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GEOMETRIC PROPERTIES OF A PARTICULAR FUNCTION

RÓBERT SZÁSZ and PÁL A. KUPÁN

Abstract. In this paper we will determine the radius of starlikeness and con-
vexity of a particular function.
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1. INTRODUCTION

Let U(z0, r) = {z ∈ C : |z − z0| < r} be the open disc with center z0 and
radius r. The particular disc U(0, 1) will be denoted by U. Let A be the class
of analytic functions defined on the unit disc U and having the form

f(z) = z + a2z
2 + a3z

3 + . . . .

It is simple to prove that the function f0 defined by the equality

f0(z) =
z2

sin z
belongs to the class A. The class of starlike functions S∗ is a subclass of A
and consists of functions f for which the domain f(U) is starlike with respect
to 0. An analytic description of S∗ is ([2], pp.8)

S∗ =
{

f ∈ A : Re
zf ′(z)
f(z)

> 0, z ∈ U

}
.

A function f ∈ A belongs to the class K of convex functions if and only if
f(U) is a convex domain in C. It is well-known (see [2], pp.8) that

K =
{

f ∈ A : Re
(

1 +
zf ′′(z)
f ′(z)

)
> 0, z ∈ U

}
.

We are going to determine

r1 = sup
{

r ∈ (0,∞) :
1
r
f0(rz) is in S∗

}
and

r2 = sup
{

r ∈ (0,∞) :
1
r
f0(rz) belongs to K

}
.

The real number r1 is the radius of starlikeness and r2 is the radius of convexity.
These problems are equivalent to determine the largest r1, r2 ∈ (0,∞) so that
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f0(U(0, r1)) is starlike with respect to 0 and that f0(U(0, r2)) is a convex
domain, respectively.

Remark 1. The analytic descriptions of S∗ and K imply that

(1) r1 = sup
{

r ∈ (0,∞) : Re
zf ′(z)
f(z)

> 0, for all z ∈ U(0, r)
}

and

(2) r2 = sup
{

r ∈ (0,∞) : Re
(
1 +

zf ′′(z)
f ′(z)

)
> 0, for all z ∈ U(0, r)

}
.

The aim of this paper is to determine the radius of starlikeness and convexity
of the function f0.

2. PRELIMINARIES

In order to prove the main result we need the following lemmas.

Lemma 1. ([1], p. 200) (Chauchy’s theorem) Let f be a meromorphic func-
tion on C so that zero is a regular point for f and f has only simple poles.
Let Pf = {αj ∈ C : j ∈ N∗} be the set of poles of the function f . Suppose
that (Γn)n≥1 is a sequence of simple rectifiable contours having the properties:

(i) 0 ∈ Int(Γn) ⊂ Int(Γn+1), where Int(Γn) denotes the bounded domain
determined by the contour Γn.

(ii) lim
n→∞

d(0,Γn) = 0, where d(0,Γn) = inf{|z|, z ∈ Γn}.
(iii) There exists A > 0 so that L(Γn) < Ad(0,Γn), n ∈ N∗.
(iv) There exists B > 0 so that |f(z)| < B, z ∈ Γn, n ∈ N∗.

If m(n) denotes the number of poles of the function f contained in the domain
Int(Γn), then the following equality holds:

f(z) = f(0) + lim
n→∞

m(n)∑
j=1

Res(f, αj)
(

1
z − αj

+
1
αj

)
.

The obtained series is uniformly convergent on every compact subset of
C \ Pf .

Lemma 2. If v ∈ C, α ∈ R and α > |v|, then

(3) Re
(

v

α− v

)
≥ −|v|

α + |v|
,

(4) Re
(

v

α + v

)
≥ −|v|

α− |v|
.

Proof. Let v = x + iy and m = |v| =
√

x2 + y2. Inequality (3) becomes

αx−m2

α2 − 2αx + m2
≥ −m

α + m
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which is equivalent to
α(α−m)(m + x) ≥ 0.

The proof of the second inequality is similar. �

Lemma 3. If α, β ∈ R, α > β ≥ π and v ∈ C, |v| < π
2 , |α− β| < π

2 then

Re
(2α− v − β)v
(α− v)(β − v)

≥ − (2α + |v| − β)|v|
(α + |v|)(β + |v|)

.

Proof. The desiderated inequality is equivalent to

Re
[

2|v|
β + |v|

+
2v

β − v
−

(
|v|

α + |v|
+

v

α− v

) ]
≥ 0.

For v = x + iy the inequality becomes

(x +
√

x2 + y2)
[

2β(β −
√

x2 + y2)

(β +
√

x2 + y2)((β − x)2 + y2)
−

α(α−
√

x2 + y2)

(α +
√

x2 + y2)((α− x)2 + y2)

]
≥ 0.

Thus we only have to show that

(5)
2β(β −

√
x2 + y2)

(β +
√

x2 + y2)((β − x)2 + y2)
− α(α−

√
x2 + y2)

(α +
√

x2 + y2)((α− x)2 + y2)
> 0.

Let g : [π,∞) → R be the function defined by

g(t) =
t(t−

√
x2 + y2)

(t +
√

x2 + y2)((t− x)2 + y2)
.

The inequality (5) is equivalent to ln
(

g(α)
g(β)

)
< ln 2. We have to discuss the

case g(α)
g(β) > 1. The mean value theorem for the function h(t) = ln(g(t)) implies

that there is a point c ∈ (β, α) so that

ln
(

g(α)
g(β)

)
= (α−β)

g′(c)
g(c)

= (α−β)
(

1
c

+
1

c−m
− 1

c + m
− 2c− 2x

c2 − 2cx + m2

)
,

where m =
√

x2 + y2. A simple calculation leads to
1
c

+
1

c−m
− 1

c + m
− 2c− 2x

c2 − 2cx + m2
(6)

=
1
c
− 2c2(c−m− x) + 2mc(2x−m) + 2m2(x−m)

(c2 −m2)(c2 − 2cx + m2)
<

1
c
.

Relation (6) and the conditions π < β < α, |α− β| < π
2 imply that

ln
(

g(α)
g(β)

)
< (α− β)

1
c

<
π

2
1
π

=
1
2

< ln 2.

�



176 Róbert Szász and Pál A. Kupán 4

Lemma 4. Let Γn be the quadrate determined by the vertexes ±nπ ± inπ,
where n is a fixed natural number. The equation z cos z = 2 sin z has exactly
2n + 1 roots inside the quadrate Γn. Between this 2n + 1 roots two are pure
imaginary and the others are real. Also, zero is a root . If 0 < α1 < α2 <
· · · < αn−1 denote the positive real roots then αk ∈ (kπ, (k+ 1

2)π), k = 1, n− 1,
and the negative roots are −αk, k = 1, n− 1.

Proof. If z is a point on the side of the quadrate Γn, then

z = ±nπ + iy, y ∈ [−nπ, nπ] or z = x± inπ, x ∈ [−nπ, nπ].

In the first case

|z cos z| =
√

n2π2 + y2| cos iy| =
√

n2π2 + y2 chy

and
|2 sin z| = 2shy,

which means that
|z cos z| > |2 sin z|.

In the second case |z cos z| =
√

n2π2 + y2| cos(x± inπ)| ≥
√

n2π2 + y2 shnπ
and |2 sin z| = 2| sin(x± inπ)| ≤ 2ch(nπ). It is easy to show that√

n2π2 + y2 shnπ ≥ ch(nπ)

and so the inequality
|z cos z| > |2 sin z|

holds true in the second case too. Rouche’s theorem yields that the equations

z cos z = 0 and z cos z − 2 sin z = 0

have the same number of roots inside the quadrate Γn and that the equation
z cos z = 0 has exactly 2n+1 roots in Int(Γn), where Int(Γn) denotes the
domain bounded by the curve Γn.

If z = x ∈ R then the equation z cos z−2 sin z = 0 is equivalent to tanx = x
2 .

This equation has exactly one simple root in every interval (kπ+π
2 , kπ+π

3 ), k =
1, n− 1, zero is a simple root too, and if αk ∈ (kπ + π

2 , kπ + π
3 ), k = 1, n− 1,

are roots, then −αk, k = 1, n− 1 are also roots.
In the case z = iy, y ∈ R, the equation z cos z − 2 sin z = 0 becomes

tanhy = y
2 . This equation has two real roots ±y0 with y0 ∈ (3

2 , 2).
We finally obtain that the set of the roots of the equation z cos z−2 sin z = 0

is {±iy0 : y0 ∈ (3
2 , 2)}∪{0}∪{±αk : αk ∈ (kπ + π

2 , kπ + π
3 ), k = 1, n− 1}. �

Lemma 5. Let h be the function defined by

h(z) =
2 sin z + z2 sin z

2z sin z − z2 cos z
.

Then there exists a real number B > 0 which does not depend on the natural
number n so that

|h(z)| < B for all z ∈ Γn and n ≥ 1.
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Proof. If z is a point on the side of the quadrate Γn, then

z = ±nπ + iy, y ∈ [−nπ, nπ] or z = x± inπ, x ∈ [−nπ, nπ].

We have in the first case

z = ±nπ + iy and |cotz| = |cot(iy)| =
∣∣∣∣1 + e−2y

1− e−2y

∣∣∣∣ > 1, y 6= 0.

This implies that

|h(z)| =
∣∣∣∣ 2 + z2

2z − z2cotz

∣∣∣∣ ≤ 1 + 2
|z|2

|cotz| − 2
|z|
≤

1 + 2
|z|2

1− 2
|z|

< 6, and h(±nπ) = 0.

The second case z = x± inπ leads to the relations

|cotz| =
∣∣∣∣e−2πe2ix + 1
e−2πe2ix − 1

∣∣∣∣ ≥ 1− e−2π

1 + e−2π

and

|h(z)| =
∣∣∣∣ 2 + z2

2z − z2cotz

∣∣∣∣ ≤ 1 + 2
|z|2

|cotz| − 2
|z|
≤

1 + 2
|z|2

|cotz| − 2
|z|
≤

1 + 2
π2

1−e−2π

1+e−2π − 2
π

.

Put B = max
{

6,
1+ 2

π2

1−e−2π

1+e−2π −
2
π

}
. Then we conclude that

|h(z)| ≤ B, for all z ∈ Γn, n ≥ 1.

�

3. THE MAIN RESULT

Theorem 1. The radius of starlikeness of the function f0(z) = z2

sin z is the
unique root r1 ∈ (1, 2) of the equation

2− rcoth r = 0.

Proof. According to the equality (1) from Remark 1, we have to determine
the largest r1 ∈ (0,∞) so that

Re
zf ′0(z)
f0(z)

> 0 for every z ∈ U(0, r1).

A simple calculation gives zf ′0(z)
f0(z) = 2− zcotz. It is well-known that

zcot z = 1 +
∞∑

k=1

2z2

z2 − k2π2

and that the function series is uniformly convergent on every compact subset
of C \ {kπ : k ∈ Z}. This leads to

Re
zf ′0(z)
f0(z)

= 1 + Re
∞∑

k=1

2z2

k2π2 − z2
.
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If π > |z| and v = z2, then Lemma 2 implies that

Re
2z2

k2π2 − z2
≥ −2|z|2

k2π2 + |z|2

and

Re
zf ′0(z)
f0(z)

= 1 + Re
∞∑

k=1

2z2

k2π2 − z2
≥ 1−

∞∑
k=1

2|z|2

k2π2 + |z|2
=

i|z|f ′0(i|z|)
f0(i|z|)

.

Equality holds in the last inequality from above if and only if z = i|z| = ir.
This means that the largest r1 ∈ (0,∞) for which the inequality Re zf ′(z)

f(z) > 0
is true for every z ∈ U(0, r1) is the root of the equation

1−
∞∑

k=1

2r2

k2π2 + r2
=

irf ′0(ir)
f0(ir)

= 0,

or, equivalently,
2− r cothr = 0.

An elementary study of the behavior of the function ϕ : (0, 2) → R, ϕ(r) =
r cothr−2 shows that it has a unique root r1 ∈ (1, 2), where r1 = 1, 915 . . . . �

Remark 2. Since z1 = ir1 is the root of the derivative f ′0(z), the function
f0 is not univalent on any disc U(0, r), r > r1. This means that r1 is simulta-
neously the radius of star-likeness and the radius of univalence of the function
f0.

Theorem 2. The radius of the convexity of the function f0(z) = z2

sin z is the
unique solution r2 ∈ (0, 1) of the equation

1 +
2sinhr − r2sinhr

2sinhr − rcoshr
− 2rcothr = 0.

Proof. It is simple to prove that the point z0 = 0 is a removable singularity
of the function f0(z) = z2

sin z and that f0 ∈ A. According to (2), the image of
the disk U(0, r2) under the function f0 is a convex domain if and only if

Re
(

1 +
zf ′′0 (z)
f ′0(z)

)
> 0, for every z ∈ U(0, r2).

We have

1 +
zf ′′0 (z)
f ′0(z)

= 1 +
2 sin z + z2 sin z

2 sin z − z cos z
− 2z cot z.

Denote by

h(z) =
2 sin z + z2 sin z

2z sin z − z2 cos z
.

Then Lemma 5 implies that the restriction of the function h1(z) = h(z)− 2
z to

the set ∪∞n=1Γn is bounded. It is easy to observe that zero is a regular point
of the function h1 and that h1(0) = 0.
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According to Lemma 4, the poles of the function h1 in the domain IntΓn

are simple and the set of poles is

{±iy0 : y0 ∈ (
3
2
, 2)} ∪ {±αk : αk ∈ (kπ +

π

2
, kπ +

π

3
), k = 1, n− 1}.

Each condition of Lemma 1 is satisfied and we get that

h1(z) =
2z

z2 + y2
0

+
∞∑

k=1

2z

z2 − α2
k

.

Using again the equality

z cot z = 1 +
∞∑

k=1

2z2

z2 − k2π2
,

it follows that

1 +
zf ′′0 (z)
f ′0(z)

= 1 + zh(z)− 2z cot z = 1 +
2z2

z2 + y2
0

+

∞∑
k=1

2z2(2α2
k − k2 − z2)

(k2π2 − z2)(α2
k − z2)

.

Inequality (4) of Lemma 2, and Lemma 3 imply that

Re
2z2

z2 + y2
0

≥ − 2|z|2

y2
0 − |z|2

Re
2z2(2α2

k − k2π2 − z2)
(k2π2 − z2)(α2

k − z2)
≥
−2|z|2(2α2

k − k2π2 + |z|2)
(k2π2 + |z|2)(α2

k + |z|2)
.

Thus the following relations hold for every z ∈ U(0, y0)

Re
(

1+
zf ′′0 (z)
f ′0(z)

)
≥ 1+

−2|z|2

y2
0 − |z|2

−
∞∑

k=1

2|z|2(2α2
k − k2 + |z|2)

(k2π2 + |z|2)(α2
k + |z|2)

= 1+
i|z|f ′′0 (i|z|)

f ′0(i|z|)
.

Equality occurs in the above inequality only if z = i|z| = ir. This means that
the radius of the convexity is the smallest positive root of the equation

1 +
−2r2

y2
0 − r2

−
∞∑

k=1

2r2(2α2
k − k2 + r2)

(k2π2 + r2)(α2
k + r2)

= 0,

or, equivalently,

1 +
2 sin (ir) + (ir)2 sin (ir)
2 sin (ir)− ir cos (ir)

− 2ir cot (ir) = 0.

This can be rewritten in the form

1 +
sinh r − r2 sinh r

2 sinh r − r cosh r
− 2r coth r = 0.

A simple study of the above equation shows that it has exactly one root
r2 ∈ (0, 1), with r2 = 0, 9361 . . . and r2 < min{y0, α1}. �
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Corollary 1. (a) The radius of convexity of the function

f1(z) =
z2

sinh z
it is also r2.

(b) The following inequalities hold for all z ∈ U(0, r2)

r2
2

sin r2
≥ Re

z2

sin z
≥ − r2

2

sin r2
,

and
r2
2

sinh r2
≥ Re

z2

sinh z
≥ − r2

2

sinh r2
.

(c) The largest value M > 0 for which the inequality Re (Mz)2

sin (Mz) ≥ −1
2 holds

for all z ∈ U is the positive real root of the equation sinM = 2M2.
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