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GEOMETRIC PROPERTIES OF A PARTICULAR FUNCTION

ROBERT SZASZ and PAL A. KUPAN

Abstract. In this paper we will determine the radius of starlikeness and con-
vexity of a particular function.
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1. INTRODUCTION

Let U(zo,7) = {2z € C: |z — 20| < r} be the open disc with center zy and
radius r. The particular disc U(0,1) will be denoted by U. Let A be the class
of analytic functions defined on the unit disc U and having the form

f(2)=z4aoz® +azz®+ ... .
It is simple to prove that the function fy defined by the equality

2
fol2) = sin z

z
belongs to the class A. The class of starlike functions S* is a subclass of A
and consists of functions f for which the domain f(U) is starlike with respect
to 0. An analytic description of S* is ([2], pp.8)

. na 2(2)
S _{feA.Re ) >0,zeU}.

A function f € A belongs to the class K of convex functions if and only if
f(U) is a convex domain in C. It is well-known (see [2], pp.8) that

K:{feA: Re <1+Z;,IES)>>0, zEU}.

We are going to determine

1
r1 = sup {7‘ € (0,00) : ;fo(rz) is in S*}
and .
ro = sup {7’ € (0,00) : —fo(rz) belongs to K} .
T

The real number 7 is the radius of starlikeness and rs is the radius of convexity.
These problems are equivalent to determine the largest 1,79 € (0, 00) so that
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fo(U(0,7r1)) is starlike with respect to 0 and that fo(U(0,72)) is a convex
domain, respectively.

REMARK 1. The analytic descriptions of S* and K imply that

2f'(2)
f(z)

(1) 71 = sup {r € (0,00) : Re >0, for all z € U(O,r)}

and
2f"(z)
f'(z)
The aim of this paper is to determine the radius of starlikeness and convexity
of the function fy.

(2) ro9 = sup {’I“ € (0,00) : Re(l + ) >0, for all z € U(O,r)} )

2. PRELIMINARIES
In order to prove the main result we need the following lemmas.

LEMMA 1. ([1], p. 200) (Chauchy’s theorem) Let f be a meromorphic func-
tion on C so that zero is a regqular point for f and f has only simple poles.
Let Py = {aj € C: j € N*} be the set of poles of the function f. Suppose
that (I'y)n>1 is a sequence of simple rectifiable contours having the properties:

(i) 0 € Int(T",) C Int(I'y41), where Int(I',) denotes the bounded domain
determined by the contour I'y,.
(ii) lim d(0,T),) =0, where d(0,T),) = inf{|z|,z € T, }.
n—oo
(iii) There exists A > 0 so that L(T'y,) < Ad(0,T,), n € N*.
(iv) There ezists B > 0 so that |f(z)| < B, z €T, neN*.
If m(n) denotes the number of poles of the function f contained in the domain
Int(T),), then the following equality holds:
m(n)

f(z) = f(0) + lim ZRes(f,aj)< ! —1—1).
7j=1

n—0o0 < Z— 0y (o7

The obtained series is uniformly convergent on every compact subset of
C\ P.

LEMMA 2. Ifv e C, a€R and a > |v|, then

(3) Re< ! )2 bl
a—v a+ |v|
(4) Re( V) > =l
a+v a— |y
Proof. Let v =z + iy and m = |v| = /22 + y2. Inequality (3) becomes
ar —m? —m

o2 —2ax+m?2 T a+m
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which is equivalent to
ala—m)(m+z) > 0.
The proof of the second inequality is similar. O
LEMMA 3. Ifa,B€R, a>pB>7mandv €C, |v| < 3, |a— 3| < § then
Qo—v—Bw _ o+t B)
(a—v)(B—v) ~ (a+o))(B+][v])
Proof. The desiderated inequality is equivalent to

2|v 2v v v
Re| 52+ 5~ (e es) ] 2
For v = « + iy the inequality becomes
26(8 — \/302 + y
(B+Va?+y?) 24y2)
o VT |20
(Va2 +y?)((a—x)? +y?)]
Thus we only have to show that
) 26(5 ~ m B alo = Va* +y?)
B+ Va2 +y?)( 2 +y?) (et Va2 +y?)((a—2)” +y?)
Let g: [r,00) — R be the function defined by
P . N
(a2 20— 2)2 + 4?)

The inequality (5) is equivalent to In (%) < In2. We have to discuss the
g()

case gz > 1. The mean value theorem for the function h(t) = In(g(t)) implies
that there is a point ¢ € (3, «) so that

i (29) = @-92 —ampy (24 Ao - R,

Re

(z+ x2+y2)[

> 0.

9(B) g(c) c c—m c+m 2 —2cx+m?
where m = /22 4+ y2. A simple calculation leads to
(6) 1 1 B 1 B 2¢ -2z
c c—m c+m 2 —2cx+m?
1 2¢%(c—m—x)+2me(2z —m) + 2m*(x —m) 1
T (c2 —m?2)(c? — 2cx + m?) ¢

Relation (6) and the conditions 7 < 3 < «, | — 8] < 5 imply that

9@\ gl oml 1
ln<g(ﬂ)><( ﬂ)c<27T 2<12.
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LEMMA 4. Let I'y, be the quadrate determined by the verteres £nm + inm,
where n is a fired natural number. The equation zcosz = 2sinz has exactly
2n + 1 roots inside the quadrate I'y,. Between this 2n + 1 roots two are pure
imaginary and the others are real. Also, zero is a root . If 0 < a1 < ag <
+++ < a1 denote the positive real roots then ay, € (km, (k+3)m), k=T,n—1,
and the negative roots are —ay, k=1,n— 1.

Proof. If z is a point on the side of the quadrate I';;, then
z=+xnm+1iy, y € [-nm,nr| or z=uzxxtinm, x € [—nm,nwl.

In the first case

|2 cos z| = \/n?a2 + y2| cosiy| = \/n2n2 + 32 chy

|2sin z| = 2shy,

and

which means that
|z cosz| > |2sinz|.

In the second case |zcos z| = \/n?mw? 4+ y?| cos(x + inm)| > \/n?n? + y? shnw

and |2sin z| = 2|sin(z + inm)| < 2ch(nw). It is easy to show that

vn?m? 4+ y2 shnw > ch(nn)

|z cos z| > |2sin z|

and so the inequality

holds true in the second case too. Rouche’s theorem yields that the equations
zcosz=0 and zcosz—2sinz =0

have the same number of roots inside the quadrate I',, and that the equation
zcosz = 0 has exactly 2n+1 roots in Int(I',), where Int(I',,) denotes the
domain bounded by the curve I',,.

If z = 2 € R then the equation z cos 2 —2sin z = 0 is equivalent to tanz = 3.
This equation has exactly one simple root in every interval (kn+5, kn+7%), k =
1,n — 1, zero is a simple root too, and if oy, € (km + 5,k + ),k =1,n — 1,
are roots, then —ay, k = 1,n — 1 are also roots.

In the case z = iy, y € R, the equation zcosz — 2sinz = 0 becomes
tanhy = £. This equation has two real roots %y with yo € (%, 2).

We finally obtain that the set of the roots of the equation z cos z—2sinz = 0
is {+iyo 1 yo € (3,2)}U{0}U{*ay 1 ap € (kr+ S, kn+3), k=T,n—1}. O

LEMMA 5. Let h be the function defined by

2sin z + 2?2 sin 2
Mz) = 2zsinz — z2cosz’
Then there exists a real number B > 0 which does not depend on the natural
number n so that

|h(z)| < B for all z€Ty and n>1.
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Proof. If z is a point on the side of the quadrate I';;, then
z=4nm+1iy, y € [-nm,nn] or z=uztinm, x € [—nm,nx].
We have in the first case

1+4+e 2

z=4xnm+1iy and |cotz| = |cot(iy)| = ’1 > 1,y #0.

_ e—2y
This implies that

2 2
1+ EE 1+ EE

2
||

2+ 22
22 — 22cotz

|h(z)] = < 6, and h(xnm) = 0.

_|cotz\—%_ 1-

The second case z = x + in7 leads to the relations

e—27re2ix +1 1— e—27r
lcotz| = |——5 >
e 2meliz _ ] 14e 27
and
2 1+ 25 1+ % 2
2+2 & EE 1+ =
[h(2)] = 22 — z2cotz| ~ |cot 7 < t 2 S Tex 3
|cotz| — o |cotz| — i Teo — =
1+
Put B = max { 6, ;—=%— ¢- Then we conclude that
lfe=2m

2
|h(2)] < B, forall zeI'y, n>1.

3. THE MAIN RESULT

THEOREM 1. The radius of starlikeness of the function fo(z) = anQZ is the
unique root r1 € (1,2) of the equation

2 —rcothr = 0.

Proof. According to the equality (1) from Remark 1, we have to determine
the largest r; € (0, 00) so that

2fo(2)
fo(2)

A simple calculation gives z)f; 6((;)) = 2 — zcotz. It is well-known that

Re

>0 for every z € U(0,r1).

222
zcotz =1+ E —_—
2 _ 122
— k?m

and that the function series is uniformly convergent on every compact subset
of C\ {km: k € Z}. This leads to

2fi2) = g
=14+ R .
fo(2) + e; k272 — 22

Re
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If 7 > |z| and v = 22, then Lemma 2 implies that
222 —22)?

Re
k272 — 22 = k272 + |2)2

and

2fo(2) 2 lal ()
) 1+Rez k27r2 2= Z K22+ 1z2 folilzl)

Equality holds in the last inequality from above if and only if z = i|z| = ir

This means that the largest 71 € (0, 00) for which the inequality Re% >0

is true for every z € U(0, 1) is the root of the equation

> _irfy(ir)
Z k2 71'2—|—7’2  folir)

k=1

or, equivalently,
2 —r cothr = 0.

An elementary study of the behavior of the function ¢: (0,2) — R, o(r) =
r cothr—2 shows that it has a unique root 1 € (1,2), wherer; = 1,915.... O

REMARK 2. Since z; = ir; is the root of the derivative f{(z), the function
fo is not univalent on any disc U(0,r), r > 1. This means that r; is simulta-
neously the radius of star-likeness and the radius of univalence of the function

Jo-

THEOREM 2. The radius of the convezity of the function fo(z) = Siznzz is the
unique solution ro € (0,1) of the equation

2sinhr — r2sinhr
1 — 2rcothr = 0.
+ 2sinhr — rcoshr reokr

Proof. 1t is simple to prove that the point zg = 0 is a removable singularity
2
of the function fy(z) = %= and that fy € A. According to (2), the image of

the disk U(0,r2) under tsfllngunction fo is a convex domain if and only if

"
Re <1+ z 0(z)> >0, for every ze€ U(0,79).

fo(2)
We have )
1 s .
142 /O(z) 14 2s1.nz+z Sinz o i
0(2) 2sinz — zcos z
Denote by

2sinz + 22sin z

h(z) =

2zsinz — 22 cosz’
Then Lemma 5 implies that the restriction of the function hy(z) = h(z) — 2 to

the set US2 I'), is bounded. It is easy to observe that zero is a regular pomt
of the functlon hi and that h;(0) = 0.
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According to Lemma 4, the poles of the function Ay in the domain Intl’,
are simple and the set of poles is

{Higo = 9o € (%,2)} Ufkay: ap € (bn+ Zkn+ 3, k=Tn— 1)
Each condition of Lemma 1 is satisfied and we get that
hi(z) = 222 2+i 22Z 2
z4+ Y5 = AT o

Using again the equality

> 222
zootz=1+) S5,
k=1
it follows that
1! 2 9
l—f—z /0(2) :1—|—zh(z)—2200tz:1+%+
f(](z) 22+ yp

i 22%(203 — k? — 2?)
— (k272 — 22)(04% —22)

Inequality (4) of Lemma 2, and Lemma 3 imply that

222 2|z|?
Re5—52—— i 2
22+ Y Yo — Il
222(203 — k*m? — 2%) _ —2[2]2(2a3 — K*m% + |2]?)
(k22 — 22) (a2 — 22) = (K272 + [z]?)(a? + |2]?)

Thus the following relations hold for every z € U(0, yo)

(142581 > 2 SN 2sPod— K+ ) _ | lelffGil])
B )T TR R R W BB ) T e

Equality occurs in the above inequality only if z = i|z| = ir. This means that
the radius of the convexity is the smallest positive root of the equation
14 —or2 > 27“2(2&% — K2+ 7‘2) 0
yg —r? — (k272 +1r2)(a +12)

)

or, equivalently,
2sin (ir) + (ir)? sin (ir)
2sin (ir) — ir cos (ir)

— 2ir cot (ir) = 0.

This can be rewritten in the form

sinhr — r2sinhr
— 2rcothr = 0.

2sinhr — rcoshr

A simple study of the above equation shows that it has exactly one root
ro € (0,1), with 7o = 0,9361... and ry < min{yg, o1 }. O
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COROLLARY 1. (a) The radius of convezity of the function

2
fi(z) =

z
sinh z

it is also 9.

(b) The following inequalities hold for all z € U(0,1r3)
2 2 2

r z r
—2_ >Re— > ——2—,
sinry sin z sin rg
and ) ) )
B Zo T
sinhrg =  sinhz — sinhry

(¢) The largest value M > O for which the inequality Reﬁ(ﬁ]z\‘}i) > f% holds

for all z € U is the positive real root of the equation sin M = 2M?2.
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