A SUBCLASS OF UNIFORMLY CONVEX FUNCTIONS WITH NEGATIVE COEFFICIENTS

M.K. AOUF

Abstract

Making use of the Salagean operator, we define the class $T(n, \alpha, \beta)$. When $n=1$ and $n=0$, we obtain, respectively, a new subclass of uniformly convex functions and a corresponding subclass of starlike functions with negative coefficients. In this paper, we obtain distortion theorem, and obtain radii of close-to-convexity, starlikeness and convexity for functions beloning to the class $T(n, \alpha, \beta)$. We consider integral operators associated with functions belonging to the class $T(n, \alpha, \beta)$. We also obtain several results for the modified Hadamard products of functions belonging to the class $T(n, \alpha, \beta)$. Distortion theorem for the fractional calculus (that is, fractional integral and fractional derivative) of functions in the class $T(n, \alpha, \beta)$ is obtained.

MSC 2010. 30C45.
Key words. Salagean operator, analytic function, uniformly convex function, modified Hadamard products, fractional calculus.

1. INTRODUCTION

Let S denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

that are analytic and univalent in the open unit disc $U=\{z \in \mathbb{C}| | z \mid<1\}$. Let $K(\alpha)$ and $S^{*}(\alpha)$ denote the subclasses of S that are, respectively, convex and starlike functions of order α with $0 \leq \alpha<1$. For convenience, we write $K(0)=K$ and $S^{*}(0)=S^{*}$ (see, e.g., Srivastava and Owa [17]). Goodman ([2] and [3]) defined the following subclasses of K and S^{*}.

Definition 1. A function $f(z)$ is uniformly convex (starlike) in U if $f(z)$ is in $K\left(S^{*}\right)$ and has the property that for every circular γ contained in U, with center ζ also in U, the arc $f(\gamma)$ is convex (starlike) with respect to $f(\zeta)$.

Goodman ([2] and [3]) gave the following two-variable analytic characterizations of these classes, denoted by UCV and UST, respectively.

Theorem 1. A function $f(z)$ of the form (1.1) is in $U C V$ if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+(z-\zeta) \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq 0, \quad(z, \zeta) \in U \times U, \tag{1.2}
\end{equation*}
$$

[^0]and is in UST if and only if
\[

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f(z)-f(\zeta)}{(z-\zeta) f^{\prime}(z)}\right\} \geq 0, \quad(z, \zeta) \in U \times U \tag{1.3}
\end{equation*}
$$

\]

Ma and Minda [6] and Ronning [11] found independently a more applicable one-variable characterization for UCV.

Theorem 2. A function $f(z)$ of the form (1.1) is in UCV if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\} \geq\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|, z \in U . \tag{1.4}
\end{equation*}
$$

We note (see [2]) that Alexander's classical result, $f(z) \in K \Leftrightarrow z f^{\prime}(z) \in S^{*}$, does not hold between the classes UCV and UST. Later on, Ronning [12] introduced a new class S_{p} of starlike functions related to UCV defined by

$$
\begin{equation*}
f(z) \in S_{p} \Leftrightarrow \operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\} \geq\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|, z \in U . \tag{1.5}
\end{equation*}
$$

Note that $f(z) \in U C V \Leftrightarrow z f^{\prime}(z) \in S_{p}$.
Also in [11], Ronning generalized the classes UCV and S_{p} by introducing a parameter α in the following way.

Definition 2. A function $f(z)$ of the form (1.1) is in $S_{p}(\alpha)$ if it satisfies the analytic characterization

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}-\alpha\right\} \geq\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|, \alpha \in R, z \in U . \tag{1.7}
\end{equation*}
$$

One says that $f(z) \in U C V(\alpha)$, i.e., f belongs to the class of uniformly convex functions of order α, if and only if $z f^{\prime}(z) \in S_{p}(\alpha)$.

For the class $S_{p}(\alpha)$, we get a domain whose boundary is a parabola with vertex $w=\frac{1+\alpha}{2}$. Note also that $S_{p}(\alpha) \subset S^{*}$ for all $-1 \leq \alpha<1, S_{p}(\alpha) \nsubseteq S$ for $\alpha<-1$, and $U C V(\alpha) \subset K$ for $\alpha \geq-1$.

By β-UCV, where $0 \leq \beta<\infty$, we denote the class of all β-uniformly convex functions introduced by Kanas and Wisniowska [4]. Recall that a function $f(z) \in S$ is said to be β-uniformly convex in U if the image of every circular arc contained in U with center at ζ, where $|\zeta| \leq \beta$, is convex. Note that the class 1-UCV coincides with the class UCV. Moreover, for $\beta=0$ we get the class K. It is known that $f(z) \in \beta$-UCV if and only if it satisfies the following condition

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\beta\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right|, z \in U, 0 \leq \beta<\infty \tag{1.8}
\end{equation*}
$$

We consider the class β - S_{p}, with $0 \leq \beta<\infty$, of β-starlike functions (see [5]) which are associated with β-uniformly convex functions by the relation

$$
\begin{equation*}
f(z) \in \beta-U C V \Leftrightarrow z f^{\prime}(z) \in \beta-S_{p} . \tag{1.9}
\end{equation*}
$$

Thus, the class β - S_{p}, with $0 \leq \beta<\infty$, is the subclass of S consisting of functions that satisfy the analytic condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\beta\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|, z \in U \tag{1.10}
\end{equation*}
$$

For a function $f(z)$ in S we define: $D^{0} f(z)=f(z), D^{1} f(z)=D f(z)=$ $z f^{\prime}(z)$, and $D^{n} f(z)=D\left(D^{n-1} f(z)\right)(n \in \mathbb{N}=\{1,2, \ldots\})$. The differential operator D^{n} was introduced by Salagean in [14]. It is easy to see that

$$
\begin{equation*}
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}, \text { for all } n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} \tag{1.14}
\end{equation*}
$$

For $\beta \geq 0,-1 \leq \alpha<1$, and $n \in \mathbb{N}_{0}$ let $S^{n}(\alpha, \beta)$ denote the subclass of S consisting of functions $f(z)$ of the form (1.1) and satisfying the analytic condition

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}-\alpha\right\}>\beta\left|\frac{z\left(D^{n} f(z)\right)^{\prime}}{D^{n} f(z)}-1\right|, z \in U \tag{1.15}
\end{equation*}
$$

We note that $S^{1}(\alpha, \beta)=\beta-U C V(\alpha)$ and $S^{0}(\alpha, \beta)=\beta-S_{p}(\alpha)$.
We denote by T the subclass of S that consists of functions of the form

$$
\begin{equation*}
f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0\right) . \tag{1.18}
\end{equation*}
$$

Further, we define the class $T(n, \alpha, \beta)=S^{n}(\alpha, \beta) \cap T$. The class $T(n, \alpha, \beta)$ was introduced and studied by Rosy and Murugusundaramoorthy in [13]. We also note that $T(0, \alpha, 0)=T^{*}(\alpha)(0 \leq \alpha<1)$ and $T(1, \alpha, 0)=C(\alpha)(0 \leq \alpha<1)$ (Silverman [16]); $T(n, \alpha, 0)=T^{*}(n, \alpha)(0 \leq \alpha<1)$ (Hur and Oh [1]).

In order to show our main results we need the following lemma given by Rosy and Murugusundaramoorthy [13].

Lemma 1. A necessary and sufficient condition for the function $f(z)$ of the form (1.18) to be in the class $T(n, \alpha, \beta)\left(n \in \mathbb{N}_{0},-1 \leq \alpha<1, \beta \geq 0\right)$ is that

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n}[k(1+\beta)-(\alpha+\beta)] a_{k} \leq 1-\alpha . \tag{1.20}
\end{equation*}
$$

Remark 1. Putting $n=\alpha=0$ and $\beta=1$ in Lemma 1, we obtain the result obtained by Ravichandran in [10, Corollary 2].

2. THE GROWTH AND DISTORTION THEOREM

Theorem 3. Let $f(z)$ defined by (1.18) be in the class $T(n, \alpha, \beta)$. Then

$$
\begin{equation*}
|z|-\frac{1-\alpha}{2^{n-i}(2-\alpha+\beta)}|z|^{2} \leq\left|D^{i} f(z)\right| \leq|z|+\frac{1-\alpha}{2^{n-i}(2-\alpha+\beta)}|z|^{2}, \tag{2.1}
\end{equation*}
$$

where $z \in U$ and $0 \leq i \leq n$. The bounds are attained for the function

$$
\begin{equation*}
f(z)=z-\frac{1-\alpha}{2^{n}(2-\alpha+\beta)} z^{2} \quad(z \in U) . \tag{2.2}
\end{equation*}
$$

Proof. Note that $f(z) \in T(n, \alpha, \beta)$ if and only if $D^{i} f(z) \in T(n-i, \alpha, \beta)$ and that

$$
\begin{equation*}
D^{i} f(z)=z-\sum_{k=2}^{\infty} k^{i} a_{k} z^{k} \tag{2.3}
\end{equation*}
$$

Using Lemma 1 , we know that

$$
\begin{equation*}
2^{n-i}(2-\alpha+\beta) \sum_{k=2}^{\infty} k^{i} a_{k} \leq \sum_{k=2}^{\infty} k^{n}[k(1+\beta)-(\alpha+\beta)] a_{k} \leq 1-\alpha, \tag{2.4}
\end{equation*}
$$

that is

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{i} a_{k} \leq \frac{1-\alpha}{2^{n-i}(2-\alpha+\beta)} \tag{2.5}
\end{equation*}
$$

It follows from (2.3) and (2.5) that

$$
\begin{equation*}
\left|D^{i} f(z)\right| \geq|z|-|z|^{2} \sum_{k=2}^{\infty} k^{i} a_{k} \geq|z|-\frac{1-\alpha}{2^{n-i}(2-\alpha+\beta)}|z|^{2} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|D^{i} f(z)\right| \leq|z|+|z|^{2} \sum_{k=2}^{\infty} k^{i} a_{k} \leq|z|+\frac{1-\alpha}{2^{n-i}(2-\alpha+\beta)}|z|^{2} . \tag{2.7}
\end{equation*}
$$

Finally, we note that the bounds in (2.1) are attained for $f(z)$ defined by

$$
\begin{equation*}
D^{i} f(z)=z-\frac{1-\alpha}{2^{n-i}(2-\alpha+\beta)} z^{2} \quad(z \in U) . \tag{2.8}
\end{equation*}
$$

This completes the proof of Theorem 3.
Corollary 1. Let $f(z)$ defined by (1.18) be in the class $T(n, \alpha, \beta)$. Then

$$
\begin{equation*}
|z|-\frac{1-\alpha}{2^{n}(2-\alpha+\beta)}|z|^{2} \leq|f(z)| \leq|z|+\frac{1-\alpha}{2^{n}(2-\alpha+\beta)}|z|^{2} . \tag{2.9}
\end{equation*}
$$

The equalities in (2.9) are attained for the function $f(z)$ given by (2.2).
Proof. Taking $i=0$ in Theorem 3, we immediately obtain (2.9).

Corollary 2. Let $f(z)$ defined by (1.18) be in the class $T(n, \alpha, \beta)$. Then

$$
\begin{equation*}
1-\frac{1-\alpha}{2^{n-1}(2-\alpha+\beta)}|z| \leq\left|f^{\prime}(z)\right| \leq 1+\frac{1-\alpha}{2^{n-1}(2-\alpha+\beta)}|z| . \tag{2.10}
\end{equation*}
$$

The equalities in (2.10) are attained for the function $f(z)$ given by (2.2).
Proof. Setting $i=1$ in Theorem 3, and making use of the definition of D^{1}, we get the conclusion.

3. RADII OF CLOSE-TO-CONVEXITY, STARLIKENESS AND CONVEXITY

Theorem 4. Let the function $f(z)$ defined by (1.18) be in the class $T(n, \alpha, \beta)$. Then $f(z)$ is close-to-convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{1}$, where

$$
\begin{equation*}
r_{1}=r_{1}(n, \alpha, \beta, \rho)=\inf _{k \geq 2}\left\{\frac{(1-\rho) k^{n-1}[k(1+\beta)-(\alpha+\beta)]}{1-\alpha}\right\}^{\frac{1}{k-1}} \tag{3.1}
\end{equation*}
$$

The result is sharp, the extremal function $f(z)$ being given by

$$
\begin{equation*}
f(z)=z-\frac{(1-\alpha)}{k^{n}[k(1+\beta)-(\alpha+\beta)]} z^{k} \quad\left(k \geq 2, n \in \mathbb{N}_{0}\right) . \tag{3.2}
\end{equation*}
$$

Proof. We must show that $\left|f^{\prime}(z)-1\right| \leq 1-\rho$ for $|z|<r_{1}(n, \alpha, \beta, \rho)$, where $r_{1}(n, \alpha, \beta, \rho)$ is given by (3.1). Indeed we find from the definition (1.18) that

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=2}^{\infty} k a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-1\right| \leq 1-\rho$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{k}{1-\rho}\right) a_{k}|z|^{k-1} \leq 1 . \tag{3.3}
\end{equation*}
$$

But, by Lemma 1, (3.3) will be true if

$$
\left.\left(\frac{k}{1-\rho}\right)\right)|z|^{k-1} \leq \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]}{1-\alpha},
$$

that is, if

$$
\begin{equation*}
|z| \leq\left\{\frac{(1-\rho) k^{n-1}[k(1+\beta)-(\alpha+\beta)]}{1-\alpha}\right\}^{\frac{1}{k-1}}(k \geq 2) . \tag{3.4}
\end{equation*}
$$

Now Theorem 4 follows easily from (3.4).
Theorem 5. Let the function $f(z)$ defined by (1.18) be in the class $T(n, \alpha, \beta)$. Then the function $f(z)$ is starlike of order $\rho(0 \leq \rho<1)$ in $|z|<r_{2}$, where

$$
\begin{equation*}
r_{2}=r_{2}(n, \alpha, \beta, \rho)=\inf _{k \geq 2}\left\{\frac{(1-\rho) k^{n}[k(1+\beta)-(\alpha+\beta)]}{(k-\rho)(1-\alpha)}\right\}^{\frac{1}{k-1}} . \tag{3.5}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (3.2).

Proof. It suffices to show that $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho$ for $|z|<r_{2}(n, \alpha, \beta, \rho)$, where $r_{2}(n, \alpha, \beta, \rho)$ is given by (3.5). Indeed we find, again from (1.18), that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq \frac{\sum_{k=2}^{\infty}(k-1) a_{k}|z|^{k-1}}{1-\sum_{k=2}^{\infty} a_{k}|z|^{k-1}}
$$

Thus $\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leq 1-\rho$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty}\left(\frac{k-\rho}{1-\rho}\right) a_{k}|z|^{k-1} \leq 1 . \tag{3.6}
\end{equation*}
$$

But, by Lemma 1, (3.6) will be true if

$$
\left(\frac{k-\rho}{1-\rho}\right)|z|^{k-1} \leq \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]}{1-\alpha},
$$

that is, if

$$
\begin{equation*}
|z| \leq\left\{\frac{(1-\rho) k^{n}[k(1+\beta)-(\alpha+\beta)]}{(k-\rho)(1-\alpha)}\right\}^{\frac{1}{k-1}} \quad(k \geq 2) . \tag{3.7}
\end{equation*}
$$

Now Theorem 5 follows easily from (3.7).
Corollary 3. Let the function $f(z)$ defined by (1.18) be in the class $T(n, \alpha, \beta)$. Then $f(z)$ is convex of order $\rho(0 \leq \rho<1)$ in $|z|<r_{3}$, where

$$
\begin{equation*}
r_{3}=r_{3}(n, \alpha, \beta, \rho)=\inf _{k \geq 2}\left\{\frac{(1-\rho) k^{n-1}[k(1+\beta)-(\alpha+\beta)]}{(k-\rho)(1-\alpha)}\right\}^{\frac{1}{k-1}} . \tag{3.8}
\end{equation*}
$$

The result is sharp, with the extremal function $f(z)$ given by (3.2).

4. A FAMILY OF INTEGRAL OPERATORS

In view of Lemma 1, we see that $z-\sum_{k=2}^{\infty} b_{k} z^{k}$ is in $T(n, \alpha, \beta)$ as long as $0 \leq b_{k} \leq a_{k}$ for all k. In particular, we have the following result

Theorem 6. Let the function $f(z)$ defined by (1.18) be in the class $T(n, \alpha, \beta)$ and let $c>-1$ be a real number. Then the function $F(z)$ defined by

$$
\begin{equation*}
F(z)=\frac{c+1}{z^{c}} \int_{0}^{z} t^{c-1} f(t) \mathrm{d} t \quad(c>-1) \tag{4.1}
\end{equation*}
$$

also belongs to the class $T(n, \alpha, \beta)$.
Proof. It follows from the representation (4.1) that $F(z)=z-\sum_{k=2}^{\infty} b_{k} z^{k}$, where $b_{k}=\frac{c+1}{c+k} a_{k} \leq a_{k}$.

On the other hand, the converse is not true. This leads to a radius of univalence result.

Theorem 7. Let the function $F(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}\left(a_{k} \geq 0\right)$ be in the class $T(n, \alpha, \beta)$ and let $c>-1$ be a real number. Then the function $f(z)$ given by (4.1) is univalent in $|z|<R^{*}$, where

$$
\begin{equation*}
R^{*}=\inf _{k \geq 2}\left\{\frac{k^{n-1}[k(1+\beta)-(\alpha+\beta)](c+1)}{(1-\alpha)(c+k)}\right\}^{\frac{1}{k-1}} . \tag{4.2}
\end{equation*}
$$

The result is sharp.
Proof. From (4.1), we have

$$
f(z)=\frac{z^{1-c}\left(z^{c} F(z)\right)^{\prime}}{c+1}=z-\sum_{k=2}^{\infty} \frac{c+k}{c+1} a_{k} z^{k} .
$$

In order to obtain the required result, it suffices to show that $\left|f^{\prime}(z)-1\right|<1$ whenever $|z|<R^{*}$, where R^{*} is given by (4.2). Now

$$
\left|f^{\prime}(z)-1\right| \leq \sum_{k=2}^{\infty} \frac{k(c+k)}{c+1} a_{k}|z|^{k-1}
$$

Thus $\left|f^{\prime}(z)-1\right|<1$ if

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k(c+k)}{c+1} a_{k}|z|^{k-1}<1 \tag{4.3}
\end{equation*}
$$

But Lemma 1 confirms that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]}{1-\alpha} a_{k} \leq 1 \tag{4.4}
\end{equation*}
$$

Hence (4.3) will be satisfied if

$$
\frac{k(c+k)}{c+1}|z|^{k-1}<\frac{k^{n}[k(1+\beta)-(\alpha+\beta)]}{1-\alpha}
$$

that is, if

$$
\begin{equation*}
|z|<\left\{\frac{k^{n-1}[k(1+\beta)-(\alpha+\beta)](c+1)}{(1-\alpha)(c+k)}\right\}^{\frac{1}{k-1}}(k \geq 2) . \tag{4.5}
\end{equation*}
$$

Therefore the function $f(z)$ given by (4.1) is univalent in $|z|<R^{*}$. The sharpness of the result follows if we take

$$
\begin{equation*}
f(z)=z-\frac{(1-\alpha)(c+k)}{k^{n}[k(1+\beta)-(\alpha+\beta)](c+1)} z^{k} \quad(k \geq 2) \tag{4.6}
\end{equation*}
$$

5. MODIFIED HADAMARD PRODUCTS

Let the functions $f_{\nu}(z)(\nu=1,2)$ be defined by

$$
\begin{equation*}
f_{\nu}(z)=z-\sum_{k=2}^{\infty} a_{k, \nu} z^{k} \quad\left(a_{k, \nu} \geq 0, \nu=1,2\right) \tag{5.1}
\end{equation*}
$$

The modified Hadamard product of $f_{1}(z)$ and $f_{2}(z)$ is defined by

$$
\begin{equation*}
\left(f_{1} * f_{2}\right)(z)=z-\sum_{k=2}^{\infty} a_{k, 1} a_{k, 2} z^{k} \tag{5.2}
\end{equation*}
$$

THEOREM 8. Let each of the functions $f_{\nu}(z)(\nu=1,2)$ defined by (5.1) be in the class $T(n, \alpha, \beta)$. Then $\left(f_{1} * f_{2}\right)(z) \in T(n, \delta(n, \alpha, \beta), \beta)$, where

$$
\begin{equation*}
\delta(n, \alpha, \beta)=1-\frac{(1+\beta)(1-\alpha)^{2}}{2^{n}(2-\alpha+\beta)^{2}-(1-\alpha)^{2}} \tag{5.3}
\end{equation*}
$$

The result is sharp.
Proof. Employing the techniques used by Schild and Silverman in [15], we need to find the largest $\delta=\delta(n, \alpha, \beta)$ such that

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}[k(1+\beta)-(\delta+\beta)]}{1-\delta} a_{k, 1} a_{k, 2} \leq 1 \tag{5.4}
\end{equation*}
$$

Since

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]}{1-\alpha} a_{k, 1} \leq 1 \tag{5.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]}{1-\alpha} a_{k, 2} \leq 1 \tag{5.6}
\end{equation*}
$$

the Cauchy-Schwarz inequality yields

$$
\begin{equation*}
\sum_{k=2}^{\infty} \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]}{1-\alpha} \sqrt{a_{k, 1} a_{k, 2}} \leq 1 \tag{5.7}
\end{equation*}
$$

Thus it is sufficient to show that

$$
\begin{equation*}
\frac{k^{n}[k(1+\beta)-(\delta+\beta)]}{1-\delta} a_{k, 1} a_{k, 2} \leq \frac{k^{n}[k(1+\beta)-(\alpha+\beta)]}{1-\alpha} \sqrt{a_{k, 1} a_{k, 2}} \tag{5.8}
\end{equation*}
$$

for $k \geq 2$, that is, that

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{[k(1+\beta)-(\alpha+\beta)](1-\delta)}{[k(1+\beta)-(\delta+\beta)](1-\alpha)} \quad(k \geq 2) \tag{5.9}
\end{equation*}
$$

Note that

$$
\begin{equation*}
\sqrt{a_{k, 1} a_{k, 2}} \leq \frac{(1-\alpha)}{k^{n}[k(1+\beta)-(\alpha+\beta)]} \quad(k \geq 2) \tag{5.10}
\end{equation*}
$$

Consequently, we need only to prove that

$$
\begin{equation*}
\frac{1-\alpha}{k^{n}[k(1+\beta)-(\alpha+\beta)]} \leq \frac{[k(1+\beta)-(\alpha+\beta)](1-\delta)}{[k(1+\beta)-(\delta+\beta)](1-\alpha)} \quad(k \geq 2), \tag{5.11}
\end{equation*}
$$

or, equivalently, that

$$
\begin{equation*}
\delta \leq 1-\frac{(k-1)(1+\beta)(1-\alpha)^{2}}{k^{n}[k(1+\beta)-(\alpha+\beta)]^{2}-(1-\alpha)^{2}} \quad(k \geq 2) . \tag{5.12}
\end{equation*}
$$

Since

$$
\begin{equation*}
\Phi(k)=1-\frac{(k-1)(1+\beta)(1-\alpha)^{2}}{k^{n}[k(1+\beta)-(\alpha+\beta)]^{2}-(1-\alpha)^{2}} \tag{5.13}
\end{equation*}
$$

is an increasing function of $k(k \geq 2)$, letting $k=2$ in (5.13), we obtain

$$
\begin{equation*}
\delta \leq \Phi(2)=1-\frac{(1+\beta)(1-\alpha)^{2}}{2^{n}(2-\alpha+\beta)^{2}-(1-\alpha)^{2}}, \tag{5.14}
\end{equation*}
$$

which proves the main assertion of Theorem 8 .
Finally, by taking the functions $f_{\nu}(z)(\nu=1,2)$ given by

$$
\begin{equation*}
f_{\nu}(z)=z-\frac{1-\alpha}{2^{n}(2-\alpha+\beta)} z^{2} \quad(\nu=1,2), \tag{5.15}
\end{equation*}
$$

we can see that the result is sharp.
Proceeding as in the proof of Theorem 8, we get
Theorem 9. Let the functions $f_{1}(z)$ and $f_{2}(z)$ defined by (5.1) be in the classes $T(n, \alpha, \beta)$ and $T(n, \gamma, \beta)$, respectively. Then

$$
\left(f_{1} * f_{2}\right)(z) \in T(n, \xi(n, \alpha, \gamma, \beta), \beta)
$$

where

$$
\begin{equation*}
\xi(n, \alpha, \gamma, \beta)=1-\frac{(1+\beta)(1-\alpha)(1-\gamma)}{2^{n}(2-\alpha+\beta)(2-\gamma+\beta)-(1-\alpha)(1-\gamma)} . \tag{5.16}
\end{equation*}
$$

The result is the best possible for the functions

$$
\begin{equation*}
f_{1}(z)=z-\frac{1-\alpha}{2^{n}(2-\alpha+\beta)} z^{2}, \quad f_{2}(z)=z-\frac{1-\gamma}{2^{n}(2-\gamma+\beta)} z^{2} . \tag{5.17}
\end{equation*}
$$

Theorem 10. Let the functions $f_{\nu}(z)(\nu=1,2)$ defined by (5.1) be in the class $T(n, \alpha, \beta)$. Then the function

$$
\begin{equation*}
h(z)=z-\sum_{k=2}^{\infty}\left(a_{k, 1}^{2}+a_{k, 2}^{2}\right) z^{k} \tag{5.19}
\end{equation*}
$$

belongs to the class $T(n, \tau(n, \alpha, \beta), \beta)$, where

$$
\begin{equation*}
\tau(n, \alpha, \beta)=1-\frac{(1+\beta)(1-\alpha)^{2}}{2^{n-1}(2-\alpha+\beta)^{2}-(1-\alpha)^{2}} . \tag{5.20}
\end{equation*}
$$

The result is sharp for the functions $f_{\nu}(z)(\nu=1,2)$ defined by (5.15).

6. PROPERTIES ASSOCIATED WITH GENERALIZED FRACTIONAL CALCULUS OPERATORS

In terms of the Gauss hypergeometric function

$$
\begin{equation*}
{ }_{2} F_{1}(\delta, \mu ; \nu ; z)=\sum_{k=0}^{\infty} \frac{(\delta)_{k}(\mu)_{k}}{(\nu)_{k}} \frac{z^{k}}{k!} \tag{6.1}
\end{equation*}
$$

for $z \in U, \delta, \mu, \nu \in C, \nu \neq 0,-1,-2, \ldots$, where $(\lambda)_{k}$ denotes the Pochhammer symbol defined, in terms of the Gamma functions, by

$$
(\lambda)_{k}=\frac{\Gamma(\lambda+k)}{\Gamma(\lambda)}= \begin{cases}1 & (k=0) \\ \lambda(\lambda+1) \ldots(\lambda+k-1) & (k \in \mathbb{N})\end{cases}
$$

The generalized fractional calculus operators $I_{0, z}^{\mu, \nu, \eta}$ and $J_{0, z}^{\mu, \nu, \eta}$ are defined below (cf., e.g., [8] and [18]).

Definition 3. (The generalized fractional integral operators.) The generalized fractional integral of order μ is defined, for a function $f(z)$, by

$$
\begin{equation*}
I_{0, z}^{\mu, \nu, \eta} f(z)=\frac{z^{-\mu-\nu}}{\Gamma(\mu)} \int_{0}^{z}(z-\zeta)^{\mu-1}{ }_{2} F_{1}\left(\mu+\nu ;-\eta ; \mu ; 1-\frac{\zeta}{z}\right) f(\zeta) \mathrm{d} \zeta \tag{6.2}
\end{equation*}
$$

for $\mu>0, \epsilon>\max \{0, \nu-\eta\}-1$, where $f(z)$ is an analytic function in a simplyconnected region of the z-plane containing the origin, and the multiplicity of $(z-\zeta)^{\mu-1}$ is removed by requiring $\log (z-\zeta)$ to be real when $(z-\zeta)>0$, provided further that

$$
\begin{equation*}
f(z)=O\left(|z|^{\epsilon}\right)(z \rightarrow 0) \tag{6.3}
\end{equation*}
$$

Definition 4. (The generalized fractional derivative operators.) The generalized fractional derivative of order μ is defined, for a function $f(z)$, by

$$
J_{0, z}^{\mu, \nu, \eta} f(z)=\left\{\begin{array}{l}
\frac{1}{\Gamma(1-\mu)} \frac{\mathrm{d}}{\mathrm{~d} z}\left\{z^{\mu-\nu} \int_{0}^{z}(z-\zeta)^{-\mu}{ }_{2} F_{1}(\nu-\mu, 1-\eta ; 1-\mu\right. \tag{6.4}\\
\left.\left.1-\frac{\zeta}{z}\right) f(\zeta) \mathrm{d} \zeta\right\}(0 \leq \mu<1) \\
\frac{\mathrm{d}^{n}}{\mathrm{~d} z^{n}} J_{0, z}^{\mu-n, \nu, \eta} f(z)(n \leq \mu<n+1, n \in N)
\end{array}\right.
$$

for $\epsilon>\max \{0, \nu-\eta\}-1$, where $f(z)$ is constrained, and the multiplicity of $(z-\zeta)^{\mu-1}$ is removed, as in Definition 3, and ϵ is given by (6.3).

It follows from Definition 3 and Definition 4 that

$$
\begin{gather*}
I_{0, z}^{\mu,-\mu, \eta} f(z)=D_{z}^{-\mu} f(z)(\mu>0) \tag{6.5}\\
J_{0, z}^{\mu, \mu, \eta} f(z)=D_{z}^{\mu} f(z)(0 \leq \mu<1) \tag{6.6}
\end{gather*}
$$

where $D_{z}^{\mu}(\mu \in R)$ is the fractional operator considered by Owa in [7] and (subsequently) by Owa and Srivastava in [9] and Srivastava and Owa in [17]. Furthermore, in terms of the Gamma function, Definitions 3 and 4 readily yield the following result.

Lemma 2. ([18]) The generalized fractional integral and the generalized fractional derivative of a power function are given by

$$
\begin{equation*}
I_{0, z}^{\mu, \nu, \eta} z^{\rho}=\frac{\Gamma(\rho+1) \Gamma(\rho-\nu+\eta+1)}{\Gamma(\rho-\nu+1) \Gamma(\rho+\mu+\eta+1)} z^{\rho-\nu} \tag{6.7}
\end{equation*}
$$

for $\mu>0, \rho>\max \{0, \nu-\eta\}-1$, and

$$
\begin{equation*}
J_{0, z}^{\mu, \nu, \eta} z^{\rho}=\frac{\Gamma(\rho+1) \Gamma(\rho-\nu+\eta+1)}{\Gamma(\rho-\nu+1) \Gamma(\rho-\mu+\eta+1)} z^{\rho-\nu} \tag{6.8}
\end{equation*}
$$

for $0 \leq \mu<1, \rho>\max \{0, \nu-\eta\}-1$.
ThEOREM 11. Let $f(z)$ defined by (1.18) be in the class $T(n, \alpha, \beta)$. Then

$$
\begin{align*}
& \frac{\Gamma(2-\nu+\eta)}{\Gamma(2-\nu) \Gamma(2+\mu+\eta)}|z|^{1-\nu}\left\{1-\frac{(1-\alpha)(2-\nu+\eta)}{2^{n-1}(2-\alpha+\beta)(2-\nu)(2+\mu+\eta)}|z|\right\} \\
& \leq\left|I_{0, z}^{\mu, \nu, \eta} f(z)\right| \tag{6.9}\\
& \leq \frac{\Gamma(2-\nu+\eta)}{\Gamma(2-\nu) \Gamma(2+\mu+\eta)}|z|^{1-\nu}\left\{1+\frac{(1-\alpha)(2-\nu+\eta)}{2^{n-1}(2-\alpha+\beta)(2-\nu)(2+\mu+\eta)}|z|\right\}
\end{align*}
$$

for $z \in U_{0}, \mu>0, \max \{\nu, \nu-\eta,-\mu-\eta\}<2, \nu(\mu+\eta) \leq 3 \mu$, and

$$
\frac{\Gamma(2-\nu+\eta)}{\Gamma(2-\nu) \Gamma(2-\mu+\eta)}|z|^{1-\nu}\left\{1-\frac{(1-\alpha)(2-\nu+\eta)}{2^{n-1}(2-\alpha+\beta)(2-\nu)(2-\mu+\eta)}|z|\right\}
$$

(6.10) $\leq\left|J_{0, z}^{\mu, \nu, \eta} f(z)\right|$

$$
\leq \frac{\Gamma(2-\nu+\eta)}{\Gamma(2-\nu) \Gamma(2-\mu+\eta)}|z|^{1-\nu}\left\{1+\frac{(1-\alpha)(2-\nu+\eta)}{2^{n-1}(2-\alpha+\beta)(2-\nu)(2-\mu+\eta)}|z|\right\}
$$

for $z \in U_{0}, 0 \leq \mu<1, \max \{\nu, \nu-\eta, \mu-\eta\}<2, \nu(\mu-\eta) \geq 3 \mu$, where

$$
U_{0}= \begin{cases}U & (\nu \leq 1) \tag{6.11}\\ U \backslash\{0\} & (\nu>1)\end{cases}
$$

Each of these results is sharp for the function $f(z)$ defined by (2.2).
Proof. First of all, since the function $f(z)$ defined by (1.18) is in the class $T(n, \alpha, \beta)$, we can apply Lemma 1 to deduce that

$$
\begin{equation*}
\sum_{k=2}^{\infty} a_{k} \leq \frac{1-\alpha}{2^{n}(2-\alpha+\beta)} \tag{6.12}
\end{equation*}
$$

Next, making use of the assertion (6.7) of Lemma 2, we find from (1.18) that

$$
\begin{equation*}
F(z)=\frac{\Gamma(2-\nu) \Gamma(2+\mu+\eta)}{\Gamma(2-\nu+\eta)} z^{\nu} I_{0, z}^{\mu, \nu, \eta} f(z)=z-\sum_{k=2}^{\infty} \Phi(k) a_{k} z^{k} \tag{6.13}
\end{equation*}
$$

where, for convenience,

$$
\begin{equation*}
\Phi(k)=\frac{(1)_{k}(2-\nu+\eta)_{k-1}}{(2-\nu)_{k-1}(2+\mu+\eta)_{k-1}} \quad(k \in \mathbb{N} \backslash\{1\}) \tag{6.14}
\end{equation*}
$$

The function $\Phi(k)$ defined by (6.14) is nonincreasing under the parametric constraints stated already with (6.9), and we thus have

$$
\begin{equation*}
0<\Phi(k) \leq \Phi(2)=\frac{2(2-\nu+\eta)}{(2-\nu)(2+\mu+\eta)} \quad(k \in \mathbb{N} \backslash\{1\}) \tag{6.15}
\end{equation*}
$$

Now the assertion (6.9) of Theorem 11 follows from (6.12) and (6.15).
The inequalities (6.10) can be proved similarly, observing that from (6.8) we get

$$
\begin{equation*}
G(z)=\frac{\Gamma(2-\nu) \Gamma(2-\mu+\eta)}{\Gamma(2-\nu+\eta)} z^{\nu} J_{0, z}^{\mu, \nu, \eta} f(z)=z-\sum_{k=2}^{\infty} \Psi(k) a_{k} z^{k} \tag{6.16}
\end{equation*}
$$

where

$$
\left.\begin{array}{rl}
0 & <\Psi(k)
\end{array}\right) \frac{(1)_{k}(2-\nu+\eta)_{k-1}}{(2-\nu)_{k-1}(2-\mu+\eta)_{k-1}}, \quad(k \in \mathbb{N} \backslash\{1\}),
$$

under the parametric constraints stated already with (6.10).
Finally, by observing that the equalities in each of the assertions (6.9) and (6.10) are attained by the function $f(z)$ given by (2.2), we complete the proof of Theorem 11.

In view of the relationships (6.5) and (6.6), by setting $\nu=-\mu$ and $\nu=\mu$ in our assertions (6.9) and (6.10), respectively, we obtain the following result.

Corollary 4. Let $f(z)$ defined by (1.18) be in the class $T(n, \alpha, \beta)$. Then

$$
\begin{align*}
& \frac{|z|^{1+\mu}}{\Gamma(2+\mu)}\left\{1-\frac{1-\alpha}{2^{n-1}(2-\alpha+\beta)(2+\mu)}|z|\right\} \leq\left|D_{z}^{-\mu} f(z)\right| \tag{6.18}\\
& \leq \frac{|z|^{1+\mu}}{\Gamma(2+\mu)}\left\{1+\frac{1-\alpha}{2^{n-1}(2-\alpha+\beta)(2+\mu)}|z|\right\}(z \in U ; \mu>0)
\end{align*}
$$

The result is sharp for the function $f(z)$ given by (2.2).
Remark 2. Note that the result obtained by Rosy and Murugusundaramoorthy in [13, Corollary 2] is not correct. The correct result is given by (6.18).

Corollary 5. Let $f(z)$ defined by (1.18) be in the class $T(n, \alpha, \beta)$. Then

$$
\begin{align*}
& \frac{|z|^{1-\mu}}{\Gamma(2-\mu)}\left\{1-\frac{1-\alpha}{2^{n-1}(2-\alpha+\beta)(2-\mu)}|z|\right\} \leq\left|D_{z}^{\mu} f(z)\right| \\
& \leq \frac{|z|^{1-\mu}}{\Gamma(2-\mu)}\left\{1+\frac{1-\alpha}{2^{n-1}(2-\alpha+\beta)(2-\mu)}|z|\right\}(z \in U ; 0 \leq \mu<1) \tag{6.19}
\end{align*}
$$

The result is sharp for the function $f(z)$ given by (2.2).
Remark 3. Note that the result obtained by Rosy and Murugusundaramoorthy in [13, Corollary 3] is not correct. The correct result is given by (6.19).

REFERENCES

[1] Hur, M.D. and $\mathrm{OH}, \mathrm{G} . \mathrm{H} .$, On certain class of analytic functions with negative coefficients, Pusan Kyongnam Math. J., 5 (1989), 69-80.
[2] Goodman, A.W., On uniformly convex functions, Ann. Polon. Math., 56 (1991), 87-92.
[3] Goodman, A.W., On uniformly starlike functions, J. Math. Anal. Appl., 155 (1991), 364-370.
[4] Kanas, S. and Wisniowska, A., Conic regions and k - uniformly convexity, J. Comput. Appl. Math., 104 (1999), 327-336.
[5] Kanas, S. and Wisniowska, A., Conic regions and starlike functions, Rev. Roumaine Math. Pures Appl., 45, 4 (2000), 647-657.
[6] Ma, W. and Minda, D., Uniformly convex functions, Ann. Polon. Math., 57, 2 (1992), 165-175.
[7] Owa, S., On the distortion theorem. I, Kyungpook Math. J., 18 (1978), 53-59.
[8] Owa, S., Saigo, M. and Srivastava, H.M., Some characterization theorems for starlike and convex functions involving a certain fractional integral operator, J. Math. Anal. Appl., 140 (1989), 419-426.
[9] Owa, S. and Srivastava, H.M., Univalent and starlike generalized hypergeometric functions, Canad. J. Math., 39 (1987), 1057-1077.
[10] Ravichandran, V., On starlike functions with negative coefficients, Far East J. Math. Sci., 8, 3 (2003), 359-364.
[11] Ronning, F., On starlike functions associated with parabolic regions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 45 (1991), 117-122.
[12] Ronning, F., Uniformly convex functions with a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118, 1 (1993), 190-196.
[13] Rosy, T. and Murugusundaramoorthy, G., Fractional calculus and their applications to certain subclass of uniformaly convex functions, Far East J. Math. Sci., 15, 2 (2004), 231-242.
[14] Salagean, G., Subclasses of univalent functions, Lecture Notes in Math., SpringerVerlag, 1013 (1983), 362-372.
[15] Schild, A. and Silverman, H., Convolution of univalent functions with negative coefficients, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 29 (1975), 99-106.
[16] Silverman, H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc., 51 (1975), 109-116.
[17] Srivastava, H.M. and Owa, S. (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.
[18] Srivastava, H.M., Saigo, M. and Owa, S., A class of distortion theorem involving certain operators of fractional calculus, J. Math. Anal. Appl., 131 (1988), 412-420.

Received November 7, 2007
Accepted April 17, 2009

$$
\begin{gathered}
\text { Mathematics Department } \\
\text { Faculty of Science } \\
\text { Mansoura University } \\
\text { Mansoura 35516, Egypt } \\
\text { E-mail: mkaouf127@yahoo.com }
\end{gathered}
$$

[^0]: The author is thankful to the referee for his/her comments and suggestions.

