denote the space of n complex variables z = (z1, . . . , zn) with the
Euclidean inner product 〈z, w〉 =

∑n
j=1 zjwj and the Euclidean norm ‖z‖ =

〈z, z〉1/2. The open ball {z ∈ Cn : ‖z‖ < r} is denoted by Bn
r and the unit

ball Bn
1 is denoted by Bn. In the case of one complex variable, B1 is the unit

disc U .
Let L(Cn, Cm) be the space of linear and continuous operators from Cn into

Cm with the standard operator norm and let In be the identity in L(Cn, Cn).
If Ω ⊆ Cn is a domain, let H(Ω) be the set of holomorphic mappings from Ω
into Cn. If Ω is a domain in Cn which contains the origin and f ∈ H(Ω), we
say that f is normalized if f(0) = 0 and Df(0) = In. Let S(Bn) be the set of
normalized biholomorphic mappings on Bn.

If A ∈ L(Cn, Cn), let m(A) = min{<〈A(z), z〉 : ‖z‖ = 1} and k(A) =
max{<〈A(z), z〉 : ‖z‖ = 1}. Also let k+(A) = max{<λ : λ ∈ σ(A)} be the
upper exponential index of A, where σ(A) is the spectrum of A. It is known

that k+(A) = lim
t→∞

ln ‖etA‖
t

(see [2]; see also [24]).
In this paper we use measurable linear operators that satisfy the assump-

tions of Definition 1.1. We remark that the condition (1.1) is satisfied if A(t)
is constant or if A(t) is diagonal (for further details see [9]).
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Definition 1.1. Let A : [0,∞) → L(Cn, Cn) be a measurable mapping
such that m(A(t)) > 0 for t ≥ 0 and

∫ ∞
0 m(A(t))dt = ∞. Moreover, assume

that ‖A(·)‖ is uniformly bounded on [0,∞) and

(1.1)
∫ t

s
A(τ)dτ ◦

∫ s

r
A(τ)dτ =

∫ s

r
A(τ)dτ ◦

∫ t

s
A(τ)dτ, t ≥ s ≥ r ≥ 0.

Note that the condition (1.1) implies the following relation (see [9]):

A(t) ◦
∫ t

0
A(τ)dτ =

∫ t

0
A(τ)dτ ◦ A(t), a.e. t ∈ [0,∞).

We shall need the estimates (1.2) and (1.3) related to an operator A that
satisfies the assumptions of Definition 1.1 (see [9, Remark 1.6 (v)]).

Lemma 1.2. Let A : [0,∞) → L(Cn, Cn) satisfy the conditions in Definition
1.1. Then

(1.2) e
R t

s m(A(τ))dτ ≤ ‖e
R t

s A(τ)dτ (u)‖ ≤ e
R t

s k(A(τ))dτ , t ≥ s ≥ 0, ‖u‖ = 1,

(1.3) e−
R t

s k(A(τ))dτ ≤ ‖e−
R t

s A(τ)dτ (u)‖ ≤ e−
R t

s m(A(τ))dτ , t ≥ s ≥ 0, ‖u‖ = 1.

The following family of holomorphic mappings on Bn occurs in our discus-
sion:

N =
{

h ∈ H(Bn) : h(0) = 0, <〈h(z), z〉 > 0, z ∈ Bn \ {0}
}

.

For various applications of this family in the study of biholomorphic mappings
on the unit ball Bn see [6], [10], [11], [17], [22], [25].

Definition 1.3. (i) If f, g ∈ H(Bn), we say that f is subordinate to g
(f ≺ g) if there is a Schwarz mapping v (i.e. v ∈ H(Bn) and ‖v(z)‖ ≤ ‖z‖ for
z ∈ Bn) such that f = g ◦ v.

(ii) A mapping f : Bn × [0,∞) → Cn is called a subordination chain if
f(·, t) is holomorphic on Bn, f(0, t) = 0 for t ≥ 0, and f(·, s) ≺ f(·, t),
0 ≤ s ≤ t < ∞. In addition, if f(·, t) is biholomorphic on Bn for t ≥ 0, we
say that f(z, t) is a univalent subordination chain. If f(z, t) is a univalent
subordination chain such that Df(0, t) = etIn for t ≥ 0, we say that f(z, t) is
a normalized univalent subordination chain (Loewner chain).

The above subordination condition implies the existence of a Schwarz map-
ping v = v(z, s, t), called the transition mapping associated with f(z, t), such
that f(z, s) = f(v(z, s, t), t) for z ∈ Bn and 0 ≤ s ≤ t < ∞.

Lemma 1.4 below was essentially proved in [9, Theorems 2.1 and 2.3]. The
argument that f(z, ·) is locally Lipschitz continuous on [0,∞) locally uniformly
with respect to z ∈ Bn can be found in the proof of [9, Theorem 2.6] (see also
the proof of [8, Theorem 2.8]). The Loewner differential equation (1.7) was
deduced in [6, Theorem 1.4]. Lemma 1.4 is a generalization of [8, Theorems
2.1 and 2.3] (in the case A(t) ≡ A), [17, Theorem 2.1] and [6, Theorem 1.4]
(in the case A(t) ≡ In). In the case of one complex variable, see [18].
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Lemma 1.4. Let A : [0,∞) → L(Cn, Cn) satisfy the conditions in Definition
1.1. Assume that

(1.4) sup
s≥0

∫ ∞

s
‖e

R t
s [A(τ)−2m(A(τ))In]dτ‖dt < ∞.

Also let h = h(z, t) : Bn × [0,∞) → Cn be a mapping which satisfies the
following conditions:

(i) ht(·) = h(·, t) ∈ N and Dh(0, t) = A(t) for t ≥ 0.
(ii) h(z, ·) is measurable on [0,∞) for z ∈ Bn.

Then for each s ≥ 0 and z ∈ Bn, the initial value problem

(1.5)
∂v

∂t
= −h(v, t) a.e. t ≥ s, v(z, s, s) = z,

has a unique solution v = v(z, s, t) such that v(·, s, t) is a univalent Schwarz
mapping, v(z, s, ·) is Lipschitz continuous on [s,∞) locally uniformly with re-
spect to z ∈ Bn, and Dv(0, s, t) = exp(−

∫ t
s A(τ)dτ) for t ≥ s ≥ 0. In addition,

there exists the limit

(1.6) lim
t→∞

e
R t
0 A(τ)dτv(z, s, t) = f(z, s)

locally uniformly on Bn for each s ≥ 0, and f(z, t) is a univalent subordination
chain such that f(z, s) = f(v(z, s, t), t) for z ∈ Bn and 0 ≤ s ≤ t < ∞. Also,
{e−

R t
0 A(τ)dτf(·, t)}t≥0 is a normal family on Bn, Df(0, t) = e

R t
0 A(τ)dτ , t ≥ 0,

f(z, ·) is locally Lipschitz continuous on [0,∞) locally uniformly with respect
to z ∈ Bn, and

(1.7)
∂f

∂t
(z, t) = Df(z, t)h(z, t), a.e. t ≥ 0, ∀z ∈ Bn.

Definition 1.5. (i) A mapping h(z, t) which satisfies the assumptions (i)
and (ii) of Lemma 1.4 will be called a generating vector field (cf. [1] and [3]).

(ii) The univalent subordination chain f(z, t) given by (1.6) will be called
the canonical solution of the Loewner differential equation (1.7).

(iii) Let g(z, t) : Bn × [0,∞) → Cn be a mapping such that g(·, t) ∈ H(Bn),
g(0, t) = 0, t ≥ 0, and g(z, ·) is locally absolutely continuous on [0,∞) locally
uniformly with respect to z ∈ Bn. Assume that g(z, t) satisfies the Loewner
differential equation (1.7). In this case, g(z, t) will be called a standard solution
of the Loewner differential equation (1.7).

(iv) Let A : [0,∞) → L(Cn, Cn) be a measurable operator that satisfies
the assumptions of Definition 1.1. A mapping f ∈ S(Bn) has a generalized
parametric representation with respect to A if there exists a generating vector
field h(z, t) such that

f(z) = lim
t→∞

e
R t
0 A(τ)dτv(z, t)

locally uniformly on Bn, where v(z, t) = v(z, 0, t) and v(z, s, t) is the unique
solution of the initial value problem (1.5) (see [9]; see also [8] in the case
A(t) ≡ A; [7] and [20, 21] in the case A(t) ≡ In).
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Remark 1.6. (i) The condition (1.4) is satisfied if there is η > 0 such that

(1.8) k(A(t)) − 2m(A(t)) ≤ −η, t ∈ [0,∞).

Indeed, in view of the conditions (1.1) and (1.2), we deduce that

‖e
R t

s [A(τ)−2m(A(τ))In]dτ‖ ≤ e
R t

s [k(A(τ))−2m(A(τ))]dτ ≤ e−η(t−s).

(ii) If A(t) ≡ A is a constant operator, then the condition (1.4) reduces to∫ ∞

0
‖e(A−2m(A)In)t‖dt < ∞.

The above condition is also equivalent to k+(A) < 2m(A) (see [3]).

The following result provides a sufficient condition for a standard solution
to be the canonical solution of (1.7) (see [9, Theorem 2.5]). Note that Lemma
1.7 is a generalization of [8, Theorem 2.6] and [17, Theorems 2.2 and 2.3].

Lemma 1.7. Let A : [0,∞) → L(Cn, Cn) satisfy the condition (1.4) and
the assumptions of Definition 1.1. Let h = h(z, t) : Bn × [0,∞) → Cn be a
generating vector field such that Dh(0, t) = A(t), t ≥ 0. Also let f = f(z, t) :
Bn × [0,∞) → Cn be a standard solution of the Loewner differential equation
(1.7) such that Df(0, t) = e

R t
0 A(τ)dτ for t ≥ 0, and {e−

R t
0 A(τ)dτf(·, t)}t≥0 is

a normal family on Bn. Then f(z, t) coincides with the canonical solution of
the Loewner differential equation (1.7).

We next present the notion of generalized spirallikeness (see [9]).

Definition 1.8. Let A : [0,∞) → L(Cn, Cn) be a locally Lebesgue inte-
grable mapping such that m(A(t)) > 0 for t ≥ 0. Also let Ω be a domain
in Cn which contains the origin. We say that Ω is generalized spirallike with
respect to A if e−

R t
s A(τ)dτ (w) ∈ Ω for all w ∈ Ω and t ≥ s ≥ 0. A map-

ping f ∈ S(Bn) is called generalized spirallike with respect to A if f(Bn) is a
generalized spirallike domain with respect to A.

We remark that if A(t) is a constant linear operator in Cn, then Definition
1.8 reduces to the usual definition of spirallikeness (see [25]). On the other
hand, if A(t) ≡ In, we obtain the usual notion of starlikeness (see [5], [10],
[25]). Various results concerning spirallike mappings with respect to constant
linear operators may be found in [4], [12, 13, 14, 15, 16], [22, 23, 24, 25].

The authors [9] proved the following characterization of generalized spiral-
likeness in terms of univalent subordination chains.

Lemma 1.9. Let A : [0,∞) → L(Cn, Cn) be a locally Lebesgue integrable
mapping which satisfies the condition (1.1). Assume that m(A(t)) > 0 for
t ≥ 0. Let f : Bn → Cn be a normalized holomorphic mapping. Then f is
generalized spirallike with respect to A if and only if f(z, t) = e

R t
0 A(τ)dτf(z) is

a univalent subordination chain.
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We conclude this section with the notion of generalized asymptotic spiral-
likeness with respect to a measurable linear operator. This notion is a gener-
alization of asymptotic starlikeness and spirallikeness (see [7, 8]; cf. [20, 21]).

Definition 1.10. Let Ω ⊆ Cn be a domain which contains the origin and
let A : [0,∞) → L(Cn, Cn) be a measurable mapping which satisfies the
conditions in Definition 1.1. We say that Ω is generalized A-asymptotically
spirallike if there exists a mapping Q = Q(z, t) : Ω × [0,∞) → Cn, which
satisfies the following conditions:

(i) Q(·, t) ∈ H(Ω), Q(0, t) = 0, DQ(0, t) = A(t), t ≥ 0, and {Q(·, t)}t≥0 is
a locally uniformly bounded family on Ω;

(ii) Q(z, ·) is measurable on [0,∞) for all z ∈ Ω;
(iii) The initial value problem

(1.9)
∂w

∂t
= −Q(w, t) a.e. t ≥ s, w(z, s, s) = z,

has a unique solution w = w(z, s, t) for each z ∈ Ω and s ≥ 0, such that
w(·, s, t) is a holomorphic mapping of Ω into Ω for t ≥ s, w(z, s, ·) is
locally absolutely continuous on [s,∞) locally uniformly with respect
to z ∈ Ω for s ≥ 0, and there exists a sequence {tµ}µ∈N, 0 < tµ → ∞,
such that

lim
µ→∞

e
R tµ
0 A(τ)dτw(z, 0, tµ) = z

locally uniformly on Ω.
A domain Ω ⊆ Cn, which contains the origin, is called generalized asymptot-

ically spirallike if there exists a measurable operator A : [0,∞) → L(Cn, Cn),
which satisfies the conditions in Definition 1.1, such that Ω is generalized
A-asymptotically spirallike.

Note that if A(t) ≡ A ∈ L(Cn, Cn) in Definition 1.10, then Ω is asymp-
totically spirallike (see [8]). Also, if A(t) ≡ In in Definition 1.10, then Ω is
asymptotically starlike (see [6, Definition 2.1] and [21, Definition 3] in the case
of the maximum norm).

Definition 1.11. Let f ∈ S(Bn) and let A : [0,∞) → L(Cn, Cn) be
a measurable mapping which satisfies the conditions in Definition 1.1. We
say that f is generalized A-asymptotically spirallike (generalized asymptoti-
cally spirallike) if f is biholomorphic on Bn and f(Bn) is a generalized A-
asymptotically spirallike (generalized asymptotically spirallike) domain. In
particular, if A(t) ≡ A ∈ L(Cn, Cn), we say that f is A-asymptotically spiral-
like, and if A(t) ≡ In, we say that f is asymptotically starlike.

Remark 1.12. (i) The notion of asymptotic starlikeness was introduced
by Poreda [21] in the case of the maximum norm in Cn, and by Graham,
Hamada, Kohr and Kohr [7] in the case of the Euclidean norm. The authors [7]
proved that asymptotic starlikeness is equivalent to the notion of parametric
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representation: f ∈ S(Bn) is asymptotically starlike if and only if f has
parametric representation, i.e. there exists a Loewner chain f(z, t) such that
{e−tf(·, t)}t≥0 is a normal family on Bn and f = f(·, 0) (see [6], [10, 11]; cf.
[20, 21]). Also, the authors [8] proved that if A ∈ L(Cn, Cn) is such that
k+(A) < 2m(A), then a mapping f ∈ S(Bn) is A-asymptotically spirallike
if and only if there exists a univalent subordination chain f(z, t) such that
Df(0, t) = eAt, {e−Atf(·, t)}t≥0 is a normal family on Bn and f = f(·, 0).

(ii) If Q(·, t) = A(t) for t ≥ 0, in Definition 1.10, where A : [0,∞) →
L(Cn, Cn) is a measurable mapping which satisfies the conditions in Definition
1.1, then Ω is generalized spirallike with respect to A. In particular, if Q(·, t) ≡
A ∈ L(Cn, Cn) in Definition 1.10, where m(A) > 0, then Ω is spirallike,
and if Q(·, t) ≡ In, then Ω is starlike. Indeed, taking into account (1.1), we
deduce that the initial value problem (1.9) has the unique solution w(z, s, t) =
e−

R t
s A(τ)dτ (z) such that w(z, s, t) ∈ Ω, z ∈ Ω, t ≥ s. Hence Ω is generalized

spirallike with respect to A.
(iii) Conversely, if Ω is a generalized spirallike domain with respect to a

measurable operator A : [0,∞) → L(Cn, Cn) which satisfies the assumptions
of Definition 1.1, then Ω is generalized A-asymptotically spirallike. Indeed, let
Q(·, t) = A(t) for t ≥ 0. Then Q(·, t) ∈ H(Ω), Q(0, t) = 0, DQ(0, t) = A(t) for
t ≥ 0, and it is not difficult to deduce that the initial value problem

∂w

∂t
(z, s, t) = −A(t)w(z, s, t), w(z, s, s) = z,

has the unique solution w(z, s, t) = e−
R t

s A(τ)dτ (z), for all z ∈ Ω and t ≥ s ≥ 0.
Then w(·, s, t) is a holomorphic mapping of Ω into Ω, since Ω is generalized
spirallike with respect to A, w(z, s, ·) is locally Lipschitz continuous on [s,∞)
locally uniformly with respect to z ∈ Ω, since ‖A(·)‖ is uniformly bounded on
[0,∞), and e

R t
0 A(τ)dτw(z, 0, t) = z for z ∈ Ω and t ≥ 0. Hence Ω is generalized

A-asymptotically spirallike.

In this paper, we give an answer to the following question (cf. [8]):

Question 1.13. Does there exist a connection between non-normalized uni-
valent subordination chains and generalized asymptotic spirallikeness?

2. MAIN RESULTS

In this section we consider the connection between univalent subordina-
tion chains and generalized asymptotically spirallike mappings. The follow-
ing result provides examples of generalized asymptotically spirallike mappings
that can be imbedded in non-normalized univalent subordination chains which
satisfy the assumptions of Lemma 1.4. This result was obtained in [8] for
Dh(0, t) = A ∈ L(Cn, Cn), t ≥ 0; in [7] for Dh(0, t) = In, t ≥ 0 (in the
Euclidean case), and in [21, Theorem 1] (in the case of the maximum norm).
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Theorem 2.1. Let A : [0,∞) → L(Cn, Cn) be a measurable mapping which
satisfies the assumptions of Definition 1.1 and the condition (1.4). Let h =
h(z, t) : Bn×[0,∞) → Cn be a generating vector field such that Dh(0, t) = A(t)
for t ≥ 0. Also let f(z, t) be the canonical solution of the Loewner differential
equation (1.7) and let f = f(·, 0). Then f is generalized A-asymptotically
spirallike.

Proof. Let Ω = f(Bn). In view of (1.6), f(z, s) = limt→∞ e
R t
0 A(τ)dτv(z, s, t)

locally uniformly on Bn for s ≥ 0, where v = v(z, s, t) is the unique solution
of the initial value problem (1.5) such that v(z, s, ·) is Lipschitz continuous on
[s,∞), v(·, s, t) is a univalent Schwarz mapping and Dv(0, s, t) = e−

R t
s A(τ)dτ .

Now, let Q : Ω × [0,∞) → Cn be given by Q(w, t) = Df(z)h(z, t) for
w = f(z) ∈ Ω and t ≥ 0. Then Q(·, t) ∈ H(Ω), Q(0, t) = 0, DQ(0, t) = A(t)
for t ≥ 0. It is clear that Q(w, ·) is measurable on [0,∞) for w ∈ Ω by the
measurability of h(z, ·) on [0,∞) for z ∈ Bn. Since h(·, t) ∈ N , Dh(0, t) = A(t)
and ‖A(·)‖ is uniformly bounded on [0,∞), we deduce in view of [8, Lemma
1.2] (see also [9]) that for each r ∈ (0, 1), there exists some L = L(r) > 0 such
that ‖h(z, t)‖ ≤ L(r), ‖z‖ ≤ r, t ≥ 0. Since f is uniformly bounded on each
closed ball Bn

r contained in Bn, we obtain in view of the above relation that
the family {Q(·, t)}t≥0 is locally uniformly bounded on Bn.

Further, let ν(w, s, t) = f(v(z, s, t)) for w = f(z) ∈ Ω and t ≥ s ≥ 0. Then
ν(·, s, t) is a holomorphic mapping of Ω into Ω, ν(0, s, t) = 0 and ν(f(z), s, ·) is
locally Lipschitz continuous on [s,∞) locally uniformly with respect to z ∈ Bn.
Taking into account (1.5), it is not difficult to deduce that ν = ν(f(z), s, t)
satisfies the initial value problem

(2.1)
∂ν

∂t
(f(z), s, t) = −Q(ν(f(z), s, t), t) a.e. t ≥ s, ν(f(z), s, s) = f(z),

for each z ∈ Bn and s ≥ 0. In view of the uniqueness of solutions to the initial
value problem (1.5), we deduce that the initial value problem (2.1) has the
unique locally absolutely continuous solution ν = ν(f(z), s, t) = f(v(z, s, t))
on [s,∞) for z ∈ Bn and t ≥ s ≥ 0.

Next, let v(z, t) = v(z, 0, t) for z ∈ Bn and t ≥ 0. Since f is normalized, f
has a power series expansion near the origin of the form

f(z) = z +
1
2
D2f(0)(z, z) + R(z),

where R(z)/‖z‖2 → 0 as ‖z‖ → 0. On the other hand, since m(A(t)) > 0 for
t ≥ 0,

∫ ∞
0 m(A(τ))dτ = ∞, and since

(2.2) ‖v(z, t)‖ ≤ e−
R t
0 m(A(τ))dτ ‖z‖

(1 − ‖z‖)2
, z ∈ Bn, t ≥ 0,

by [9, Theorem 2.1], we deduce that v(z, t) → 0 locally uniformly on Bn as
t → ∞. Moreover, taking into account the relation (1.4), we deduce that there
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exists a sequence {tµ}µ∈N such that 0 < tµ → ∞ and

‖e
R tµ
0 [A(τ)−2m(A(τ))In]dτ‖ → 0 as µ → ∞.

Then from (2.2) and the above relation, we obtain that

‖v(z, tµ)‖2‖e
R tµ
0 A(τ)dτ‖ ≤ ‖e

R tµ
0 [A(τ)−2m(A(τ))In]dτ‖ ‖z‖2

(1 − ‖z‖)4
→ 0

locally uniformly on Bn as µ → ∞. Therefore, we deduce that

lim
µ→∞

‖v(z, tµ)‖2e
R tµ
0 A(τ)dτ = 0

locally uniformly on Bn. Hence, by the inequality∥∥∥e
R tµ
0 A(τ)dτD2f(0)(v(z, tµ), v(z, tµ))

∥∥∥ ≤ ‖D2f(0)‖ · ‖e
R tµ
0 A(τ)dτ‖ · ‖v(z, tµ)‖2,

we deduce that limµ→∞ e
R tµ
0 A(τ)dτD2f(0)(v(z, tµ), v(z, tµ)) = 0 locally uni-

formly on Bn. Taking into account the above relations, we deduce that

lim
µ→∞

e
R tµ
0 A(τ)dτf(v(z, tµ))

= lim
µ→∞

e
R tµ
0 A(τ)dτv(z, tµ) + lim

µ→∞

{
e

R tµ
0 A(τ)dτ 1

2
D2f(0)(v(z, tµ), v(z, tµ))

+ e
R tµ
0 A(τ)dτ‖v(z, tµ)‖2 R(v(z, tµ))

‖v(z, tµ)‖2

}
= f(z)

locally uniformly on Bn. Hence e
R tµ
0 A(τ)dτν(w, 0, tµ) → w locally uniformly

on Ω as µ → ∞. Consequently, f(Bn) is a generalized A-asymptotically
spirallike domain, and since f ∈ S(Bn), we conclude that f is generalized
A-asymptotically spirallike, as desired. This completes the proof. �

Taking into account Theorem 2.1 and Lemma 1.7, we obtain the following
consequence, which provides examples of generalized A-asymptotically spiral-
like mappings that are generated by the solutions of (1.7).

Corollary 2.2. Let A : [0,∞) → L(Cn, Cn) satisfy the condition (1.4)
and the assumptions of Definition 1.1. Also let f(z, t) be the standard solution
of the Loewner differential equation (1.7) such that Df(0, t) = e

R t
0 A(τ)dτ for

t ≥ 0, and {e−
R t
0 A(τ)dτf(·, t)}t≥0 is a normal family on Bn. Then f(·, 0) is

generalized A-asymptotically spirallike.

We next consider the converse of Theorem 2.1. The following result was
obtained in [8] in the case A(t) ≡ A ∈ L(Cn, Cn), and in [7] in the case
A(t) ≡ In (cf. [21, Theorem 2]).

Theorem 2.3. Let A : [0,∞) → L(Cn, Cn) be a measurable mapping which
satisfies the assumptions of Definition 1.1 and the condition (1.4). Also let
f : Bn → Cn be a generalized A-asymptotically spirallike mapping and let
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Ω = f(Bn). Then there exists a univalent subordination chain f(z, t) such
that f = f(·, 0), Df(0, t) = e

R t
0 A(τ)dτ for t ≥ 0, and {e−

R t
0 A(τ)dτf(·, t)}t≥0 is

a normal family on Bn.

Proof. Let Q : Ω × [0,∞) → Cn be a mapping which satisfies the as-
sumptions of Definition 1.10 such that DQ(0, t) = A(t) for t ≥ 0. Also let
ν = ν(f(z), s, t) be the unique solution of the initial value problem

(2.3)
∂ν

∂t
= −Q(ν, t) a.e. t ≥ s, ν(f(z), s, s) = f(z),

for all z ∈ Bn and s ≥ 0, such that ν(·, s, t) is a holomorphic mapping of f(Bn)
into f(Bn), ν(0, s, t) = 0 for t ≥ s, and ν(f(z), s, ·) is locally absolutely con-
tinuous on [s,∞) locally uniformly with respect to f(z) ∈ f(Bn). Moreover,
we know that there exists a sequence {tµ}µ∈N, 0 < tµ → ∞, such that

(2.4) lim
µ→∞

e
R tµ
0 A(τ)dτν(w, 0, tµ) = w

locally uniformly on Ω = f(Bn).
Let v = v(z, s, t) be defined by v(z, s, t) = f−1(ν(f(z), s, t)), z ∈ Bn, t ≥ s.

Then v(·, s, t) is a holomorphic mapping of Bn into Bn such that v(0, s, t) = 0
for t ≥ s ≥ 0, and thus v(·, s, t) is a Schwarz mapping. Moreover, v(z, s, ·)
is locally absolutely continuous on [s,∞) locally uniformly with respect to
z ∈ Bn and v(z, s, s) = z for z ∈ Bn. In view of (2.4) and the fact that f is
normalized, we deduce as in the proof of Theorem 2.1 that the limit

(2.5) lim
µ→∞

e
R tµ
0 A(τ)dτv(z, 0, tµ) = f(z)

exists locally uniformly on Bn. Next, let h = h(z, t) : Bn × [0,∞) → Cn be
given by h(z, t) = [Df(z)]−1Q(f(z), t), z ∈ Bn, t ≥ 0. Then h(·, t) ∈ H(Bn),
h(0, t) = 0 for t ≥ 0, h(z, ·) is measurable on [0,∞) for z ∈ Bn, and since
DQ(0, t) = A(t) and f is normalized, it follows that Dh(0, t) = A(t) for t ≥ 0.
Taking into account (2.3), we deduce that

∂v

∂t
= −[Df(v(z, s, t))]−1Q(f(v(z, s, t)), t) = −h(v(z, s, t), t),

for almost all t ≥ s and for all z ∈ Bn. Hence v(z, s, t) is a solution of the
initial value problem

(2.6)
∂v

∂t
= −h(v, t) a.e. t ≥ s, v(z, s, s) = z,

for all s ≥ 0 and z ∈ Bn. By the uniqueness of solutions to (2.3), we deduce
that v(z, s, t) = f−1(ν(f(z), s, t)) is the unique locally absolutely continuous
solution on [s,∞) of (2.6).

Since the family {Q(·, t)}t≥0 is locally uniformly bounded on f(Bn), we
deduce by using arguments similar to those in the proof of [8, Theorem 3.5]
that <〈ht(z), z〉 ≥ 0, a.e. t ≥ 0, ∀z ∈ Bn. Now, since ht(0) = 0, Dht(0) = A(t)
and m(A(t)) > 0 for t ≥ 0, we obtain by the minimum principle for harmonic
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functions that <〈ht(z), z〉 > 0, a.e. t ≥ 0, ∀z ∈ Bn \{0}. Thus ht(·) = h(·, t) ∈
N for a.e. t ≥ 0. Next, taking into account Lemma 1.4, we deduce that

(2.7) lim
t→∞

e
R t
0 A(τ)dτv(z, s, t) = f(z, s)

exists locally uniformly on Bn for each s ≥ 0, and f(z, s) is a univalent subor-
dination chain such that Df(0, s) = e

R s
0 A(τ)dτ and {e−

R s
0 A(τ)dτf(·, s)}s≥0 is a

normal family on Bn. From (2.5) and (2.7) we deduce that f = f(·, 0). This
completes the proof. �

We next present the following result which provides an answer to the Ques-
tion 1.13 and also a geometric characterization of univalent subordination
chains. In particular, if A(t) ≡ A ∈ L(Cn, Cn), Corollary 2.4 below was ob-
tained in [8], and if A(t) ≡ In, see [7].

Corollary 2.4. Let A : [0,∞) → L(Cn, Cn) be a measurable mapping
which satisfies the assumptions of Definition 1.1 and the condition (1.4). Also
let f ∈ S(Bn). Then the following statements hold:

(i) The mapping f is generalized A-asymptotically spirallike if and only
if there exists a univalent subordination chain f(z, t) such that f =
f(·, 0), Df(0, t) = e

R t
0 A(τ)dτ for t ≥ 0, and {e−

R t
0 A(τ)dτf(·, t)}t≥0 is a

normal family on Bn.
(ii) The mapping f has a generalized parametric representation with respect

to A if and only if f is generalized A-asymptotically spirallike.

Proof. First, assume that f is generalized A-asymptotically spirallike. Then
the conclusion follows by Theorem 2.3. Conversely, assume that there ex-
ists a univalent subordination chain f(z, t) such that f = f(·, 0), Df(0, t) =
e

R t
0 A(τ)dτ for t ≥ 0, and {e−

R t
0 A(τ)dτf(·, t)}t≥0 is a normal family on Bn. In

view of the proof of [9, Theorem 2.6] and by Lemma 1.7, we deduce that
f(z, t) is the canonical solution of the Loewner differential equation (1.7).
Then f = f(·, 0) is generalized A-asymptotically spirallike by Theorem 2.1.

To prove the second statement, it suffices to combine Lemma 1.4, [9, The-
orem 2.6] and the first statement (see also [9, Corollary 2.7]). �

Finally, we consider the connection between univalence and generalized a-
asymptotic spirallikeness on the unit disc. We have (cf. [8])

Proposition 2.5. Let f : U → C be a normalized holomorphic function.
Then f ∈ S if and only if f is generalized a-asymptotically spirallike whenever
a : [0,∞) → C is a measurable function such that |a(·)| is uniformly bounded
on [0,∞) and <a(t) = 1 for almost all t ≥ 0.

Proof. Assume that a : [0,∞) → C is a measurable function which satisfies
the assumptions in the above statement. It suffices to show that if f ∈ S, then
f is generalized a-asymptotically spirallike. It is obvious that the condition
(1.4) holds. Since f ∈ S, it follows that f(z1) = lim

t→∞
etv(z1, t) locally uniformly
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on U , where v(z1, t) is the unique Lipschitz continuous solution on [0,∞) of
the initial value problem

∂v

∂t
= −vp(v, t) a.e. t ≥ 0, v(z1, 0) = z1,

for all z1 ∈ U . Here p(z1, t) is a holomorphic function of z1 ∈ U , p(0, t) = 1,
<p(z1, t) > 0 for t ≥ 0, and p(z1, t) is a measurable function of t ∈ [0,∞) (see
[18, 19] and [10]). Now, let u(z1, t) = et−

R t
0 a(τ)dτv(z1, t). Then u(z1, 0) = z1

and it is not difficult to deduce that u(z1, t) is the unique locally Lipschitz
continuous solution on [0,∞) of the initial value problem

∂u

∂t
= −uq(u, t) a.e. t ≥ 0, u(z1, 0) = z1,

where q(z1, t) = p(e
R t
0 a(τ)dτ−tz1, t) − 1 + a(t) for z1 ∈ U and t ≥ 0. Since

<a(t) = 1 for a.e. t ≥ 0, it follows that <q(z1, t) > 0 for a.e. t ≥ 0
and for all z1 ∈ U . Also q(0, t) = a(t) for t ≥ 0. Moreover, since f(z1) =
limt→∞ e

R t
0 a(τ)dτu(z1, t) locally uniformly on U , we deduce that f has a gener-

alized a-parametric representation, and thus f is generalized a-asymptotically
spirallike by Corollary 2.4 (ii). This completes the proof. �
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