GEOMETRIC PROPERTIES OF A PARTICULAR FUNCTION

RÓBERT SZÁSZ and PÁL A. KUPÁN

Abstract

In this paper we will determine the radius of starlikeness and convexity of a particular function.

MSC 2000. 30C45.
Key words. Convexity, starlikeness, set of poles.

1. INTRODUCTION

Let $U\left(z_{0}, r\right)=\left\{z \in \mathbb{C}:\left|z-z_{0}\right|<r\right\}$ be the open disc with center z_{0} and radius r. The particular disc $U(0,1)$ will be denoted by U. Let \mathcal{A} be the class of analytic functions defined on the unit disc U and having the form

$$
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots
$$

It is simple to prove that the function f_{0} defined by the equality

$$
f_{0}(z)=\frac{z^{2}}{\sin z}
$$

belongs to the class \mathcal{A}. The class of starlike functions S^{*} is a subclass of \mathcal{A} and consists of functions f for which the domain $f(U)$ is starlike with respect to 0 . An analytic description of S^{*} is ([2], pp.8)

$$
S^{*}=\left\{f \in \mathcal{A}: \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, z \in U\right\}
$$

A function $f \in \mathcal{A}$ belongs to the class K of convex functions if and only if $f(U)$ is a convex domain in \mathbb{C}. It is well-known (see [2], pp.8) that

$$
K=\left\{f \in \mathcal{A}: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, z \in U\right\}
$$

We are going to determine

$$
r_{1}=\sup \left\{r \in(0, \infty): \frac{1}{r} f_{0}(r z) \text { is in } S^{*}\right\}
$$

and

$$
r_{2}=\sup \left\{r \in(0, \infty): \frac{1}{r} f_{0}(r z) \text { belongs to } K\right\}
$$

The real number r_{1} is the radius of starlikeness and r_{2} is the radius of convexity. These problems are equivalent to determine the largest $r_{1}, r_{2} \in(0, \infty)$ so that

This work was supported by the Institut for Research Programs (KPI) of the Sapientia Foundation.
$f_{0}\left(U\left(0, r_{1}\right)\right)$ is starlike with respect to 0 and that $f_{0}\left(U\left(0, r_{2}\right)\right)$ is a convex domain, respectively.

Remark 1. The analytic descriptions of S^{*} and K imply that

$$
\begin{equation*}
r_{1}=\sup \left\{r \in(0, \infty): \operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0, \text { for all } z \in U(0, r)\right\} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{2}=\sup \left\{r \in(0, \infty): \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, \text { for all } z \in U(0, r)\right\} . \tag{2}
\end{equation*}
$$

The aim of this paper is to determine the radius of starlikeness and convexity of the function f_{0}.

2. PRELIMINARIES

In order to prove the main result we need the following lemmas.
Lemma 1. ([1], p. 200) (Chauchy's theorem) Let f be a meromorphic function on \mathbb{C} so that zero is a regular point for f and f has only simple poles. Let $P_{f}=\left\{\alpha_{j} \in \mathbb{C}: j \in N^{*}\right\}$ be the set of poles of the function f. Suppose that $\left(\Gamma_{n}\right)_{n \geq 1}$ is a sequence of simple rectifiable contours having the properties:
(i) $0 \in \operatorname{Int}\left(\Gamma_{n}\right) \subset \operatorname{Int}\left(\Gamma_{n+1}\right)$, where $\operatorname{Int}\left(\Gamma_{n}\right)$ denotes the bounded domain determined by the contour Γ_{n}.
(ii) $\lim _{n \rightarrow \infty} d\left(0, \Gamma_{n}\right)=0$, where $d\left(0, \Gamma_{n}\right)=\inf \left\{|z|, z \in \Gamma_{n}\right\}$.
(iii) There exists $A>0$ so that $L\left(\Gamma_{n}\right)<\operatorname{Ad}\left(0, \Gamma_{n}\right), n \in \mathbb{N}^{*}$.
(iv) There exists $B>0$ so that $|f(z)|<B, \quad z \in \Gamma_{n}, n \in \mathbb{N}^{*}$.

If $m(n)$ denotes the number of poles of the function f contained in the domain $\operatorname{Int}\left(\Gamma_{n}\right)$, then the following equality holds:

$$
f(z)=f(0)+\lim _{n \rightarrow \infty} \sum_{j=1}^{m(n)} \operatorname{Res}\left(f, \alpha_{j}\right)\left(\frac{1}{z-\alpha_{j}}+\frac{1}{\alpha_{j}}\right) .
$$

The obtained series is uniformly convergent on every compact subset of $\mathbb{C} \backslash P_{f}$.

Lemma 2. If $v \in \mathbb{C}, \alpha \in \mathbb{R}$ and $\alpha>|v|$, then

$$
\begin{align*}
& \operatorname{Re}\left(\frac{v}{\alpha-v}\right) \geq \frac{-|v|}{\alpha+|v|}, \tag{3}\\
& \operatorname{Re}\left(\frac{v}{\alpha+v}\right) \geq \frac{-|v|}{\alpha-|v|} . \tag{4}
\end{align*}
$$

Proof. Let $v=x+\mathrm{i} y$ and $m=|v|=\sqrt{x^{2}+y^{2}}$. Inequality (3) becomes

$$
\frac{\alpha x-m^{2}}{\alpha^{2}-2 \alpha x+m^{2}} \geq \frac{-m}{\alpha+m}
$$

which is equivalent to

$$
\alpha(\alpha-m)(m+x) \geq 0
$$

The proof of the second inequality is similar.
Lemma 3. If $\alpha, \beta \in \mathbb{R}, \alpha>\beta \geq \pi$ and $v \in \mathbb{C},|v|<\frac{\pi}{2},|\alpha-\beta|<\frac{\pi}{2}$ then

$$
\operatorname{Re} \frac{(2 \alpha-v-\beta) v}{(\alpha-v)(\beta-v)} \geq-\frac{(2 \alpha+|v|-\beta)|v|}{(\alpha+|v|)(\beta+|v|)}
$$

Proof. The desiderated inequality is equivalent to

$$
\operatorname{Re}\left[\frac{2|v|}{\beta+|v|}+\frac{2 v}{\beta-v}-\left(\frac{|v|}{\alpha+|v|}+\frac{v}{\alpha-v}\right)\right] \geq 0
$$

For $v=x+\mathrm{i} y$ the inequality becomes

$$
\begin{array}{r}
\left(x+\sqrt{x^{2}+y^{2}}\right)\left[\frac{2 \beta\left(\beta-\sqrt{x^{2}+y^{2}}\right)}{\left(\beta+\sqrt{x^{2}+y^{2}}\right)\left((\beta-x)^{2}+y^{2}\right)}-\right. \\
\left.\frac{\alpha\left(\alpha-\sqrt{x^{2}+y^{2}}\right)}{\left(\alpha+\sqrt{x^{2}+y^{2}}\right)\left((\alpha-x)^{2}+y^{2}\right)}\right] \geq 0
\end{array}
$$

Thus we only have to show that
(5) $\frac{2 \beta\left(\beta-\sqrt{x^{2}+y^{2}}\right)}{\left(\beta+\sqrt{x^{2}+y^{2}}\right)\left((\beta-x)^{2}+y^{2}\right)}-\frac{\alpha\left(\alpha-\sqrt{x^{2}+y^{2}}\right)}{\left(\alpha+\sqrt{x^{2}+y^{2}}\right)\left((\alpha-x)^{2}+y^{2}\right)}>0$.

Let $g:[\pi, \infty) \rightarrow \mathbb{R}$ be the function defined by

$$
g(t)=\frac{t\left(t-\sqrt{x^{2}+y^{2}}\right)}{\left(t+\sqrt{x^{2}+y^{2}}\right)\left((t-x)^{2}+y^{2}\right)}
$$

The inequality (5) is equivalent to $\ln \left(\frac{g(\alpha)}{g(\beta)}\right)<\ln 2$. We have to discuss the case $\frac{g(\alpha)}{g(\beta)}>1$. The mean value theorem for the function $h(t)=\ln (g(t))$ implies that there is a point $c \in(\beta, \alpha)$ so that
$\ln \left(\frac{g(\alpha)}{g(\beta)}\right)=(\alpha-\beta) \frac{g^{\prime}(c)}{g(c)}=(\alpha-\beta)\left(\frac{1}{c}+\frac{1}{c-m}-\frac{1}{c+m}-\frac{2 c-2 x}{c^{2}-2 c x+m^{2}}\right)$,
where $m=\sqrt{x^{2}+y^{2}}$. A simple calculation leads to

$$
\begin{align*}
& \frac{1}{c}+\frac{1}{c-m}-\frac{1}{c+m}-\frac{2 c-2 x}{c^{2}-2 c x+m^{2}} \tag{6}\\
= & \frac{1}{c}-\frac{2 c^{2}(c-m-x)+2 m c(2 x-m)+2 m^{2}(x-m)}{\left(c^{2}-m^{2}\right)\left(c^{2}-2 c x+m^{2}\right)}<\frac{1}{c} .
\end{align*}
$$

Relation (6) and the conditions $\pi<\beta<\alpha,|\alpha-\beta|<\frac{\pi}{2}$ imply that

$$
\ln \left(\frac{g(\alpha)}{g(\beta)}\right)<(\alpha-\beta) \frac{1}{c}<\frac{\pi}{2} \frac{1}{\pi}=\frac{1}{2}<\ln 2 .
$$

Lemma 4. Let Γ_{n} be the quadrate determined by the vertexes $\pm n \pi \pm \mathrm{i} n \pi$, where n is a fixed natural number. The equation $z \cos z=2 \sin z$ has exactly $2 n+1$ roots inside the quadrate Γ_{n}. Between this $2 n+1$ roots two are pure imaginary and the others are real. Also, zero is a root. If $0<\alpha_{1}<\alpha_{2}<$ $\cdots<\alpha_{n-1}$ denote the positive real roots then $\alpha_{k} \in\left(k \pi,\left(k+\frac{1}{2}\right) \pi\right), k=\overline{1, n-1}$, and the negative roots are $-\alpha_{k}, k=\overline{1, n-1}$.

Proof. If z is a point on the side of the quadrate Γ_{n}, then

$$
z= \pm n \pi+\mathrm{i} y, y \in[-n \pi, n \pi] \quad \text { or } \quad z=x \pm \mathrm{i} n \pi, x \in[-n \pi, n \pi] \text {. }
$$

In the first case

$$
|z \cos z|=\sqrt{n^{2} \pi^{2}+y^{2}}|\cos i y|=\sqrt{n^{2} \pi^{2}+y^{2}} \operatorname{ch} y
$$

and

$$
|2 \sin z|=2 \operatorname{sh} y
$$

which means that

$$
|z \cos z|>|2 \sin z| .
$$

In the second case $|z \cos z|=\sqrt{n^{2} \pi^{2}+y^{2}}|\cos (x \pm \mathrm{i} n \pi)| \geq \sqrt{n^{2} \pi^{2}+y^{2}} \operatorname{sh} n \pi$ and $|2 \sin z|=2|\sin (x \pm \mathrm{in} \pi)| \leq 2 \mathrm{ch}(\mathrm{n} \pi)$. It is easy to show that

$$
\sqrt{n^{2} \pi^{2}+y^{2}} \operatorname{sh} n \pi \geq \operatorname{ch}(\mathrm{n} \pi)
$$

and so the inequality

$$
|z \cos z|>|2 \sin z|
$$

holds true in the second case too. Rouche's theorem yields that the equations

$$
z \cos z=0 \text { and } z \cos z-2 \sin z=0
$$

have the same number of roots inside the quadrate Γ_{n} and that the equation $z \cos z=0$ has exactly $2 \mathrm{n}+1$ roots in $\operatorname{Int}\left(\Gamma_{n}\right)$, where $\operatorname{Int}\left(\Gamma_{n}\right)$ denotes the domain bounded by the curve Γ_{n}.

If $z=x \in \mathbb{R}$ then the equation $z \cos z-2 \sin z=0$ is equivalent to $\tan x=\frac{x}{2}$. This equation has exactly one simple root in every interval $\left(k \pi+\frac{\pi}{2}, k \pi+\frac{\pi}{3}\right), k=$ $\overline{1, n-1}$, zero is a simple root too, and if $\alpha_{k} \in\left(k \pi+\frac{\pi}{2}, k \pi+\frac{\pi}{3}\right), k=\overline{1, n-1}$, are roots, then $-\alpha_{k}, k=\overline{1, n-1}$ are also roots.

In the case $z=\mathrm{i} y, y \in \mathbb{R}$, the equation $z \cos z-2 \sin z=0$ becomes $\tanh y=\frac{y}{2}$. This equation has two real roots $\pm y_{0}$ with $y_{0} \in\left(\frac{3}{2}, 2\right)$.

We finally obtain that the set of the roots of the equation $z \cos z-2 \sin z=0$ is $\left\{ \pm \mathrm{i} y_{0}: y_{0} \in\left(\frac{3}{2}, 2\right)\right\} \cup\{0\} \cup\left\{ \pm \alpha_{k}: \alpha_{k} \in\left(k \pi+\frac{\pi}{2}, k \pi+\frac{\pi}{3}\right), k=\overline{1, n-1}\right\}$.

Lemma 5. Let h be the function defined by

$$
h(z)=\frac{2 \sin z+z^{2} \sin z}{2 z \sin z-z^{2} \cos z} .
$$

Then there exists a real number $B>0$ which does not depend on the natural number n so that

$$
|h(z)|<B \text { for all } z \in \Gamma_{n} \text { and } n \geq 1 .
$$

Proof. If z is a point on the side of the quadrate Γ_{n}, then

$$
z= \pm n \pi+\mathrm{i} y, y \in[-n \pi, n \pi] \quad \text { or } \quad z=x \pm \mathrm{i} n \pi, x \in[-n \pi, n \pi]
$$

We have in the first case

$$
z= \pm n \pi+\mathrm{i} y \text { and }|\cot z|=|\cot (\mathrm{i} y)|=\left|\frac{1+\mathrm{e}^{-2 y}}{1-\mathrm{e}^{-2 y}}\right|>1, y \neq 0
$$

This implies that

$$
|h(z)|=\left|\frac{2+z^{2}}{2 z-z^{2} \cot z}\right| \leq \frac{1+\frac{2}{|z|^{2}}}{|\cot z|-\frac{2}{|z|}} \leq \frac{1+\frac{2}{|z|^{2}}}{1-\frac{2}{|z|}}<6, \text { and } h(\pm n \pi)=0
$$

The second case $z=x \pm \mathrm{i} n \pi$ leads to the relations

$$
|\cot z|=\left|\frac{\mathrm{e}^{-2 \pi} \mathrm{e}^{2 \mathrm{i} x}+1}{\mathrm{e}^{-2 \pi} \mathrm{e}^{2 \mathrm{i} x}-1}\right| \geq \frac{1-\mathrm{e}^{-2 \pi}}{1+\mathrm{e}^{-2 \pi}}
$$

and

$$
|h(z)|=\left|\frac{2+z^{2}}{2 z-z^{2} \cot z}\right| \leq \frac{1+\frac{2}{|z|^{2}}}{|\cot z|-\frac{2}{|z|}} \leq \frac{1+\frac{2}{|z|^{2}}}{|\cot z|-\frac{2}{|z|}} \leq \frac{1+\frac{2}{\pi^{2}}}{\frac{1-\mathrm{e}^{-2 \pi}}{1+\mathrm{e}^{-2 \pi}}-\frac{2}{\pi}} .
$$

Put $B=\max \left\{6, \frac{1+\frac{2}{\pi^{2}}}{\frac{1-\mathrm{e}^{-2 \pi}}{1+\mathrm{e}^{-2 \pi}}-\frac{2}{\pi}}\right\}$. Then we conclude that

$$
|h(z)| \leq B, \text { for all } z \in \Gamma_{n}, n \geq 1
$$

3. THE MAIN RESULT

THEOREM 1. The radius of starlikeness of the function $f_{0}(z)=\frac{z^{2}}{\sin z}$ is the unique root $r_{1} \in(1,2)$ of the equation

$$
2-r \operatorname{coth} r=0
$$

Proof. According to the equality (1) from Remark 1, we have to determine the largest $r_{1} \in(0, \infty)$ so that

$$
\operatorname{Re} \frac{z f_{0}^{\prime}(z)}{f_{0}(z)}>0 \text { for } \quad \text { every } z \in U\left(0, r_{1}\right)
$$

A simple calculation gives $\frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=2-z \cot z$. It is well-known that

$$
z \cot z=1+\sum_{k=1}^{\infty} \frac{2 z^{2}}{z^{2}-k^{2} \pi^{2}}
$$

and that the function series is uniformly convergent on every compact subset of $\mathbb{C} \backslash\{k \pi: k \in \mathbb{Z}\}$. This leads to

$$
\operatorname{Re} \frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=1+\operatorname{Re} \sum_{k=1}^{\infty} \frac{2 z^{2}}{k^{2} \pi^{2}-z^{2}}
$$

If $\pi>|z|$ and $v=z^{2}$, then Lemma 2 implies that

$$
\operatorname{Re} \frac{2 z^{2}}{k^{2} \pi^{2}-z^{2}} \geq \frac{-2|z|^{2}}{k^{2} \pi^{2}+|z|^{2}}
$$

and

$$
\operatorname{Re} \frac{z f_{0}^{\prime}(z)}{f_{0}(z)}=1+\operatorname{Re} \sum_{k=1}^{\infty} \frac{2 z^{2}}{k^{2} \pi^{2}-z^{2}} \geq 1-\sum_{k=1}^{\infty} \frac{2|z|^{2}}{k^{2} \pi^{2}+|z|^{2}}=\frac{\mathrm{i}|z| f_{0}^{\prime}(\mathrm{i}|z|)}{f_{0}(\mathrm{i}|z|)}
$$

Equality holds in the last inequality from above if and only if $z=\mathrm{i}|z|=\mathrm{i}$. This means that the largest $r_{1} \in(0, \infty)$ for which the inequality $\operatorname{Re} \frac{z f^{\prime}(z)}{f(z)}>0$ is true for every $z \in U\left(0, r_{1}\right)$ is the root of the equation

$$
1-\sum_{k=1}^{\infty} \frac{2 r^{2}}{k^{2} \pi^{2}+r^{2}}=\frac{\mathrm{i} r f_{0}^{\prime}(\mathrm{i} r)}{f_{0}(\mathrm{i} r)}=0
$$

or, equivalently,

$$
2-r \operatorname{coth} r=0
$$

An elementary study of the behavior of the function $\varphi:(0,2) \rightarrow \mathbb{R}, \varphi(r)=$ $r \operatorname{coth} r-2$ shows that it has a unique root $r_{1} \in(1,2)$, where $r_{1}=1,915 \ldots$

REMARK 2. Since $z_{1}=\mathrm{i} r_{1}$ is the root of the derivative $f_{0}^{\prime}(z)$, the function f_{0} is not univalent on any disc $U(0, r), r>r_{1}$. This means that r_{1} is simultaneously the radius of star-likeness and the radius of univalence of the function f_{0}.

THEOREM 2. The radius of the convexity of the function $f_{0}(z)=\frac{z^{2}}{\sin z}$ is the unique solution $r_{2} \in(0,1)$ of the equation

$$
1+\frac{2 \sinh r-r^{2} \sinh r}{2 \sinh r-r \cosh r}-2 r \operatorname{coth} r=0
$$

Proof. It is simple to prove that the point $z_{0}=0$ is a removable singularity of the function $f_{0}(z)=\frac{z^{2}}{\sin z}$ and that $f_{0} \in \mathcal{A}$. According to (2), the image of the disk $U\left(0, r_{2}\right)$ under the function f_{0} is a convex domain if and only if

$$
\operatorname{Re}\left(1+\frac{z f_{0}^{\prime \prime}(z)}{f_{0}^{\prime}(z)}\right)>0, \text { for } \quad \text { every } z \in U\left(0, r_{2}\right)
$$

We have

$$
1+\frac{z f_{0}^{\prime \prime}(z)}{f_{0}^{\prime}(z)}=1+\frac{2 \sin z+z^{2} \sin z}{2 \sin z-z \cos z}-2 z \cot z
$$

Denote by

$$
h(z)=\frac{2 \sin z+z^{2} \sin z}{2 z \sin z-z^{2} \cos z}
$$

Then Lemma 5 implies that the restriction of the function $h_{1}(z)=h(z)-\frac{2}{z}$ to the set $\cup_{n=1}^{\infty} \Gamma_{n}$ is bounded. It is easy to observe that zero is a regular point of the function h_{1} and that $h_{1}(0)=0$.

According to Lemma 4, the poles of the function h_{1} in the domain $\operatorname{Int} \Gamma_{n}$ are simple and the set of poles is

$$
\left\{ \pm \mathrm{i} y_{0}: y_{0} \in\left(\frac{3}{2}, 2\right)\right\} \cup\left\{ \pm \alpha_{k}: \alpha_{k} \in\left(k \pi+\frac{\pi}{2}, k \pi+\frac{\pi}{3}\right), k=\overline{1, n-1}\right\} .
$$

Each condition of Lemma 1 is satisfied and we get that

$$
h_{1}(z)=\frac{2 z}{z^{2}+y_{0}^{2}}+\sum_{k=1}^{\infty} \frac{2 z}{z^{2}-\alpha_{k}^{2}} .
$$

Using again the equality

$$
z \cot z=1+\sum_{k=1}^{\infty} \frac{2 z^{2}}{z^{2}-k^{2} \pi^{2}},
$$

it follows that

$$
\begin{aligned}
1+\frac{z f_{0}^{\prime \prime}(z)}{f_{0}^{\prime}(z)}=1+z h(z)- & 2 z \cot z=1+\frac{2 z^{2}}{z^{2}+y_{0}^{2}}+ \\
& \sum_{k=1}^{\infty} \frac{2 z^{2}\left(2 \alpha_{k}^{2}-k^{2}-z^{2}\right)}{\left(k^{2} \pi^{2}-z^{2}\right)\left(\alpha_{k}^{2}-z^{2}\right)} .
\end{aligned}
$$

Inequality (4) of Lemma 2, and Lemma 3 imply that

$$
\begin{gathered}
\operatorname{Re} \frac{2 z^{2}}{z^{2}+y_{0}^{2}} \geq-\frac{2|z|^{2}}{y_{0}^{2}-|z|^{2}} \\
\operatorname{Re} \frac{2 z^{2}\left(2 \alpha_{k}^{2}-k^{2} \pi^{2}-z^{2}\right)}{\left(k^{2} \pi^{2}-z^{2}\right)\left(\alpha_{k}^{2}-z^{2}\right)} \geq \frac{-2|z|^{2}\left(2 \alpha_{k}^{2}-k^{2} \pi^{2}+|z|^{2}\right)}{\left(k^{2} \pi^{2}+|z|^{2}\right)\left(\alpha_{k}^{2}+|z|^{2}\right)} .
\end{gathered}
$$

Thus the following relations hold for every $z \in U\left(0, y_{0}\right)$
$\operatorname{Re}\left(1+\frac{z f_{0}^{\prime \prime}(z)}{f_{0}^{\prime}(z)}\right) \geq 1+\frac{-2|z|^{2}}{y_{0}^{2}-|z|^{2}}-\sum_{k=1}^{\infty} \frac{2|z|^{2}\left(2 \alpha_{k}^{2}-k^{2}+|z|^{2}\right)}{\left(k^{2} \pi^{2}+|z|^{2}\right)\left(\alpha_{k}^{2}+|z|^{2}\right)}=1+\frac{\mathrm{i}|z| f_{0}^{\prime \prime}(\mathrm{i}|z|)}{f_{0}^{\prime}(\mathrm{i}|z|)}$.
Equality occurs in the above inequality only if $z=\mathrm{i}|z|=\mathrm{i}$. This means that the radius of the convexity is the smallest positive root of the equation

$$
1+\frac{-2 r^{2}}{y_{0}^{2}-r^{2}}-\sum_{k=1}^{\infty} \frac{2 r^{2}\left(2 \alpha_{k}^{2}-k^{2}+r^{2}\right)}{\left(k^{2} \pi^{2}+r^{2}\right)\left(\alpha_{k}^{2}+r^{2}\right)}=0,
$$

or, equivalently,

$$
1+\frac{2 \sin (\mathrm{i} r)+(\mathrm{i} r)^{2} \sin (\mathrm{i} r)}{2 \sin (\mathrm{i} r)-\mathrm{i} r \cos (\mathrm{i} r)}-2 \mathrm{i} r \cot (\mathrm{i} r)=0 .
$$

This can be rewritten in the form

$$
1+\frac{\sinh r-r^{2} \sinh r}{2 \sinh r-r \cosh r}-2 r \operatorname{coth} r=0
$$

A simple study of the above equation shows that it has exactly one root $r_{2} \in(0,1)$, with $r_{2}=0,9361 \ldots$ and $r_{2}<\min \left\{y_{0}, \alpha_{1}\right\}$.

Corollary 1. (a) The radius of convexity of the function

$$
f_{1}(z)=\frac{z^{2}}{\sinh z}
$$

it is also r_{2}.
(b) The following inequalities hold for all $z \in U\left(0, r_{2}\right)$

$$
\frac{r_{2}^{2}}{\sin r_{2}} \geq \operatorname{Re} \frac{z^{2}}{\sin z} \geq-\frac{r_{2}^{2}}{\sin r_{2}}
$$

and

$$
\frac{r_{2}^{2}}{\sinh r_{2}} \geq \operatorname{Re} \frac{z^{2}}{\sinh z} \geq-\frac{r_{2}^{2}}{\sinh r_{2}}
$$

(c) The largest value $M>0$ for which the inequality $\operatorname{Re} \frac{(M z)^{2}}{\sin (M z)} \geq-\frac{1}{2}$ holds for all $z \in U$ is the positive real root of the equation $\sin M=2 M^{2}$.

REFERENCES

[1] Duncan, J., The Elements of Complex Analysis, John Wiley and Sons, 1969.
[2] Miller, S.S. and Mocanu, P.T., Differential Subordinations. Theory and Applications, Marcel Dekker, 2000.

Received August 26, 2008
Accepted October 8, 2008

> Department of Mathematics
> Sapientia University Str. Sighişoarei 1c
> 547367 Corunca (Tg. Mures), Romania E-mail: szasz_robert2001@yahoo.com
> E-mail: kupanp@ms.sapientia.ro

