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HOPF-GALOIS EXTENSIONS
AND ISOMORPHISMS OF SMALL CATEGORIES
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Abstract. We associate two linear categories with two objects to a module over
the subalgebra of coinvariants of a Hopf-Galois extension, and prove that they are
isomorphic. The structure Theorem for cleft extensions, and the Militaru-Ştefan
lifting Theorem can be obtained using these isomorphisms.
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INTRODUCTION

Our starting points are the following two classical results on Hopf algebras.
The first one is the structure theorem of cleft H-comodule algebras [6], stating
that a cleft H-comodule algebra is isomorphic to a crossed product, and,
conversely, every crossed product is cleft. A comprehensive treatment can be
found in [9, Ch. 7].

The second result is the Militaru-Ştefan lifting Theorem. Let A be a faith-
fully flat Hopf-Galois extension over its ring of coinvariants B, and M a B-
module. Generalizing results due to Dade [4] on strongly graded rings, Militaru
and Ştefan showed that the B-action on M can be extended to an A-action
if and only if there exists an H-colinear algebra map between H and the
A-endomorphism ring of M ⊗B A.

Let us now explain the philosophy behind this note. A k-algebra can be
viewed as a k-linear category with one object. Isomorphisms between k-
algebras can be obtained from equivalences between k-linear categories. Ex-
amples of such equivalences come from faithfully flat Hopf algebra extensions:
then we have a pair of inverse equivalences between modules over the ring of
coinvariants and relative Hopf modules.

Now we consider “double” k-algebras, namely k-linear categories with two
objects. For a rightH-comodule algebra A, we introduce such a double algebra
CA. One of its endomorphism algebras consists of k-linear maps from H to the
coinvariants, and on its homomorphism modules consists of H-colinear maps
H → A. This construction is given in Section 2.

Given a module M over the coinvariants B, we introduce another double
algebra DM , as the full subcategory of the category of B-modules and H-
comodules, with objects M ⊗H and M ⊗B A. Our main result, Theorem 3.1
states that the categories CA and DM are isomorphic if A is a faithfully flat H-
Galois extension of B. In Section 5, we discuss how this category equivalence
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(or at least some variation of it) can be applied the structure Theorem for
cleft algebras, and in Section 6, we see how the Militaru-Ştefan lifting result
can be obtained.

1. HOPF-GALOIS EXTENSIONS

Hopf-Galois theory was introduced in [3], and later generalized in [7, 10, 11].
We recall the definitions and the most important results. Let H be a Hopf
algebra over a commutative ring k, and assume that the antipode S is bijective.
We use the Sweedler notation for the comultiplication: ∆(h) = h(1) ⊗h(2), for
h ∈ H. If M is a right H-comodule, then we use the following notation for
the coaction ρ: ρ(m) = m[0] ⊗m[1], for m ∈ M . In a similar way, we write
λ(n) = n[−1]⊗n[0] for the left H-coaction on an element n in a left H-comodule
N .

Let A be a right H-comodule algebra, this is an algebra in the monoidal
category of right H-comodules. A relative right (A,H)-comodule is a right
A-module that has also the structure of a right H-comodule such that the
compatibility relation ρ(ma) = m[0]a[0] ⊗ m[1]a[1] holds for all m ∈ M and
a ∈ A. M coH = {m ∈M | ρ(m) = m⊗1} is the submodule of coinvariants, and
is a right B-module, where B = AcoA is the subring of coinvariants of A. MH

A
is the category of relative Hopf modules, and right A-linear H-colinear maps.
We have a pair of adjoint functors (F,G) between the categories MB and
MH

A . F = −⊗BA is the induction functor, and G = (−)coA is the coinvariants
functor. The unit η and counit ε of the adjunction are the following (M ∈ MB

and N ∈ MH
A ): ηM : M → (M⊗BA)coA, ηM (m) = m⊗B 1; εN : M coA⊗A→

M , ε(m⊗B a) = ma. The canonical map can associated to A is defined by

can : A⊗B A→ A⊗H, can(a⊗B a′) = aa′[0] ⊗ a′[1].

If can is an isomorphism, then A is called a Hopf-Galois extension or H-Galois
extension of B.

We can also consider left-right (A,H)-modules: these are k-modules with
a left A-action and a right H-coaction such that ρ(am) = a[0]m[0] ⊗ a[1]m[1],
for all a ∈ A and m ∈ M . We have a pair of adjoint functors (F ′ = A ⊗B

−, G′ = (−)coH between BM and AMH , the category of left-right (A,H)-
modules. The unit and counit are this time given by η′M : M → (A⊗BM)coH ,
η′M (m) = 1 ⊗B m; ε′N : A ⊗B N coH → N , ε′N (a ⊗B n) = an. The canonical
map can′ : A⊗B A→ A⊗H is defined by the formula

can′(a⊗B a′) = a[0]a
′ ⊗ a[1].

It is well-known that can is an isomorphism if and only if can′ is an isomor-
phism: this follows from the fact that can′ = Φ◦can, with Φ : A⊗H → A⊗H
given by Φ(a⊗ h) = a[0] ⊗ a[1]S(h) and Φ−1(a⊗ h) = a[0] ⊗ a[1]S(h).

Theorem 1.1. Let A be a right H-comodule algebra, and consider the fol-
lowing statements:
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(1) (F,G) is a pair of inverse equivalences;
(2) (F,G) is a pair of inverse equivalences and A ∈ BM is flat;
(3) can is an isomorphism and A ∈ BM is faithfully flat;
(4) (F ′, G′) is a pair of inverse equivalences;
(5) (F ′, G′) is a pair of inverse equivalences and A ∈ MB is flat;
(6) can′ is an isomorphism and A ∈ MB is faithfully flat;

Then (3) ⇐⇒ (2) =⇒ (1) and (6) ⇐⇒ (5) =⇒ (4). If H is flat as a k-module,
then (1) ⇐⇒ (2) and (4) ⇐⇒ (5). If k is a field, then the six statements are
equivalent.

Let A be a faithfully flat right H-Galois extension. The inverse of the
canonical map can is completely determined by the map γA = can−1◦(ηA⊗H) :
H → A⊗BA, h 7→

∑
i li(h)⊗B ri(h). Then the element γA(h) is characterized

by the property

(1)
∑

i

li(h)ri(h)[0] ⊗ ri(h)[1] = 1 ⊗ h.

For all h, h′ ∈ H and a ∈ A, we have (see [11, 3.4]):

γA(h) ∈ (A⊗B A)B;(2)

γA(h(1)) ⊗ h(2) =
∑

i

li(h) ⊗B ri(h)[0] ⊗ ri(h)[1];(3)

γA(h(2)) ⊗ S(h(1)) =
∑

i

li(h)[0] ⊗B ri(h) ⊗ li(h)[1];(4) ∑
i

li(h)ri(h) = ε(h)1A;(5) ∑
i

a[0]li(a[1]) ⊗B ri(a[1]) = 1 ⊗B a;(6) ∑
i

li(S(a[1])) ⊗B ri(S(a[1]))a[0] = a⊗B 1;(7)

γA(hh′) =
∑
i,j

li(h′)lj(h) ⊗B rj(h)ri(h′).(8)

2. THE CATEGORIES CA AND C′
A

Let A be a right H-comodule algebra, and B = AcoA, as in Section 1. We
introduce a category CA, with two objects 1 and 2. The morphisms are defined
as follows.

CA(1,1) = Hom(H,B)
= {v : H → A | ρ(v(h)) = v(h) ⊗ 1, for all h ∈ H};

CA(2,1) = HomH(H,A)
= {t : H → A | ρ(t(h)) = t(h(1)) ⊗ h(2), for all h ∈ H};
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CA(1,2) = {u : H → A | ρ(u(h)) = u(h(2)) ⊗ S(h(1)), for all h ∈ H};
CA(2,2) = {w : H → A | ρ(w(h)) = w(h(2)) ⊗ S(h(1))h(3), for all h ∈ H}.
The composition of morphisms is given by the convolution on Hom(H,A). We
have to verify that, for f : i → j and g : j → k, g ∗ i ∈ CA(i,k). Let us do
this in the case where i = j = k = 2: for w,w1 ∈ CA(2,2) and h ∈ H, we have

ρ(w ∗ w1)(h) = ρ(w(h(1))w1(h(2))

= w(h(2))w1(h(5)) ⊗ S(h(1))h(3)S(h(4))h(6)

= w(h(2))w1(h(3)) ⊗ S(h(1))h(4)

= (w ∗ w1)(h(2)) ⊗ S(h(1))h(3),

and it follows that w ∗ w1 ∈ CA(2,2), as needed. Verification in all the other
cases is similar and is left to the reader.

We also introduce the category C′
A and show that it is isomorphic to CA. It

is introduced because it allows us to simplify slightly some of the computations
in Section 3. C′

A also has two objects, 1 and 2. The morphisms are defined in
the following fashion.

C′
A(1,1) = Hom(H,B)

= {v′ : H → A | ρ(v′(h)) = v′(h) ⊗ 1, for all h ∈ H};
C′

A(1,2) = HomH(H,A)
= {t′ : H → A | ρ(t′(h)) = t′(h(1)) ⊗ h(2), for all h ∈ H};

C′
A(2,1) = {u′ : H → A | ρ(u′(h)) = u′(h(2)) ⊗ S(h(1)), for all h ∈ H};

C′
A(2,2) = {w′ : H → A | ρ(w′(h)) = w′(h(2)) ⊗ h(3)S(h(1)), for all h ∈ H}.

The composition of two morphisms in C′
A is given by the convolution product

in Hom(Hcop, A): (f ′ ? g′)(h) = f ′(h(2))g′(h(1)).

Proposition 2.1. We have an isomorphism of categories γ : C′
A → CA,

which is the identity at the level of objects. At the level of morphisms, it is
given by γ(f ′) = f ′ ◦ S.

Proof. We have to show first that γ(C′
A(i, j)) ⊂ CA(i, j). Let us do this in the

case i = j = 2, the other cases are done in a similar way. So take w′ ∈ C′
A(2,2),

and let w = w′ ◦ S = γ(w′). Then for all h ∈ H, we have that

ρ(w(h)) = ρ(w′(S(h))) = w′(S(h)(2)) ⊗ S(h)(3)S(S(h)(1))

= w′(S(h(2))) ⊗ S(h(1))h(3) = w(h(2)) ⊗ S(h(1))h(3),

proving that w ∈ CA(2,2), as needed. It is easy to see that γ respects the
composition of morphisms:

γ(f ′ ? g′)(h) = (f ′ ? g′)(S(h)) = f ′(S(h(1)))g
′(S(h(2)))

= f(h(1))g(h(2)) = (f ∗ g)(h).

Finally, γ is an isomorphism. The inverse functor γ is given by γ(f) = f◦S. �
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The functor γ induces maps γji : C′
A(i, j) → CA(i, j).

3. THE MAIN RESULT

Let A be a faithfully flat right H-Galois extension. We assume moreover
that H is projective as a k-module. This is always satisfied if we work over a
field k. Let P and Q be two right relative Hopf modules. We have a map

ρ : HomA(P,Q) → HomA(P,Q⊗H), ρ(f)(p) = f(p[0])[0] ⊗ f(p[0])[1]S(p[1]).

As H is projective, the natural map HomA(P,Q)⊗H → HomA(P,Q⊗H) is a
monomorphism, and we can consider HomA(P,Q)⊗H as a submodule of H →
HomA(P,Q⊗H). We call f ∈ HomA(P,Q) rational if ρ(f) ∈ HomA(P,Q)⊗H,
that is, if there exists an element f[0] ⊗ f[1] ∈ HomA(P,Q) ⊗ H (summation
implicitely understood) such that ρ(f)(p) = f[0](p) ⊗ f[1], for all p ∈ P , which
is equivalent to

(9) ρ(f(p)) = f[0](p[0]) ⊗ f[1]p[1].

The submodule of HomA(P,Q) consisting of all rational maps is denoted by
HOMA(P,Q), and is a right H-comodule. ENDA(P ) is a right H-comodule
algebra. Now we take P = M ⊗B A, where M ∈ MB, E = ENDA(M ⊗B A)
and F = EcoH = ENDH

A (M⊗BA) ∼= EndB(M), in view of Theorem 1.1. Then
we can consider the categories CE and C′

E , as in Section 2.
We have seen in Section 1 that M ⊗B A ∈ MH

A is a relative Hopf module.
In particular, it is also an object in MH

B , where B is considered as a right
H-comodule algebra with trivial H-coaction. In fact MH

B is the category of
right B-modules with a right H-coaction such that ρ(mb) = m[0] ⊗m[1]b, for
all m ∈ M and b ∈ B. M ⊗ H is also an object of MH

B , with B-action and
H-coaction given by ρ(m⊗ h) = m⊗ ∆(h) and (m⊗ h)b = mb⊗ h.

Now let DM be the full subcategory of MH
B with objects M ⊗B A and

M ⊗H. Out main result is the following.

Theorem 3.1. Let H be a projective Hopf algebra, and A a faithfully flat
right H-Galois extension. For M ∈ MB, we have a commutative diagram of
isomorphisms of categories:

C′
E

β !!CC
CC

CC
CC

γ // CE

α
}}||

||
||

||

DM

At the level of morphisms, the functors α and α′ are defined in the obvious
way: α(1) = α′(1) = M ⊗ H; α(2) = α′(2) = M ⊗B A. In the subsequent
Lemmas, we will define α and α′ at the level of morphisms. The proof of the
following result is straightforward, and is left to the reader.
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Lemma 3.2. We have an isomorphism of k-modules

δ1 : HomB(M ⊗B A,M) → HomH
B (M ⊗B A,M ⊗H),

given by δ1(φ)(m⊗B a) = φ(m⊗B a[0]) ⊗ a[1]; δ1(ϕ) = (M ⊗ ε) ◦ ϕ. We have
an isomorphism of k-algebras

δ2 : HomB(M ⊗H,M) → EndH
B (M ⊗H),

given by δ2(Θ)(m ⊗ h) = Θ(m ⊗ h(1)) ⊗ h(2); δ2(θ) = (M ⊗ ε) ◦ θ. The
multiplication on HomB(M⊗H,M) is given by the formula Θ·Θ′ = Θ◦δ2(Θ′),
or, more explicitly,

(10) (Θ · Θ′)(m⊗ h) = Θ(Θ′(m⊗ h(1)) ⊗ h(2)).

Lemma 3.3. We have an algebra map

β̃11 : C′
E(1,1) = Hom(H,F ) → HomB(M ⊗H,M),

given by β̃11(v′)(m⊗ h) = η−1
M

(
v′(h)(m⊗B 1)

)
.

Proof. For all h ∈ H, we have that v′(h) ∈ F = EcoH . Using (9), we find
that ρ

(
v′(h)(m⊗B1)

)
= v′(h)(m⊗B1)⊗1, hence v′(h)(m⊗B1) ∈ (M⊗BA)coH .

We know from Theorem 1.1 that ηM : M → (M ⊗BA)coH is an isomorphism,
so that β̃11 is well-defined, and is characterized by the formula

(11) β̃11(v′)(m⊗ h) ⊗B 1 = v′(h)(m⊗B 1).

Let us now show that β̃11(v′) is right B-linear. For all m ∈ M , b ∈ B and
h ∈ H, we have

β̃11(v′)(mb⊗ h) ⊗B 1 = v′(h)(mb⊗B 1) = v′(h)(m⊗B 1)b

= β̃11(v′)(m⊗ h) ⊗B b = β̃11(v′)(m⊗ h)b⊗B 1.

We will now show that β̃11 has an inverse, given by(
β̂11(Θ)(h)

)
(m⊗B a) = Θ(m⊗ h) ⊗B a.

We have to show first that β̂11 is well-defined, that is, β̂11(h) ∈ F , for all
h ∈ H. To this end, we compute that

ρ
((
β̂11(Θ)(h)

)
(m⊗B a)

)
= Θ(m⊗ h) ⊗B a[0] ⊗ a[1]

=
(
β̂11(Θ)(h)

)
(m⊗B a[0]) ⊗ a[1],

and conclude from (9) that ρ
(
β̂11(Θ)(h)

)
= β̂11(Θ)(h) ⊗ 1.

We now show that β̃11 and β̂11 are inverses. For all Θ ∈ HomB(M ⊗H,M),
v′ ∈ Hom(H,F ) m ∈M , h ∈ H and a ∈ A, we have

β̃11

(
β̂11(Θ)

)
(m⊗ h) ⊗B 1 = (β̂11(Θ)(h)

)
(m⊗B 1)

= Θ(m⊗ h) ⊗B 1;(
β̂11(β̃11(v′))(h)

)
(m⊗B a) = (β̃11(v′))(m⊗ h) ⊗B a
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= v′(h)(m⊗B 1)a = v′(h)(m⊗B 1).

Let us finally show that β̃11 is an algebra map. For v′, v′1 : H → F , m ∈ M
and h ∈ H, we have(

β̃11(v′) · β̃11(v′1)
)
(m⊗ h) ⊗B 1 = β̃11(v′)

(
β̃11(v′1)(m⊗ h(1)) ⊗ h(2)

)
⊗ 1

= v′(h(2))
(
β̃11(v′1)(m⊗ h(1)) ⊗B 1

)
= (v′(h(2)) ◦ v′1(h(1)))(m⊗B 1)

= (v′ ? v′1)(h)(m⊗B 1) = β̃11(v′ ? v′1)(m⊗ h) ⊗B 1,

and it follows that β̃11(v′ ? v′1) = β̃11(v′) · β̃11(v′1). �

Corollary 3.4. We have algebra isomorphisms

β11 = δ2 ◦ β̃11 : C′
E(1,1) → EndH

B (M ⊗H);

α11 = δ2 ◦ β̃11 ◦ γ−1
11 : CE(1,1) → EndH

B (M ⊗H).

Lemma 3.5. We have an isomorphism of k-modules

β21 : C′
E(1,2) = Hom(H,E) → HomH

B (M ⊗H,M ⊗B A),

given by β21(t′)(m⊗ h) = t′(h)(m⊗B 1), for t′ ∈ Hom(H,E), m ∈M , h ∈ H.
Consequently, we also have an isomorphism

α21 = β21 ◦ γ−1
21 : CE(1,2) → HomH

B (M ⊗H,M ⊗B A).

Proof. It is easy to see that β21(t′) is right A-linear:

β21(t′)(mb⊗ h) = t′(h)(mb⊗B 1) = t′(h)(m⊗B b)
= t′(h)(m⊗B 1)b = (β21(t′)(m⊗ h))b.

β21(t′) is right H-colinear:

ρ
(
β21(t′)(m⊗ h)

)
= ρ

(
t′(h)(m⊗B 1)

)
= t′(h)[0](m⊗B 1) ⊗ t′(h)[1]

= t′(h(1))(m⊗B 1) ⊗ h(2) = β21(t′)(m⊗ h(1)) ⊗ h(2).

This shows that β21(t′) ∈ HomH
B (M ⊗H,M ⊗B A), as needed. Now we define

a map
β21 : HomH

B (M ⊗H,M ⊗B A) → Hom(H,E)

by the formula (β21(ψ))(h)(m⊗B a) = ψ(m⊗ h)a. We first show that β21 is
well-defined, and then that it is inverse to β21.
β21(ψ) is right H-colinear: we first compute

ρ
(
(β21(ψ))(h)(m⊗B a)

)
= ρ

(
ψ(m⊗ h)a

)
= ψ(m⊗ h(1))a[0] ⊗ h(2)a[1]

= (β21(ψ))(h(1))(m⊗B a[0]) ⊗ h(2)a[1],

and we conclude from (9) that ρ
(
(β21(ψ))(h)

)
= (β21(ψ))(h(1)) ⊗ h(2), as

needed.
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Let us finally show that β21 and β21 are inverses. For all t′ ∈ HomH(H,E),
ψ ∈ HomH

B (M ⊗H,M ⊗B A), m ∈M , a ∈ A and h ∈ H, we have

(β21 ◦ β21)(ψ)(m⊗ h) = (β21(h))(m⊗B 1)
= ψ(m⊗B 1)a = ψ(m⊗B a);((

(β21 ◦ β21)(t′)
)
(h)

)
(m⊗B a) = (β21(t′))(m⊗ h)a

= t′(h)(m⊗B 1)a = t′(h)(m⊗B a).

�
Lemma 3.6. We have an isomorphism of k-modules

β̃12 : C′
E(2,1) → HomB(M ⊗B A,M),

given by β̃12(u′)(m⊗B a) = η−1
M

(
u′(a[1])(m⊗B a[0])

)
.

Proof. First, we have to show that u′(a[1])(m⊗B a[0]) ∈ (M ⊗BA)coH . This
can be seen as follows:

ρ
(
u′(a[1])(m⊗B a[0])

)
= u′(a(3))(m⊗B a[0]) ⊗ S(a(2))a[1]

= u′(a[1])(m⊗B a[0]) ⊗ 1.

Remark that β̃12(u′)(m⊗B a) is characterized by the formula

(12) β̃12(u′)(m⊗B a) ⊗B 1 = u′(a[1])(m⊗B a[0]).

Now we show that β̃12(u′) is right B-linear: for b ∈ B, we have

β̃12(u′)(m⊗B ab) ⊗B 1 = u′(a[1])(m⊗B a[0]b) = u′(a[1])(m⊗B a[0])b

= β̃12(u′)(m⊗B a) ⊗B b = β̃12(u′)(m⊗B a)b⊗B 1.

Now we construct a map

α̂12 : HomB(M ⊗B A,M) → CE(2,1) = HomH(H,E).

as follows:

(13)
(
α̂12(φ)(h)

)
(m⊗B a) =

∑
i

φ(m⊗ li(h)) ⊗B ri(h)a.

It is clear that
(
α̂12(φ)

)
(h) is right A-linear. Then we need to show that α̂12(φ)

is right H-colinear. To this end, we need to show that

(14) ρ
(
α̂12(φ)(h)

)
= α̂12(φ)(h(1)) ⊗ h(2),

for all h ∈ H. For all m ∈M and a ∈ A, we compute

ρ
((
α̂12(φ)(h)

)
(m⊗B a)

)
=

∑
i

φ(m⊗ li(h)) ⊗B ri(h)[0]a[0] ⊗ ri(h)[1]a[1]

(3)
=

∑
i

φ(m⊗ li(h(1))) ⊗B ri(h(1))a[0] ⊗ h(2)a[1]



9 Hopf-Galois extensions 129

=
(
α̂12(φ)(h(1))

)
(m⊗B a[0]) ⊗ h(2)a[1],

and (14) follows as an application of (9).
Now we define β̂12 = α̂12 ◦γ−1

12 , and show that β̂12 and α̂12 are inverses. β̂12

is given by the formula

(β̂12(φ)(h))(m⊗B a) =
∑

i

φ(m⊗B li(S(h)) ⊗B ri(S(h))a.

Now we compute((
(β̂12 ◦ β̃12)(u′)

)
(h)

)
(m⊗B a)

=
∑

i

(β̃12(u′))
(
m⊗B li(S(h)

)
⊗B ri(S(h))a

= (u′(li(S(h)[1]))
(
m⊗B li(S(h)[0]

)
ri(S(h)a

(4)
= (u′(S(S(h(2)))))

(
m⊗B li(S(h(1))

)
ri(S(h(1))a

= (u′(h(2)))
(
m⊗B li(S(h(1))ri(S(h(1))a

)
(5)
= u′(h)(m⊗B a);

(
(β̃12 ◦ β̂12)(φ)

)
(m⊗B a) ⊗B 1

= (β̂12(φ))(a[1])(m⊗B a[0])

=
∑

i

φ(m⊗B li(S(a[1]))) ⊗B ri(S(a[1]))a[0]

(7)
= φ(m⊗B a) ⊗B 1.

�
Corollary 3.7. We have the k-module isomorphisms

β12 = δ1 ◦ β̃12 : C′
E(2,1) → HomH

B (M ⊗B A,M ⊗H));

α12 = δ1 ◦ β̃12 ◦ γ−1
12 : CE(2,1) → HomH

B (M ⊗B A,M ⊗H)).

Lemma 3.8. We have an algebra isomorphism β22 : C′
E(2,2) → EndH

B (M⊗B

A), given by the formula (β22(w′))(p) = w′(p[1])(p[0]), for all p ∈M⊗BA. Con-
sequently, we also have an algebra isomorphism α22 = β22 ◦ γ−1

22 : C′
E(2,1) →

EndH
B (M ⊗B A).

Proof. We first show that β22(w′) is right B-linear. For p ∈ M ⊗B A and
b ∈ B, we have ρ(pb) = p[0]b⊗ p[1], and

(β22(w′))(pb) = w′(p[1])(p[0]b) = w′(p[1])(p[0])b.

β22(w′) is right H-co-linear. Since w′ ∈ C′
E(2,1), we have

ρ(w′(h)) = w(h(2)) ⊗ h(3)S(h(1)),
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hence

(15) ρ(w′(h)(p)) = w(h(2))(p[0]) ⊗ h(3)S(h(1))p[1].

Now we have

ρ
(
(β22(w′))(p)

)
= ρ

(
w′(p[1])(p[0])

)(15)
= w′(p(3))(p[0]) ⊗ p[4]S(p[2])p[1]

= w′(p(1))(p[0]) ⊗ p[2] = (β22(w′))(p[0]) ⊗ p[1].

We next show that β22 is an algebra morphism, that is, it preserves multipli-
cation and unit. Mulitplication:

(β22(w′ ? w′
1))(p) = ((w′ ? w′

1)(p[1])(p[0])

= (w′(p[2]) ◦ w′
[1](p[1]))(p[0])

= w′(p[1])
(
β22(w′

1)(p[0])
)

= w′
((
β22(w′

1)(p)
)
[1]

)((
β22(w′

1)(p)
)
[0]

)
= β22(w′)

(
β22(w′

1)(p)
)

= (β22(w′) ◦ β22(w′
1))(p).

In the fourth equality we used the fact that β22(w′
1) is right H-colinear.

Unit: (β22(ηE ◦ εH))(p) = (η(ε(p[1]))(p[0]) = p.
Now we consider the map α22 : EndH

B (M ⊗B A) → CE(2,2), defined as
follows: for κ ∈ EndH

B (M ⊗B A), let(
α22(κ)(h)

)
(m⊗B a) =

∑
i

κ(m⊗B li(h))ri(h)a.

We have to show that α12(κ) ∈ CE(2,2), that is,

(16) ρ
(
α12(κ)(h)

)
=

(
α12(κ)(h(2))

)
⊗ S(h(1))h(3).

We proceed as follows: for all m ∈M and a ∈ A, we have

ρ
(
α12(κ)(h)(m⊗B a

)
= ρ

(∑
i

κ(m⊗B li(h))ri(h)a
)

=
∑

i

κ
(
m⊗B li(h)[0]

)
ri(h)[0]a[0] ⊗ li(h)[1]ri(h)[1]a[1]

(3)
=

∑
i

κ
(
m⊗B li(h(1))[0]

)
ri(h(1))a[0] ⊗ li(h(1))[1]h(2)a[1]

(4)
=

∑
i

κ
(
m⊗B li(h(2))

)
ri(h(2))a[0] ⊗ S(h(1))h(3)a[1]

= α22(κ)(h(2))(m⊗B a[0]) ⊗ S(h(1))h(3)a[1]

In the second equality, we used that κ is right H-colinear. (16) then follows
as an application of (9). Let us now show that β22 = α12 ◦ γ−1

22 and β22 are
inverses.(

(β22 ◦ β22)(κ)
)
(m⊗B a) = (β22(κ)(a[1]))(m⊗B a[0])
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= κ
(
m⊗B li(S(a[1]))ri(S(a[1])a[0]

(7)
=κ(m⊗B a);(

((β22 ◦ β22)(w′))(h)
)
(m⊗B a)

=
∑

i

β22(w′)(m⊗B li(S(h)))ri(S(h))a

=
∑

i

(
w′(li(S(h))[1]

))(
møBli(S(h))[0]

)
ri(S(h))a

(4)
=

∑
i

w′(S(S(h(2))
)(
m⊗B li(S(h(1))

)
ri(S(h(1))a

=
∑

i

w′(h(2))
(
m⊗B li(S(h(1))ri(S(h(1))a

)
(5)
= w′(h)(m⊗B a).

�

Proof. (of Theorem 3.1). In the preceding Lemmas, we have shown that
there exist isomorphisms

C′
E(i, j)

γji // CE(i, j)
αji // HomH

B (α(i), α(j)

The proof of Theorem 3.1 will be finished if we can show that, given f : i → j
and g : j → k in CE , we have

(17) αkj(g) ◦ αji(f) = αki(g ∗ f)

We already know that (17) holds if i = j = k, see Corollary 3.4 and Lemma 3.8.
We now fix the following notation.

v′ ∈ C′
E(1,1) v = γ11(v′) ∈ CE(1,1) θ = α11(v) : M ⊗H →M ⊗H

t′ ∈ C′
E(1,2) u = γ21(t′) ∈ CE(1,2) ψ = α21(v) : M ⊗H →M ⊗B A

u′ ∈ C′
E(2,1) t = γ12(u′) ∈ CE(2,1) ϕ = α12(v) : M ⊗B A→M ⊗H

w′ ∈ C′
E(2,2) w = γ22(w′) ∈ CE(2,2) κ = α22(w) : M ⊗B A→M ⊗B A

Furthermore, let Θ = δ2(θ) and φ = δ1(ϕ), see Lemma 3.2. The six remaining
identities that we have to prove are

α21(v ∗ u) = α21(u) ◦ α11(v) = ψ ◦ θ;(18)
α21(w ∗ u) = α22(w) ◦ α21(u) = κ ◦ ψ;(19)
α11(t ∗ u) = α12(t) ◦ α21(u) = ϕ ◦ ψ;(20)
α12(t ∗ w) = α12(t) ◦ α22(w) = ϕ ◦ κ;(21)
α12(v ∗ t) = α11(v) ◦ α12(t) = θ ◦ ϕ;(22)
α22(u ∗ t) = α21(u) ◦ α12(t) = ψ ◦ ϕ; .(23)

(18) is equivalent to β21(ψ ◦ θ) = t′ ? v′. This can be shown as follows

((t′ ? v′)(h))(m⊗B a) = (t′(h(2)) ◦ v′(h(1)))(m⊗B a)

= (t′(h(2)))
(
Θ(m⊗ h(1)) ⊗B a

)
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= ψ
(
Θ(m⊗ h(1)) ⊗ h(2)

)
a

= (ψ ◦ θ)(m⊗ h)a

=
(
β21(ψ ◦ θ)

)
(m⊗B a).

(19) is equivalent to β21(w′ ? t′) = κ ◦ ψ.
ψ is given by the formula (see Lemma 3.5): ψ(m⊗ h) = t′(h)(m⊗B 1).
t′ is right H-colinear, hence ρ(t′(h)) = t′(h(1)) ⊗ h(2), and ρ(ψ(m ⊗ h)) =

t′(h(1))(m⊗B 1) ⊗ h(2). Then we have

(κ ◦ ψ)(m⊗ h) = (w′(ψ(m⊗ h)[1]))(ψ(m⊗ h)[0])

= (w′(h(2)))
(
t′(h(1))(m⊗B 1)

)
= ((w′ ? t′)(h))(m⊗B 1) = β21(w′ ? t′)(m⊗ h).

(20) is equivalent to β11(ϕ ◦ ψ) = u′ ? t′.
First observe that

(β11(ϕ ◦ ψ)(h))(m⊗B a) = ((M ⊗ ε) ◦ ϕ ◦ ψ)(m⊗ h) ⊗B a

= (φ ◦ ψ)(m⊗ h) ⊗B a.

Now write ψ(m⊗ h) =
∑

j mj ⊗N aj . Since ψ is right H-colinear, we have

(24) ψ(m⊗ h(1)) ⊗ h(2) =
∑

j

(mj ⊗N aj[0]) ⊗N aj[1].

Then we compute(
(u′ ? t′)(h)

)
(m⊗B a) =

(
u′(h(2)) ◦ t′(h(1))

)
(m⊗B a)

= u′(h(2))
(
ψ(m⊗ h(1))a

)
(24)
=

∑
j

u′(aj[1])
(
ψ(mj ⊗N aj[0])a

)
=

∑
i,j

φ
(
mj ⊗B li(S(aj[1]))

)
⊗B ri(S(aj[1]))aj[0]a

(7)
=

∑
j

φ(mj ⊗B aj) ⊗B a = (φ ◦ ψ)(m⊗ h) ⊗B a.

(21) is equivalent to β12(u′ ? w′) = ϕ ◦ κ.
We apply Lemma 3.8 and write

κ(m⊗B a) = w′(a[1])(m⊗B a[0]) =
∑

j

mj ⊗B aj .

Since κ is right H-colinear, we have

(25) κ(m⊗B a[0]) ⊗ a[1] =
∑

j

(mj ⊗B aj[0]) ⊗ aj[1].

Recall from Lemma 3.6 that φ(m⊗B a) ⊗B 1 = u′(a[1])(m⊗B a[0]). Then

((M ⊗ ε) ◦ ϕ ◦ κ)(m⊗B a) ⊗B 1 = (φ ◦ κ)(m⊗B a) ⊗B 1
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=
∑

j

u′(aj[1])(m⊗B aj[0])

(25)
= u′(a[1])(κ(m⊗B a[0]))

=
(
u′(a[2]) ◦ w′(a[1])

)
(m⊗B a[0])

=
(
(u′ ? w′)(a[1])

)
(m⊗B a[0])

=
(
(M ⊗ ε) ◦ β12(u′ ? w′)

)
(m⊗B a).

It follows that δ1(ϕ◦κ) = (M⊗ε)◦ϕ◦κ = (M⊗ε)◦β12(u′?w′) = δ1(β12(u′?w′)),
and then ϕ ◦ κ = β12(u′ ? w′).

(22) is equivalent to v ∗ t = α12(θ ◦ ϕ). Recall from (13) that

(t(h))(m⊗B a) =
∑

i

φ(m⊗ li(h)) ⊗B ri(h)a,

and from Lemma 3.3 that

(v(h))(m⊗B a) = (v′(S(h)))(m⊗B a) = Θ(m⊗ S(h)) ⊗B a.

Then we compute

((v ∗ t)(h))(m⊗B a) =
(
v(h(1) ◦ v(h(2))

)
(m⊗B a)

= v(h(1))
(∑

i

φ(m⊗ li(h(2))) ⊗B ri(h(2))a
)

=
∑

i

Θ
(
φ(m⊗ li(h(2))) ⊗ S(h(1))

)
⊗B ri(h(2))a

(4)
=

∑
i

Θ
(
φ(m⊗ li(h)[0]) ⊗ li(h)[1]

)
⊗B ri(h)a

=
∑

i

Θ(ϕ(m⊗ li(h)) ⊗B ri(h)a

=
∑

i

((M ⊗ ε) ◦ θ ◦ ϕ)(m⊗ li(h)) ⊗B ri(h)a

(13)
= (α−1

12 (θ ◦ ϕ))(m⊗B a).

Finally, (23) is equivalent to β22(t′ ? u′) = ψ ◦ϕ. From Lemma 3.5, we have
that ψ(m⊗ h) = t′(h)(m⊗B 1), and from Lemma 3.6 that φ(m⊗B a)⊗B 1 =
u′(a[1])(m⊗B a[0]), hence

(ψ ◦ ϕ)(m⊗B a) = ψ
(
φ(m⊗B a[0]) ⊗ a[1]

)
= t′(a[1])

(
φ(m⊗B a[0]) ⊗B 1

)
= (t′(a[2]) ◦ u′(a[1]))(m⊗B a[0])

= ((t′ ? u′)(a[1]))(m⊗B a[0])

= (β22(t′ ? u′))(m⊗B a).

�
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4. THE LEFT-RIGHT CASE

Assume thatH is projective as a k-module. Assume thatA is a left faithfully
flat H-Galois extension of B, that is, A satisfies conditions (4) and (5) of
Theorem 1.1. A left A-linear map between left=right (A,H)-modules is called
rational if there exists a (unique) f[0] ⊗ f[1] ∈ AHom(P,Q) ⊗ H such that
ρ(f(p)) = f[0](p[0])⊗ p[1]f[1]. AHOM(P,Q), the submodule of rational maps is
a right H-comodule and AEND(P )op is a right H-comodule algebra.

Now take M ∈ BM, and let E = AEND(A ⊗B M)op. Then F = EcoH =
AEndH(A ⊗B M)op ∼= BEnd(M)op. Let EM be the full subcategory of BMH

with objects B ⊗H and A⊗B M .

Theorem 4.1. With notation and assumptions as above, we have a duality
α : CE → EM .

Proof. Let α(1) = M ⊗ H and α(2) = A ⊗B M . Below we present the
descriptions of the maps αji : CE(i, j) → DM (j, i) and their inverses αji. All
the other verifications are similar to corresponding arguments in the proof of
Theorem 3.1 and are left to the reader. Observe that we have two natural
isomorphisms

δ1 : BHom(A⊗B M,M) → BHomH(A⊗B M,M ⊗H);

δ2 : BHom(M ⊗H,M) → BEndH(M ⊗H)
defined as follows:

δ1(φ)(a⊗B m) = φ(a[0] ⊗B m) ⊗ a[1] ; δ1(ϕ) = (M ⊗ ε) ◦ ϕ;

δ2(Θ)(m⊗ h) = Θ(m⊗ h(1)) ⊗ h(2) ; δ2(θ) = (M ⊗ ε) ◦ θ.
We have an isomorphism

α̃11 : CE(1,1) = Hom(H,EcoH) → BHom(M ⊗H,M),

given by the formulas

1 ⊗B α̃11(v)(m⊗ h) = v(h)(1 ⊗B m);
α̂11(Θ)(h)(a⊗B m) = a⊗B Θ(m⊗ h).

We then define α11 = β2 ◦ α̃11.
The isomorphism

α12 : CE(2,1) = HomH(H,E) → BHomH(M ⊗H,A⊗B M)

is given by the formulas

α12(t)(m⊗ h) = t(h)(1 ⊗B m) ; (α12(ψ)(h))(a⊗B m) = aψ(m⊗ h).

We have an isomorphism

α̃21 : CE(1,2) → BHom(A⊗B M,M),

given by the formulas

1 ⊗B α̃21(u)(a⊗B m) = u(a[1])(a[0] ⊗B m);
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(
α̂21(φ)(h)

)
(a⊗B m) =

∑
i

ali(h) ⊗B φ(ri(h) ⊗B m).

We then define α21 = β1 ◦ α̃21.
Finally, the isomorphism

α22 : CE(2,2) → BEndH(A⊗B M)

is given by the formulas

α22(w)(a⊗B m) = w(a[1])(a[0] ⊗B m);

(α22(κ))(h)(a⊗B m) =
∑

i

ali(h)κ(ri(h) ⊗B m).

�

5. CLEFT EXTENSIONS

Recall that a right H-comodule algebra A is called cleft if there exists a
convolution invertible t ∈ HomH(H,A). This means precisely that 1 and 2
are isomorphic objects in CA.

There is a Structure Theorem for cleft extensions, see [6] or [9, Theorem
7.2.2]: cleft extensions are precisely the crossed product. We will present a
proof of this Theorem, based on the duality from Theorem 4.1. First let us
recall the precise definition of a crossed product, following [9, Sec. 7.1].

Let H be a Hopf algebra measuring an algebra B: this means that we
have a map ω : H ⊗ B → B, ω(h ⊗ b) = h · b such that h · 1 = ε(h)1 and
h · (bc) = (h(1) · b)(h(2) · c), for all h ∈ H and b, c ∈ B. Let σ : H ⊗H → B
be a map with convolution inverse σ. A#σH is A#H with multiplication

(26) (b#h)(c#k) = b(h(1) · c)σ(h(2) ⊗ k(1))#h(3)k(2).

The following result originates from [1, 6], see also [9, Lemma 7.1.2]. The
proof is straightforward.

Proposition 5.1. With notation as above, B#σH is an associative algebra
with unit 1#1 if and only if the following conditions hold:

1) B is a twisted H-module, this means that 1 · b = b, for all b ∈ B, and

(27) h · (k · b) = σ(h(1) ⊗ k(1))((h(2)k(2)) · b)σ(h(3) ⊗ k(3)),

for all h, k ∈ H and b ∈ B;
2) σ is a normalized cocycle; this means that σ(h ⊗ 1) = σ(1 ⊗ h) = ε(h)1

and

(28)
(
h(1) · σ(k(1) ⊗ l(1))

)
σ(h(2) ⊗ k(2)l(2)) = σ(h(1) ⊗ k(1))σ(h(2)k(2) ⊗ l),

for all h, k, l ∈ H. Then B#σH is called a crossed product; it is an H-
comodule algebra, with coaction induced by the comultiplication on H.
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Now we present the Structure Theorem for cleft H-comodule algebras. But
first we make the following remark. Assume that t ∈ HomH(H,A) has convo-
lution inverse u. Then t(1)u(1) = u(1)t(1) = 1. Then t′ = u(1)t ∈ Hom(H,A)
has convolution inverse ut(1), and satisfies t′(1) = 1. So if A is cleft, then
there exists a convolution invertible t ∈ HomH(H,A) taking the value 1 in 1.

Theorem 5.2. Let H be a projective Hopf algebra, A a right H-comodule
algebra, and B = AcoH . Then the following assertions are equivalent:

(1) A is cleft;
(2) A is isomorphic to a crossed product B#σH;
(3) A is a faithfully flat left Hopf-Galois extension of B, and A is isomor-

phic to B ⊗H as a left B-module and a right H-comodule.

Proof. (1) =⇒ (2). Theorem 4.1 holds under the assumption that A is an
H-Galois extension. However, if M ∈ BM is such that η′M is an isomorphism,
then we we still have the functor α. This happens in the particular situation
where M = B. In this case E = AEND(A ⊗B B)op = AEND(A)op ∼= A, and
F = EcoH = AcoH = B.

If A is cleft, then there exists a convolution invertible t ∈ HomH(H,E),
with t(1) = 1, and then α12(t) : B ⊗ H → A ⊗B B = A is an isomorphism
in BMH . We transport the multiplication on A to B ⊗H, and write B#σH
for A ⊗ H with this multiplication. We can easily make this explicit: with
notation as in Theorem 4.1, let α12(t) = ψ, u the convolution inverse of t,
α̃21(u) = φ and α21(u) = ϕ. Using the formulas in the proof of Theorem 4.1,
we find

ψ(b⊗ h) = bt(h) ; φ(a) = a[0]u(a[1]) : ϕ(a) = a[0]u(a[1]) ⊗ a[2].

Now we transport the multiplication:

(b#h)(c#k) = ϕ
(
ψ(b#k)ψ(c#k)

)
= ϕ(bt(h)ct(k))

= bt(h(1))ct(k(1))u(h(2)k(2)) ⊗ h(3)k(3)

= bt(h(1))cu(h(2))t(h(3))t(k(1))u(h(4)k(2)) ⊗ h(5)k(3)

Now define

(29) ωt : H ⊗B → B, ωt(h⊗ b) = t(h(1))bu(h(2)) = h · b,
and

σ : H ⊗H → B, σ(h⊗ k) = t(h(1))t(k(1))u(h(2)k(2)).

Then the multiplication is given by formula (26). The unit of the multiplication
is ϕ(1) = u(1)#1 = 1#1. It is obvious that ωt measures B and that σ
is convolution invertible, with inverse σ(h ⊗ k) = t(h(1)k(1))u(k(2))u(h(2)).
Straightforward computations show that the conditions of Proposition 5.1 are
satisfied, so A is isomorphic to the crossed product B#σH.

(2) =⇒ (3). Consider a crossed product A = B#σH, as in Proposition 5.1.
SinceH is projective, and therefore faithfully flat, as a k-module, A is faithfully



17 Hopf-Galois extensions 137

flat as a left and right B-module. Now A ⊗B A = (B ⊗ H) ⊗B (B ⊗ H) ∼=
B⊗H⊗H, and then it is easy to see that the canonical map can : B⊗H⊗H →
B ⊗H ⊗H is given by the formula

can(a⊗ b⊗ k) = aσ(h(1) ⊗ k(1)) ⊗ h(2)k(2) ⊗ k(3).

can is bijective, with inverse

can−1(a⊗ b⊗ k) = aσ(h(1)S(k(2)) ⊗ k(3)) ⊗ h(2)S(k(1)) ⊗ k(4).

Then can′ is also bijective, and A is a faithfully flat left and right H-Galois
extension, clearly isomorphic to B ⊗ H as a left B-module and a right H-
comodule.

(2) =⇒ (3). Since A is a faithfully flat left H-Galois extension, we can
apply Theorem 4.1. We have an isomorphism ψ : B ⊗ H → A in BMH ,
and t = α12(ψ) is then a convolution invertible element in HomH(H,A). This
shows that A is cleft. �

Remark 5.3. Let A = B#σH be a crossed product. From the formulas in
Theorem 4.1, we can explicitly compute t = α12(ψ) and u = α̂12(φ). First,
ψ : B ⊗ H → A = B#σH is the identity map, and then we see easily that
t(h) = 1#h. In the proof of (2) =⇒ (3), we constructed the inverse of the
canonical map, and from this we deduce that∑

i

li(h) ⊗ ri(h) =
(
σ
(
S(h(2)) ⊗ h(3)

)
1B#S(h(1))

)
⊗B

(
1B#h(4)

)
.

Now we have that φ = (B ⊗ ε) : A = B#σH → B, and then we see that

u(h) = σ
(
S(h(2)) ⊗ h(3)

)
1B#S(h(1)).

Of course these formulas are well-known, see for example [9, Prop. 7.2.7].

If t ∈ HomH(H,A) is an algebra map, then t is convolution invertible, with
convolution inverse t ◦ S. Then the cocycle σ constructed in the proof of
Theorem 5.2 is trivial, and (27) reduces to h · (k · b) = (hk), so that B is an
H-module algebra. Then A is isomorphic to the smash product B#H. This
proves (1) =⇒ (2) in the next theorem.

Theorem 5.4. Let H be a projective Hopf algebra, A a right H-comodule
algebra, and B = AcoH . Then the following assertions are equivalent:

(1) there exists an algebra map t ∈ HomH(H,A);
(2) A is isomorphic to a smash product B#H.

Proof. (2) =⇒ (1). The map t constructed in Remark 5.3 is an algebra
map. �

Consider the space ΩA = {t ∈ HomH(H,A) | t is an algebra map}. We have
the following equivalence relation on ΩA: t1 ∼ t2 if and only if there exists
b ∈ U(B) such that bt1(h) = t2(h)b, for all h ∈ H. We denote ΩA = ΩA/ ∼.
With some extra assumptions, we can give a categorical and cohomological
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interpretation of ΩA and ΩA. Throughout the rest of this Section, we will
assume that H is cocommutative, B is commutative and A is cleft. In this sit-
uation CA(2,2) = Hom(H,B). For a convolution invertible t ∈ HomH(H,A),
we consider the map ωt, see (29).

Lemma 5.5. ωt is independent of the choice of t, and makes B into a left
H-module algebra.

Proof. The second statement follows immediately from (28), taking into
account that B is commutative. Let t, t0 ∈ HomH(H,A) be convolution in-
vertilble, with convolution inverses u and u0. Using the commutativity of B
again, we find

u0(h(1))t(h(2))bu(h(3))t0(h(3)) = bu0(h(1))t(h(2))u(h(3))t0(h(3)) = b.

Then

wt0(h⊗ b) = t0(h(1))bu0(h(2))

= t0(h(1))u0(h(2))t(h(3))bu(h(4))t0(h(5))u0(h(6))
= t(h(1))bu(h(2)) = wt(h⊗ b).

�
Since B is a left H-module algebra, we can consider the Sweedler cohomol-

ogy groups Hn(H,B) with values in B, see [12].

Theorem 5.6. Assume that H is cocommutative, B is commutative and H
is cleft. Then we have the following subcategory XA of CA. XA has two objects
1 and 2, and

XA(1,1) = Z1(H,B);
XA(2,1) = ΩA;
XA(2,2) = {ω ∈ Hom(H,B) | ω ◦ S ∈ Z1(H,B)};
XA(1,2) = {t ◦ S | t ∈ Ω}.

Proof. Recall that a convolution invertible v : H → B is a 1-cocycle in
Z1(H,B) if v(hk) = (h(1) · v(k))v(h(2)), for all h, k ∈ H. A convolution
invertible w : H → B lies in XA(2,2) if w(hk) = (S(k(1)) · w(h))w(h(2)), for
all h, k ∈ H. It is well-known that XA(1,1) = Z1(H,B) and XA(2,2) are
groups. Take v ∈ Z1(H,A), w = v ◦ S ∈ XA(2,2), t, t′ ∈ ΩA, u = t ◦ S, u′ =
t′ ◦ S ∈ XA(1,2).

1) t ∗ u1 ∈ Z1(H,B): for all h, k ∈ H, we have

(t1 ∗ u)(hk) = t(h(1))t(k(1))u1(k(2))u1(h(2))
= t(h(1))(t ∗ u1)(k)u(h(2))t(h(3))u1(h(4))

= (h(1) · (t ∗ u1)(k))(t ∗ u)(k).
2) v ∗ t ∈ ΩA: for all h, k ∈ H, we have

(v ∗ t)(hk) = (h(1) · v(k(1)))v(h(2))t(h(3)t(k(2))
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= t(h(1))v(k(1))u(h(2))v(h(3))t(h(4)t(k(2))

= t(h(1))u(h(2))v(h(3))t(h(4)v(k(1))t(k(2))

(B is commutative)
= (v ∗ t)(h)(v ∗ t)(k).

3) t ∗ w ∈ ΩA: for all h, k ∈ H, we have

(t ∗ w)(hk) = t(h(1))t(k(1))(S(k(2)) · w(h(2)))w(k(3))

= t(h(1))t(k(1))u(k(2))w(h(2))t(k(3))w(k(3))

= (t ∗ w)(h)(t ∗ w)(k).

4) We know from 1) that t ∗ u1 ∈ Z1(H,B), hence (t ∗ u1) ◦ S = u ∗ t1 ∈
XA(2,2).

5) We know from 2) that v ∗ t ∈ ΩA, hence (v ∗ t) ◦ S = w ∗ u ∈ XA(1,2).
6) We know from 3) that t∗w ∈ ΩA, hence (t∗w)◦S = u∗v ∈ XA(1,2). �

Obviously XA is a groupoid: every morphism in XA is invertible. Assume
now that ΩA 6= ∅, and fix t0 ∈ ΩA. Then the map F : Z1(H,B) → ΩA,
F (v) = v ∗ t0 is a bijection. The inverse is given by F−1(t) = t ∗ u0, with
u0 = t0 ◦ S.

Proposition 5.7. F sends equivalence classes in Z1(H,B) to equivalence
classes in ΩA, and a similar property holds for F−1. Hence F induces a
bijection H1(H,B) → ΩA.

Proof. For each invertible b ∈ B, we have a 1-cocycle fb : H → B,
fb(h) = (h · b)b−1. Then B1(H,B) = {fb | b ∈ U(B), and H1(H,B) =
Z1(H,B)/B1(H,B). First assume that v ∼ v1 in Z1(H,B). Then there
exist b ∈ U(B) such that v = fb ∗ v1. Let F (v) = t, F (v1) = t1, then
t = v ∗ t0 = fb ∗ v1 ∗ t0 = fb ∗ t1 and

t(h) = b−1(h(1) · b)t1(h(2)) = b−1t1(h(1))bu1(h(2))t(1)(h(3)) = b−1t1(h)b,

for all h ∈ H, so that t ∼ t1. Conversely, if t ∼ t1, then there exists b ∈ U(B)
such that t(h) = b−1t1(h)b, for all h ∈ H, and

(t ∗ u0)(h) = b−1t1(h(1))bu0(h(2)) = b−1t1(h(1))bu(h(2))t(h(3))u0(h(4))

= b−1(h(1) · b)(t1 ∗ u0)(h(2)) = (fb ∗ t1 ∗ u0)(h),

for all h ∈ H, and then t ∗ u0 is cohomologous to t1 ∗ u0. �

6. STABLE MODULES AND THE MILITARU-ŞTEFAN LIFTING THEOREM

We return to the setting of Section 3: A is a right faithfully flat H-Galois
extension, B is the subalgebra of coinvariants, and M is a right B-module.
Recall from [11] that M is called H-stable if M ⊗ H and M ⊗B A are iso-
morphic as right B-modules and right H-comodules. From Theorem 3.1, we
immediately obtain the following result, originally due to Schneider [11] in the



140 S. Caenepeel 20

case where H is finitely generated and projective, and to Militaru and Ştefan,
[8, Lemma 3.2] in the general case.

Proposition 6.1. M ∈ MB is H-stable if and only if E = ENDA(M⊗BA)
is cleft, that is, there exists an H-colinear convolution invertible t : H → E.

As we have seen in Section 5, an H-colinear algebra map is convolution
invertible. Militaru and Ştefan proved that the existence of an H-colinear
algebra map t : H → E is equivalent to the existence of an associative
action of A and M extending the right B-action. This can also be derived
from Theorem 3.1, which is what we will now discuss. We fix the following
notation: φ : M ⊗B A → A is a right B-linear map, ϕ = δ1(φ), β̂12(φ) = u′,
t = u ◦ S = α̂12(φ). We also write φ(m ⊗B a) = m · a. From Lemma 3.6, we
recall the following formulas (see (12-14):

m · a⊗B 1 = u′(a[1])(m⊗B a[0]);(30)

t(h)(m⊗B a) =
∑

i

φ(m⊗B li(h)) ⊗B ri(h) =
∑

i

m · li(h) ⊗B ri(h).(31)

We then immediately have the following result:

Proposition 6.2. With notation as above, the following assertions are
equivalent:

(1) t(1) = 1;
(2) u′(1) = 1;
(3) m · 1 = 1.

Proof. (1) =⇒ (2) is obvious. (2) =⇒ (3) follows immediately from (30),
and (3) =⇒ (1) follows from (31). �

Proposition 6.3. With notation as above, the following assertions are
equivalent:

(1) t is multiplicative;
(2) u is anti-multiplicative;
(3) the right A-action on M defined by φ is associative.

Proof. (1) =⇒ (2) is obvious.
(2) =⇒ (3). For all m ∈M and a, b ∈ A, we have

(m · (ab)) ⊗B 1
(30)
= u′(a[1]b[1])(m⊗B a[0]b[0])

=
(
(u′(b[1]) ◦ u′(a[1])

)
(m⊗B a[0]b[0])

= u′(b[1])
(
u′(a[1])(m⊗B a[0])b[0]

)
(30)
= u′(b[1])(m · a⊗B b[0]

(30)
= (m · a) · b.

(3) =⇒ (1). For all h, k ∈ H, m ∈M and a ∈ A, we have

t(hk)(m⊗B a)
(31)
=

∑
i

m · li(hk) ⊗B ri(hk)
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(8)
=

∑
i,j

m · (li(k)lj(h)) ⊗B rj(h)ri(k)

=
∑
i,j

(m · li(k)) · lj(h) ⊗B rj(h)ri(k)

(31)
=

∑
i

t(h)(m · li(k) ⊗B ri(k))

(31)
= (t(h) ◦ t(k))(m⊗B a).

�
Combining these results, we obtain the Militaru-Ştefan lifting Theorem, see

[8, Theorem 2.3].

Theorem 6.4. With notation as above, the following are equivalent:
(1) t is an algebra map;
(2) u is an anti-algebra map;
(3) φ makes M into a right B-module.

Now consider the set ΛM consisting of all right B-linear maps φ : M⊗BA→
M defining a right A-module structure on M . It follows from Theorem 6.4
that α̂12 : ΛM → ΩE is a bijection. φ1, φ2 ∈ ΛM are called equivalent if the
resulting right A-modules M1 and M2 are isomorphic. Let Λ be the quotient
set.

Proposition 6.5. [8, Theorem 2.6] Let φ1, φ2 ∈ ΛM , and t1 = α̂12(φ1),
t2 = α̂12(φ2) the corresponding H-colinear algebra maps H → E. Then φ1 ∼
φ2 if and only if t1 ∼ t2. Consequently ΩE

∼= Λ classifies the isomorphism
classes of right A-module structures on M extending the right B-action on M .

Proof. LetMi = M with right A-actionm·ia = φi(m⊗Ba), and u′i = ti◦S−1

Recall from Section 5 that t1 ∼ t2 if and only if there exists an invertbile
f ∈ EndB(M) ∼= EcoH such that

(32) t1(h) ◦ (f ⊗B A) = (f ⊗B A) ◦ t2(h),
or, equivalently,

(33) u′1(h) ◦ (f ⊗B A) = (f ⊗B A) ◦ u′2(h),
φ1 ∼ φ2 if and only if there exists an invertible f ∈ EndB(M) such that
f(m ·2 a) = f(m) ·1 a, for all m ∈M and a ∈ A.

If t1 ∼ t2 then

f(m ·2 a) ⊗B 1
(12)
= ((f ⊗B A) ◦ u′2(a[1]))(m⊗B a[0]

(32)
= (u′1(a[1]) ◦ (f ⊗B A))(m⊗B a[0] = f(m) ·1 a⊗B 1,

and it follows that φ1 ∼ φ2. Conversely, if φ1 ∼ φ2, then

((f ⊗B A) ◦ t2(h))(m⊗B a)
(14)
=

∑
i

f(m ·2 li(h)) ⊗B ri(h)
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(33)
=

∑
i

f(m) ·1 li(h) ⊗B ri(h) = (t1(h) ◦ (f ⊗B A))(m⊗B a),

and it follows that t1 ∼ t2. �
If H is cocommutative, EndB(M) is commutative and ΩE 6= ∅, then we

can apply Proposition 5.7, and we obtain a cohomological description of ΩE ,
namely ΩE

∼= ΛM
∼= H1(H,EndB(M)). This result is one of the key arguments

in [2].
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Monographs Textbooks Pure Appl. Math., 235, Marcel Dekker, New York, 2001.
[6] Doi, Y. and Takeuchi, M., Cleft comodule algebras for a bialgebra, Comm. Algebra,

14 (1986), 801–818.
[7] Kreimer, H. and Takeuchi, M., Hopf algebras and Galois extensions of an algebra,

Indiana Univ. Math. J., 30 (1981), 675–692.
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