STARLIKENESS CONDITIONS FOR DIFFERENTIABLE OPEN MAPPINGS IN THE PLANE

MIHAI CRISTEA

Abstract

We find starlikeness conditions for mappings defined on general simply connected domains $D \subset \mathbb{C}$. We extend results given by W.C. Royster [12], by P.T. Mocanu [8] for the unit ball and the results from [9], [10], [11] given for the ellipse. Our results improves the preceding theorems also by working with more general mappings, as the class of open, discrete mappings $f: D \rightarrow \mathbb{C}$, differentiable near ∂D and satisfying the differential condition (*) near ∂D. This class of mappings is larger than the class of C^{1} mappings $f: D \rightarrow \mathbb{C}$ satisfying condition (*) on D, as is required in [8], [9], [10], [11], [12].

MSC 2010. 30C45, 54C10.
Key words. Univalence and starlikeness, open, discrete mappings in plane.

The class
$F(D)=\{f: D \rightarrow \mathbb{C} \mid D \subset \mathbb{C}$ is a domain and f is continuous, open, discrete $\}$
is the topological model of the analytic functions, introduced in mathematics by S. Stoilow [13]. For such mappings, the set

$$
B_{f}=\{x \in D \mid f \text { is not a local homeomorphism in } x\}
$$

is an isolated set in D. Several of the classical theorems from complex analysis concerning univalence and the number of zeros hold for mappings from the class $F(D)$, as the univalence on the border theorem [3], [4], Rouché's theorem [2], Hurwitz's theorem [1], the argument principle [5], [6].

If $D \subset \mathbb{C}$ is a domain, $z \in D$ and $f: D \rightarrow \mathbb{C}$ is a map, we denote by $f_{F}^{\prime}(z)$ the Fréchet derivative of f in z. We shall need the following argument principle, which follows immediately from Theorem 3 in [7]:

Theorem 1. Let $D \subset \mathbb{C}$ be a Jordan domain bounded by a Jordan curve $\gamma:[0,1] \rightarrow \partial D, f \in C(\bar{D}, \mathbb{C}) \cap F(D), z_{0} \in D \backslash B_{f}$ such that $f^{-1}\left(f\left(z_{0}\right)\right) \cap \bar{D}=$ $\left\{z_{0}\right\}$, and $\Gamma=f \circ \gamma$ with Γ differentiable on $(0,1)$ and

$$
\operatorname{Im} \frac{\Gamma^{\prime}(t)}{\Gamma(t)-f\left(z_{0}\right)}>0 \text { on }(0,1)
$$

Then f is injective on D and $f(D)$ is a Jordan domain bounded by Γ which is starlike with respect to $f\left(z_{0}\right)$.

From this result we immediately obtain:

ThEOREM 2. Let $D \subset \mathbb{C}$ be a domain with the property that there exists Jordan domains $D_{p} \subset D$ bounded by Jordan curves $\gamma_{p}:[0,1] \rightarrow \partial D_{p}, p \in \mathbb{N}$ such that $D_{p} \nearrow D$. Let $f: D \cup \bigcup_{p=1}^{\infty} \partial D_{p} \rightarrow \mathbb{C}$ be continuous with $f \in F(D)$, and let $z_{0} \in D$ be such that $f^{-1}\left(f\left(z_{0}\right)\right)=\left\{z_{0}\right\}$ and $z_{0} \notin B_{f}$. Let $\Gamma_{p}=f \circ \gamma_{p}$ for $p \in \mathbb{N}$ and suppose that each curve Γ_{p} is differentiable on $(0,1)$ and

$$
\begin{equation*}
\operatorname{Im} \frac{\Gamma_{p}^{\prime}(t)}{\Gamma_{p}(t)-f\left(z_{0}\right)}>0 \tag{*}
\end{equation*}
$$

for every $t \in(0,1)$ and every $p \in \mathbb{N}$.
Then f is injective on D and $f(D)$ is starlike with respect to $f\left(z_{0}\right)$.
Proof. We see from Theorem 1 that each domain $f\left(D_{p}\right)$ is a Jordan domain bounded by the Jordan curve Γ_{p}, which is starlike with respect to $f\left(z_{0}\right)$ and f is injective on D_{p} for every $p \in \mathbb{N}$. It results that f is injective on D and $f(D)$ is starlike with respect to $f\left(z_{0}\right)$.

REMARK 1. Let $\gamma_{p}(t)=\left(x_{p}(t), y_{p}(t)\right), t \in[0,1], p \in \mathbb{N}, f=P+\mathrm{i} Q$, $f\left(z_{0}\right)=P_{0}+\mathrm{i} Q_{0}$. We have

$$
\begin{aligned}
& \Gamma_{p}^{\prime}(t)=f_{F}^{\prime}\left(\gamma_{p}(t)\right)\left(\gamma_{p}^{\prime}(t)\right)=\left(\begin{array}{cc}
\frac{\partial P}{\partial x}\left(\gamma_{p}(t)\right) & \frac{\partial P}{\partial y}\left(\gamma_{p}(t)\right) \\
\frac{\partial Q}{\partial x}\left(\gamma_{p}(t)\right) & \frac{\partial Q}{\partial y}\left(\gamma_{p}(t)\right)
\end{array}\right)\binom{x_{p}^{\prime}(t)}{y_{p}^{\prime}(t)} \\
= & \left(\frac{\partial P}{\partial x}\left(\gamma_{p}(t)\right) x_{p}^{\prime}(t)+\frac{\partial P}{\partial y}\left(\gamma_{p}(t)\right) y_{p}^{\prime}(t), \frac{\partial Q}{\partial x}\left(\gamma_{p}(t)\right) x_{p}^{\prime}(t)+\frac{\partial Q}{\partial y}\left(\gamma_{p}(t)\right) y_{p}^{\prime}(t)\right)
\end{aligned}
$$

for $t \in(0,1)$ and $p \in \mathbb{N}$.
Using the usual identification $(x, y) \rightarrow(x+i y)$, we see that

$$
\begin{aligned}
& \operatorname{Im} \frac{\Gamma_{p}^{\prime}(t)}{\Gamma_{p}(t)-f\left(z_{0}\right)}=\operatorname{Im} \frac{\left(\frac{\partial P}{\partial x}\left(\gamma_{p}(t)\right) x_{p}^{\prime}(t)+\frac{\partial P}{\partial y}\left(\gamma_{p}(t)\right) y_{p}^{\prime}(t)\right)}{\left(P\left(\gamma_{p}(t)\right)-P_{0}\right)+\mathrm{i}\left(Q\left(\gamma_{p}(t)\right)-Q_{0}\right)} \\
& +\operatorname{Im} \frac{\mathrm{i}\left(\frac{\partial Q}{\partial x}\left(\gamma_{p}(t)\right) x_{p}^{\prime}(t)+\frac{\partial Q}{\partial y}\left(\gamma_{p}(t)\right) y_{p}^{\prime}(t)\right)}{\left(P\left(\gamma_{p}(t)\right)-P_{0}\right)+\mathrm{i}\left(Q\left(\gamma_{p}(t)\right)-Q_{0}\right)} \\
& =\frac{\left(P\left(\gamma_{p}(t)\right)-P_{0}\right)\left(\frac{\partial Q}{\partial x}\left(\gamma_{p}(t)\right) x_{p}^{\prime}(t)+\frac{\partial Q}{\partial y}\left(\gamma_{p}(t) y_{p}^{\prime}(t)\right)\right)}{\left(P\left(\gamma_{p}(z)\right)-P_{0}\right)^{2}+\left(Q\left(\gamma_{p}(t)\right)-Q_{0}\right)^{2}} \\
& -\frac{\left(Q\left(\gamma_{p}(t)\right)-Q_{0}\right)\left(\frac{\partial P}{\partial x}\left(\gamma_{p}(t)\right) x_{p}^{\prime}(t)+\frac{\partial P}{\partial y}\left(\gamma_{p}(t)\right) y_{p}^{\prime}(t)\right)}{\left(P\left(\gamma_{p}(z)\right)-P_{0}\right)^{2}+\left(Q\left(\gamma_{p}(t)\right)-Q_{0}\right)^{2}}
\end{aligned}
$$

It results that condition (*) from Theorem 2 holds if Royster's condition (8.2) in [12]

$$
\begin{aligned}
& x_{p}^{\prime}(t)\left[\left(P\left(\gamma_{p}(t)-P_{0}\right)\right) \frac{\partial Q}{\partial x}\left(\gamma_{p}(t)\right)-\left(Q\left(\gamma_{p}(t)\right)-Q_{0}\right) \frac{\partial P}{\partial x}\left(\gamma_{p}(t)\right)\right] \\
& +y_{p}^{\prime}(t)\left[\left(P\left(\gamma_{p}(t)\right)-P_{0}\right) \frac{\partial Q}{\partial y}\left(\gamma_{p}(t)\right)-\left(Q\left(\gamma_{p}(t)\right)-Q_{0}\right) \frac{\partial P}{\partial y}\left(\gamma_{p}(t)\right)\right]>0
\end{aligned}
$$

holds for every $t \in(0,1)$ and every $p \in \mathbb{N}$.
P.T. Mocanu [8] introduced the operator $D f=z \frac{\partial f}{\partial z}-\bar{z} \frac{\partial f}{\partial \bar{z}}$, where

$$
\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-\mathrm{i} \frac{\partial f}{\partial y}\right), \quad \frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+\mathrm{i} \frac{\partial f}{\partial y}\right) .
$$

He proved in [8] that if $f \in C^{1}(B, \mathbb{C})$ is such that $f(0)=0, f(z) \neq 0$ for $z \neq 0, J_{f}(z) \neq 0$ on B and
(a)

$$
\operatorname{Re} \frac{D f(z)}{f(z)}>0 \text { on } B \backslash\{0\}
$$

then f is injective on B and $f(B)$ is starlike with respect to 0 .
Letting $f=P+\mathrm{i} Q$, condition (a) is equivalent to

$$
x\left(P \frac{\partial Q}{\partial y}-Q \frac{\partial P}{\partial y}\right)+y\left(Q \frac{\partial P}{\partial x}-P \frac{\partial Q}{\partial x}\right)>0 \text { on } B \backslash\{0\} .
$$

In the papers [9], [10], [11] there have been considered C^{1} mappings f : $E \rightarrow \mathbb{C}$ defined on the ellipse

$$
E=\left\{z=x+\mathrm{i} y \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}<1\right.\right\}
$$

and also the operator $D_{a, b} f=z \frac{\partial f}{\partial z}-\bar{z} \frac{\partial f}{\partial \bar{z}}$, where

$$
\frac{\partial f}{\partial z}=\frac{1}{2 a b}\left(a^{2} \frac{\partial f}{\partial x}-\mathrm{i} b^{2} \frac{\partial f}{\partial y}\right), \quad \frac{\partial f}{\partial \bar{z}}=\frac{1}{2 a b}\left(a^{2} \frac{\partial f}{\partial x}+\mathrm{i} b^{2} \frac{\partial f}{\partial y}\right) .
$$

It has been proved that if $f \in C^{1}(E, \mathbb{C})$ is such that $f(0)=0, f(z) \neq 0$ for $z \neq 0, J_{f}(z) \neq 0$ on E and

$$
\operatorname{Re} \frac{D f(z)}{f(z)}>0 \text { on } E \backslash\{0\},
$$

then f is injective on E and $f(E)$ is starlike with respect to 0 .
Letting $f=P+\mathrm{i} Q$, we see that condition (a^{\prime}) is equivalent to

$$
\frac{b}{a} x\left(P \frac{\partial Q}{\partial y}-Q \frac{\partial P}{\partial y}\right)+\frac{a}{b} y\left(Q \frac{\partial P}{\partial x}-P \frac{\partial Q}{\partial x}\right)>0 \text { on } E \backslash\{0\} .
$$

We shall generalize these results for more general mappings defined on more general domains.

Theorem 3. Let $D \subset \mathbb{C}$ be a domain with the property that there exist Jordan domains $D_{p} \subset D$, bounded by Jordan curves $\gamma_{p}:[0,1] \rightarrow \partial D_{p}$ which are differentiable on $(0,1)$ such that there exists differentiable mappings g_{p} : $\mathbb{C} \rightarrow \mathbb{C}$ such that $\gamma_{p}^{\prime}=g_{p} \circ \gamma_{p}$ on $(0,1)$ for every $p \in \mathbb{N}$ and $D_{p} \nearrow D$. Let $f: D \cup \bigcup_{p=1}^{\infty} \partial D_{p} \rightarrow \mathbb{C}$ be continuous with $f \in F(D), f$ differentiable on $\bigcup_{p=1}^{\infty} \partial D_{p}$, $z_{0} \in D \backslash B_{f}$, and $f^{-1}\left(f\left(z_{0}\right)\right)=\left\{z_{0}\right\}$. Denote $f=P+\mathrm{i} Q, f\left(z_{0}\right)=P_{0}+\mathrm{i} Q_{0}$ and $g_{p}=g_{1 p}+\mathrm{i} g_{2 p}$ for $p \in \mathbb{N}$. If the relation

$$
\begin{equation*}
\left(P-P_{0}\right)\left(\frac{\partial Q}{\partial x} g_{1 p}+\frac{\partial Q}{\partial y} g_{2 p}\right)-\left(Q-Q_{0}\right)\left(\frac{\partial P}{\partial x} g_{1 p}+\frac{\partial P}{\partial y} g_{2 p}\right)>0 \tag{1}
\end{equation*}
$$

holds on $\partial D_{p} \backslash\left\{\gamma_{p}(0)\right\}$ for every $p \in \mathbb{N}$, then f is injective on D and $f(D)$ is starlike with respect to $f\left(z_{0}\right)$.

Proof. Let $\gamma_{p}(t)=x_{p}(t)+\mathrm{i} y_{p}(t)$ for $t \in[0,1]$ and $p \in \mathbb{N}$, and $\Gamma_{p}=f \circ \gamma_{p}$ for $p \in \mathbb{N}$. Then Γ_{p} is continuous on $[0,1]$ and differentiable on $(0,1)$ for every $p \in \mathbb{N}$ and $x_{p}^{\prime}(t)=g_{1 p}\left(\gamma_{p}(t)\right), y_{p}^{\prime}(t)=g_{2 p}\left(\gamma_{p}(t)\right)$ for every $t \in(0,1)$ and every $p \in \mathbb{N}$. We have

$$
\begin{aligned}
& x_{p}^{\prime}(t)\left[\left(P\left(\gamma_{p}(t)\right)-P_{0}\right) \frac{\partial Q}{\partial x}\left(\gamma_{p}(t)\right)-\left(Q\left(\gamma_{p}(t)\right)-Q_{0}\right) \frac{\partial P}{\partial x}\left(\gamma_{p}(t)\right)\right] \\
& +y_{p}^{\prime}(t)\left[\left(P\left(\gamma_{p}(t)\right)-P_{0}\right) \frac{\partial Q}{\partial y}\left(\gamma_{p}(t)\right)-Q\left(\gamma_{p}(t)-Q_{0}\right) \frac{\partial P}{\partial y}\left(\gamma_{p}(t)\right)\right] \\
& =\left(P\left(\gamma_{p}(t)\right)-P_{0}\right)\left(\frac{\partial Q}{\partial x}\left(\gamma_{p}(t)\right) x_{p}^{\prime}(t)+\frac{\partial Q}{\partial y}\left(\gamma_{p}(t)\right) y_{p}^{\prime}(t)\right) \\
& -\left(Q\left(\gamma_{p}(t)\right)-Q_{0}\right)\left(\frac{\partial P}{\partial x}\left(\gamma_{p}(t)\right) \cdot x_{p}^{\prime}(t)+\frac{\partial P}{\partial y}\left(\gamma_{p}(t)\right) \cdot y_{p}^{\prime}(t)\right) \\
& =\left(P\left(\gamma_{p}(t)\right)-P_{0}\right)\left(\frac{\partial Q}{\partial x}\left(\gamma_{p}(t)\right) \cdot g_{1 p}\left(\gamma_{p}(t)\right)+\frac{\partial Q}{\partial y}\left(\gamma_{p}(t)\right) g_{2 p}\left(\gamma_{p}(t)\right)\right) \\
& -\left(Q\left(\gamma_{p}(t)\right)-Q_{0}\right)\left(\frac{\partial P}{\partial x}\left(\gamma_{p}(t)\right) g_{1 p}\left(\gamma_{p}(t)\right)+\frac{\partial P}{\partial y}\left(\gamma_{p}(t)\right) g_{2 p}\left(\gamma_{p}(t)\right)\right)>0
\end{aligned}
$$

for every $t \in(0,1)$ and every $p \in \mathbb{N}$. We used here the fact that condition (1) holds on every set $\partial D_{p} \backslash\left\{\gamma_{p}(0)\right\}, p \in \mathbb{N}$. Using Remark 1, we see that

$$
\operatorname{Im} \frac{\Gamma_{p}^{\prime}(t)}{\Gamma_{p}(t)-f\left(z_{0}\right)}>0
$$

for every $t \in(0,1)$ and every $p \in \mathbb{N}$. We apply now Theorem 2 .
Remark 2. Usually, we take the domains $D_{p} \subset D$ from Theorem 2 and Theorem 3 such that $\bar{D}_{p} \subset D$ for every $p \in \mathbb{N}$ and such that $D_{p} \nearrow D$. Using Riemann's theorem, if $D \subset \mathbb{C}$ is a domain such that card $\partial D>1$, then D is simply connected if and only if there exists Jordan domains D_{p} such that
$\bar{D}_{p} \subset D$ for every $p \in \mathbb{N}$ and $D_{p} \nearrow D$. It results that the preceding theorems hold on simply connected domains $D \subset \mathbb{C}$.

Theorem 4. Let $D \subset \mathbb{C}$ be a bounded domain which is starlike with respect to a point $z_{0} \in D$, bounded by a Jordan curve $\gamma:[0,1] \rightarrow \partial D$ that is differentiable on $(0,1)$, and such that there exists $g \in \mathcal{L}(\mathbb{C}, \mathbb{C})$ such that $\gamma^{\prime}=g \circ \gamma$ on $(0,1)$. Let $f \in F(D)$ satisfy the properties that $z_{0} \in D \backslash B_{f}$ and $f^{-1}\left(f\left(z_{0}\right)\right)=\left\{z_{0}\right\}$. Let $f=P+\mathrm{i} Q, f\left(z_{0}\right)=P_{0}+\mathrm{i} Q_{0}, g=g_{1}+\mathrm{i} g_{2}$, and suppose that there exists a neighborhood U of ∂D on which f is differentiable and the relation

$$
\begin{align*}
& \left(P-P_{0}\right)\left(\frac{\partial Q}{\partial x}\left(g_{1}+r g_{1}\left(z_{0}\right)\right)+\frac{\partial Q}{\partial y}\left(g_{2}+r g_{2}\left(z_{0}\right)\right)\right) \tag{2}\\
& -\left(Q-Q_{0}\right)\left(\frac{\partial P}{\partial x}\left(g_{1}+r g_{1}\left(z_{0}\right)\right)+\frac{\partial P}{\partial y}\left(g_{2}+r g_{2}\left(z_{0}\right)\right)\right)>0
\end{align*}
$$

holds on U for every $r>0$. Then f is injective on D and $f(D)$ is starlike with respect to z_{0}.

Proof. We take $D_{r}=r\left(D \backslash\left\{z_{0}\right\}\right), \gamma_{r}:[0,1] \rightarrow \partial D_{r}, \gamma_{r}(t)=r\left(\gamma(t)-z_{0}\right)$ for $t \in[0,1]$ and $0<r \leq 1, g_{r}=g+r g\left(z_{0}\right)$ for $0<r \leq 1$. Then

$$
\begin{aligned}
\gamma_{r}^{\prime}(t)=r \gamma^{\prime}(t) & =r g(\gamma(t))=g(r \gamma(t))=g\left(r \gamma(t)-r z_{0}+r z_{0}\right) \\
& =g\left(\gamma_{r}(t)\right)+r g\left(z_{0}\right)=g_{r}\left(\gamma_{r}(t)\right)
\end{aligned}
$$

for $t \in[0,1]$ and $0<r \leq 1$. Since D is a bounded domain, we can find $0<r_{0}<1$ such that $\partial D_{r} \subset U$ for $0<r_{0}<r \leq 1$. Then f is differentiable on $\bigcup_{r_{0}<r \leq 1} \partial D_{r}$ and relation (2) holds on ∂D_{r} for $r_{0}<r<1$. We apply now Theorem 3.

Theorem 5. Denote by E be the ellipse

$$
\left\{z=x+\mathrm{i} y \left\lvert\, \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}<1\right.\right\} .
$$

Let $f \in F(D)$ be such that $f(0)=0,0 \in E \backslash B_{f}$, and $f(z) \neq 0$ on $E \backslash\{0\}$. Suppose that there exists a neighborhood U of ∂E with the property that f is differentiable on U and the relation

$$
\begin{equation*}
\frac{b}{a} x\left(P \frac{\partial Q}{\partial y}-Q \frac{\partial P}{\partial y}\right)+\frac{a}{b} y\left(Q \frac{\partial P}{\partial x}-P \frac{\partial Q}{\partial x}\right)>0 \tag{3}
\end{equation*}
$$

holds on U. Then f is injective on E and $f(E)$ is starlike with respect to 0 .
Proof. Let $\gamma:[0,2 \pi] \rightarrow \partial E, \gamma(t)=(a \cos t, b \sin t)$ for $t \in[0,2 \pi]$. Then Im $\gamma=\partial E$ and let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be defined by

$$
g(x, y)=\left(-\frac{a}{b} y, \frac{b}{a} x\right) \text { for }(x, y) \in \mathbb{R}^{2} .
$$

Then $g \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right), \gamma^{\prime}=g \circ \gamma$ on $(0,2 \pi)$ and we have

$$
\begin{aligned}
& P\left(\frac{\partial Q}{\partial x} g_{1}+\frac{\partial Q}{\partial y} g_{2}\right)-Q\left(\frac{\partial P}{\partial x} g_{1}+\frac{\partial P}{\partial y} g_{2}\right) \\
& =P\left(\frac{-a}{b} y \frac{\partial Q}{\partial x}+\frac{b}{a} x \frac{\partial Q}{\partial y}\right)-Q\left(\frac{\partial P}{\partial x}\left(\frac{-a}{b} y\right)+\frac{\partial P}{\partial y} \frac{b}{a} x\right) \\
& =\frac{b}{a} x\left(P \frac{\partial Q}{\partial y}-Q \frac{\partial P}{\partial y}\right)+\frac{a}{b} y\left(Q \frac{\partial P}{\partial x}-P \frac{\partial Q}{\partial x}\right)>0
\end{aligned}
$$

on U. We apply now Theorem 4.
We study now the case when D is an unbounded domain which is bounded by a simple curve $\gamma:(0,1) \rightarrow \partial D$ such that $\lim _{t \rightarrow 0} \gamma(t)=\infty$ and $\lim _{t \rightarrow 1} \gamma(t)=\infty$.

Theorem 6. Let $D \subset \mathbb{C}$ be an unbounded domain with the properties that $\operatorname{card} \partial D>1$ and that there exist the domains $D_{p} \subset D$, bounded by simple curves $\gamma_{p}:(0,1) \rightarrow \partial D_{p}$ such that $\lim _{t \rightarrow 0} \gamma_{p}(t)=\infty, \lim _{t \rightarrow 1} \gamma_{p}(t)=\infty$, and $D_{p} \nearrow$ D. Let $f \in F(D)$ be such that $\lim _{z \rightarrow \infty} f(z)=l \in \mathbb{C}, z_{0} \in D \backslash B_{f}, \quad f^{-1}\left(f\left(z_{0}\right)\right)=$ $\left\{z_{0}\right\}$, and $\Gamma_{p}=f \circ \gamma_{p}$ for $p \in \mathbb{N}$. Furthermore, suppose that Γ_{p} is differentiable and

$$
\operatorname{Im} \frac{\Gamma_{p}^{\prime}(t)}{\Gamma_{p}(t)-f\left(z_{0}\right)}>0 \text { on }(0,1)
$$

for every $p \in \mathbb{N}$. Then f is injective on D and $f(D)$ is starlike with respect to $f\left(z_{0}\right)$.

Proof. Using Riemann's theorem, we can find $\phi: B \rightarrow D$ a conformal bijection. Let $Q_{p}=\phi^{-1}\left(D_{p}\right)$ and $w_{p}=\phi^{-1} \circ \gamma_{p}$ for $p \in \mathbb{N}$. Then $w_{p}:(0,1) \rightarrow$ ∂Q_{p} extends on $[0,1]$ to a Jordan curve which bounds the Jordan domain Q_{p} for every $p \in \mathbb{N}$ and $Q_{p} \subset B$ for $p \in \mathbb{N}, Q_{p} \nearrow B$. Let $F: B \rightarrow \mathbb{C}, F=f \circ \phi$ and let $W_{p}=F \circ w_{p}$ and $\Gamma_{p}=f \circ \gamma_{p}$ for $p \in \mathbb{N}$. Then

$$
W_{p}=F \circ w_{p}=f \circ \phi \circ \phi^{-1} \circ \gamma_{p}=f \circ \gamma_{p}=\Gamma_{p}
$$

for every $p \in \mathbb{N}, F$ is continuous on every set $\bar{Q}_{p}, p \in \mathbb{N}$ and let $a_{0}=\phi^{-1}\left(z_{0}\right)$. Then $a_{0} \in Q_{p}$ for every $p \in \mathbb{N}, F \in F(B)$ and we see that

$$
\operatorname{Im} \frac{W_{p}^{\prime}(t)}{W_{p}(t)-F\left(a_{0}\right)}=\operatorname{Im} \frac{\Gamma_{p}^{\prime}(t)}{\Gamma_{p}(t)-f\left(z_{0}\right)}>0
$$

on $(0,1)$ for every $p \in \mathbb{N}$. Then $f=F \circ \phi^{-1}, F\left(a_{0}\right)=f\left(z_{0}\right)$ and $F(B)=f(D)$ and using Theorem 2 we see that F is injective on B and $F(B)$ is starlike with respect to $F\left(a_{0}\right)$. This implies that f is injective on D and $f(D)$ is starlike with respect to $f\left(z_{0}\right)$.

Theorem 7. Let $D \subset \mathbb{C}$ be an unbounded domain with the properties that $\operatorname{card} \partial D>1$ and that there exist domains D_{p}, bounded by simple differentiable curves $\gamma_{p}:(0,1) \rightarrow \partial D_{p}$ such that $\lim _{t \rightarrow 0} \gamma_{p}(t)=\infty, \lim _{t \rightarrow 1} \gamma_{p}(t)=\infty$, and such
that there exist differentiable mappings $g_{p}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ with $\gamma_{p}^{\prime}=g_{p} \circ \gamma_{p}$ on $(0,1)$, for every $p \in \mathbb{N}$, and $D_{p} \nearrow D$. Let $f \in F(D)$ and $z_{0} \in D \backslash B_{f}$ satisfy $f^{-1}\left(f\left(z_{0}\right)\right)=\left\{z_{0}\right\}$. Also, assume that f is differentiable on $\bigcup_{p=1}^{\infty} \partial D_{p}$ and $\lim _{z \rightarrow \infty} f(z)=l \in \mathbb{C}$. Denote $f=P+\mathrm{i} Q, f\left(z_{0}\right)=P_{0}+\mathrm{i} Q_{0}$, and $g_{p}=g_{1 p}+\mathrm{i} g_{2 p}$ for $p \in \mathbb{N}$. If the relation

$$
\begin{equation*}
\left(P-P_{0}\right)\left(\frac{\partial Q}{\partial x} g_{1 p}+\frac{\partial Q}{\partial y} g_{2 p}\right)-\left(Q-Q_{0}\right)\left(\frac{\partial P}{\partial x} g_{1 p}+\frac{\partial P}{\partial y} g_{2 p}\right)>0 \tag{4}
\end{equation*}
$$

holds on $\bigcup_{p=1}^{\infty} \partial D_{p}$, then f is injective on D and $f(D)$ is starlike with respect to $f\left(z_{0}\right)$.

Proof. Let $\Gamma_{p}=f \circ \gamma_{p}$ for $p \in \mathbb{N}$. Then Γ_{p} is differentiable on $(0,1)$ and, as in Theorem 3, we use relation (4) to show that

$$
\operatorname{Im} \frac{\Gamma_{p}^{\prime}(t)}{\Gamma_{p}(t)-f\left(z_{0}\right)}>0
$$

on $(0,1)$ for every $p \in \mathbb{N}$. We apply now Theorem 6 .
Theorem 8. Let $D \subset \mathbb{C}$ be an unbounded domain bounded by a simple differentiable curve $\gamma:(0,1) \rightarrow \partial D$ such that $\lim _{t \rightarrow 0} \gamma(t)=\infty, \lim _{t \rightarrow 1} \gamma(t)=\infty$, and such that there exists $g \in \mathcal{L}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ with $\gamma^{\prime}=$ go γ on $(0,1)$. Suppose that there exists $u \in \mathbb{R}^{2}$ with $\partial D+r u \subset D$ for every $0<r<1$. Let $f \in F(D)$ satisfy $\lim _{z \rightarrow \infty} f(z)=l \in \mathbb{C}$, and $z_{0} \in D$ be such that $z_{0} \in D \backslash B_{f}, f^{-1}\left(f\left(z_{0}\right)\right)=\left\{z_{0}\right\}$. Denote $f=P+\mathrm{i} Q, f\left(z_{0}\right)=P_{0}+\mathrm{i} Q_{0}$ and $g=g_{1}+\mathrm{i} g_{2}$. Suppose that there exists $\varepsilon>0$ with the properties that f is differentiable on $B(\partial D, \varepsilon)$ and the relation

$$
\begin{align*}
& \left(P-P_{0}\right)\left[\frac{\partial Q}{\partial x}\left(g_{1}-r g_{1}(u)\right)+\frac{\partial Q}{\partial y}\left(g_{2}-r g_{2}(u)\right)\right] \tag{5}\\
& \quad-\left(Q-Q_{0}\right)\left[\frac{\partial P}{\partial x}\left(g_{1}-r g_{1}(u)\right)+\frac{\partial P}{\partial y}\left(g_{2}-r g_{2}(u)\right)\right]>0
\end{align*}
$$

holds on $B(\partial D, \varepsilon)$. Then f is injective on D and $f(D)$ is starlike with respect to $f\left(z_{0}\right)$.

Proof. We take $D_{t}=D+r u, \gamma_{r}:(0,1) \rightarrow \partial D_{r}, \gamma_{r}=\gamma+r u, g_{r}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, $g_{r}=g-r g(u)$ for $0<r<1$. Then

$$
g_{1 r}=g_{1}-r g_{1}(u), \quad g_{2 r}=g_{2}-r g_{2}(u)
$$

for $0<r<1$ and

$$
\gamma_{r}^{\prime}(t)=\gamma^{\prime}(t)=g(\gamma(t))=g\left(\gamma_{r}(t)-r u\right)=g\left(\gamma_{r}(t)\right)-r g(u)=g_{r}\left(\gamma_{r}(t)\right)
$$

for $t \in(0,1)$ and $0<r<1$. Also, $\partial D_{r} \subset B(\partial D, \varepsilon)$ for $0<r<\varepsilon$, hence f is differentiable on ∂D_{r} for $0<r<\varepsilon$. We apply now Theorem 7 .

Theorem 9. Let $H=\{z=x+\mathrm{i} y \mid y>0\}, z_{0} \in H, f \in F(H)$ be such that $\lim _{z \rightarrow \infty} f(z)=l \in \mathbb{C}, z_{0} \in H \backslash B_{f}$, and $f^{-1}\left(f\left(z_{0}\right)\right)=\left\{z_{0}\right\}$. Let $f=P+\mathrm{i} Q$ and $f\left(z_{0}\right)=P_{0}+\mathrm{i} Q_{0}$. Suppose that there exists $\varepsilon>0$ such that f is differentiable on $B(\partial H, \varepsilon)$ and the relation

$$
\begin{equation*}
\left(P-P_{0}\right) \frac{\partial Q}{\partial x}-\left(Q-Q_{0}\right) \frac{\partial P}{\partial x}>0 \tag{6}
\end{equation*}
$$

holds on $B(\partial H, \varepsilon)$. Then f is injective on D and $f(D)$ is starlike with respect to $f\left(z_{0}\right)$.

Proof. We take $\gamma_{r}:(-\infty, \infty) \rightarrow \mathbb{R}^{2}, \gamma_{r}(t)=(t, r)$ for $t \in \mathbb{R}$ and $0<r<1$, and

$$
D_{r}=\{(x, y) \mid y>r\} \text { for } 0<r<1 .
$$

Then $\operatorname{Im} \gamma_{r}=\partial D_{r}$ and if $\Gamma_{r}=f \circ \gamma_{r}$ for $0<r<1$, we see that Γ_{r} is differentiable for $0<r<\varepsilon$ and

$$
\begin{aligned}
& \operatorname{Im} \frac{\Gamma_{r}^{\prime}(t)}{\Gamma_{r}(t)-f\left(z_{0}\right)}=\operatorname{Im} \frac{f_{F}^{\prime}(t, r)(1,0)}{f(t, r)-f\left(z_{0}\right)} \\
& =\operatorname{Im} \frac{\left(\begin{array}{c}
\frac{\partial P}{\partial x}(t, r) \\
\frac{\partial P}{\partial y}(t, r) \\
\frac{\partial Q}{\partial x}(t, r) \\
\left(P(t, r)-P_{0}\right)+\mathrm{i}\left(Q(t, r)-Q_{0}\right) \\
\partial y \\
(t, r)
\end{array}\right)\binom{1}{0}}{=\operatorname{Im} \frac{\frac{\partial P}{\partial x}(t, r)+\mathrm{i} \frac{\partial Q}{\partial x}(t, r)}{\left(P(t, r)-P_{0}\right)+\mathrm{i}\left(Q(t, r)-Q_{0}\right)}} \\
& =\frac{\left(P(t, r)-P_{0}\right) \frac{\partial Q}{\partial x}(t, r)-\left(Q(t, r)-Q_{0}\right) \frac{\partial P}{\partial x}(t, r)}{\left(P(t, r)-P_{0}\right)^{2}+\left(Q(t, r)-Q_{0}\right)^{2}}>0
\end{aligned}
$$

for every $t \in \mathbb{R}$. We apply now Theorem 6 .
Theorem 10. Let $D \subset \mathbb{C}$ be a domain bounded by a branch of the hyperbola

$$
G=\left\{z=x+\mathrm{i} y \left\lvert\, \frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1\right.\right\}
$$

such that $0 \notin D$. Let $z_{0} \in D$ and $f \in F(D)$ be such that $\lim _{z \rightarrow \infty} f(z)=l \in \mathbb{C}$, $z_{0} \in D \backslash B_{f}$ and $f^{-1}\left(f\left(z_{0}\right)\right)=\left\{z_{0}\right\}$. Denote $f=P+\mathrm{i} Q$ and $f\left(z_{0}\right)=P_{0}+\mathrm{i} Q_{0}$. Suppose that there exists $\varepsilon>0$ with the properties that f is differentiable on $B(\partial D, \varepsilon)$ and the relation

$$
\begin{align*}
& \left(P-P_{0}\right)(z)\left(\frac{\partial Q}{\partial x}(z) \frac{a}{b} y+\frac{\partial Q}{\partial y}(z) \frac{b}{a} x\right) \\
& -\left(Q-Q_{0}\right)(z)\left(\frac{\partial P}{\partial x}(z) \frac{a}{b} y+\frac{\partial P}{\partial y}(z) \frac{b}{a} x\right)>0 \tag{7}
\end{align*}
$$

holds on $B(\partial D, \varepsilon)$. Then f is injective on D and $f(D)$ is starlike with respect to z_{0}.

Proof. We take $\gamma:(0,2 \pi) \rightarrow \mathbb{R}^{2}, \gamma(t)=(a \operatorname{ch} t, b \operatorname{sh} t)$ for $t \in(0,2 \pi)$ and $g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$,

$$
g(x, y)=\left(\frac{a}{b} y, \frac{b}{a} x\right) \text { for }(x, y) \in \mathbb{R}^{2} .
$$

We see that $\operatorname{Im} \gamma=\partial D$, that γ is differentiable on $(0,2 \pi)$ and $\gamma^{\prime}=g \circ \gamma$ on $(0,2 \pi)$. Let $\gamma_{r}:(0,2 \pi) \rightarrow D, \gamma_{r}(t)=r \gamma(t)$ for $r>1, t \in(0,2 \pi)$. Then $\operatorname{Im} \gamma_{r} \subset D$ and if $D_{r} \subset D$ is the domain bounded by $\operatorname{Im} \gamma_{r}$ for $r>1$, we see that $D_{r} \nearrow D$ for $r \searrow 1$. Also,

$$
\gamma_{r}^{\prime}(t)=r \gamma^{\prime}(t)=r g(\gamma(t))=g(r \gamma(t))=g\left(\gamma_{r}(t)\right)
$$

for $0<t<2 \pi$ and $r>1$. Taking $g_{r}=g$ for $r>1$, we see that $\gamma_{r}^{\prime}=g_{r} \circ \gamma_{r}$ on $(0,2 \pi), r>1$, that

$$
g_{1 r}(z)=g_{1}(z)=\frac{a}{b} y, \quad g_{2 r}(z)=g_{2}(z)=\frac{b}{a} x
$$

for $r>1$ and $z \in \mathbb{R}^{2}$. We apply now Theorem 7 .
Remark 3. If we assume in the Theorems 4, 5, 8, 9, and 10 that $f \in$ $C(\bar{D}, \mathbb{C}) \cap F(D)$, then we can ask f to be differentiable only on ∂D and to satisfy condition (*) only on ∂D.

REFERENCES

[1] Cristea, M., A generalization of Hurwitz's theorem, Stud. Cercet. Ştiinţ. Ser. Mat. Univ. Bacău, 44 39, 4 (1987), 349-351.
[2] Cristea, M., A generalization of Rouchés theorem, An. Univ. Bucureşti Mat., 36, 6 (1987), 13-15.
[3] Cristea, M., A generalization of a theorem of Stoilow, An. Univ. Bucureşti Mat., 37 (3) (1988), 18-19.
[4] Cristea, M., A generalization of the theorem on the univalence on the boundary, Rev. Roumaine Math. Pures Appl., 40, 5-6 (1995), 435-448.
[5] Cristea, M., A generalization of the argument principle, Complex Var. Elliptic Equ., 42 (2000), 333-345.
[6] Cristea, M., Teoria topologică a funcţiilor analitice (in Romanian), Editura Univ. Bucureşti, 1999.
[7] Cristea, M., A topological condition of starlikeness, Rev. Roumaine Math. Pures Appl., 49, $2(2004), 113-126$.
[8] Mocanu, P.T., Starlikeness and convexity for non-analytic functions in the unit ball, Mathematica, 22 (45), 1 (1980), 77-83.
[9] Nechita, V.O., Contribuţii în teoria funcţiilor univalente (in Romanian), Ph. D. Thesis, Babeş-Bolyai University, Cluj-Napoca, 2007.
[10] Pascu, N.N. and Serbu, V., Non-analytic functions in the ellipse, Stud. Univ. BabeşBolyai Math., 46, 2 (2001), 101-105.
[11] Pascu, N.N., RĂducanu, D., Pascu, R.N. and Pascu, M.N., Starlike functions in an elliptical domain, Libertas Math., 20 (2000), 63-66.
[12] Royster, W.C., Convexity and starlikeness of analytic functions, Duke Math. J., 19 (1952), 447-457.
[13] Stoilow, S., Leçons sur les principes topologiques de la théorie des fonctions analitiques, Gauthier-Villars, Paris, 1938.

Received February 6, 2009
Accepted June 5, 2009

University of Bucharest
Faculty of Mathematics and Computer Science
Str. Academiei 14
010014 Bucharest, Romania
E-mail: mcristea@fmi.unibuc.ro

