
MATHEMATICA, Tome 51(74), No 2, 2009, pp. 163–171

COMBINING THE SOLITAIRE ENCRYPTION ALGORITHM
WITH LAGGED FIBONACCI PSEUDORANDOM NUMBER

GENERATORS

CHRISTIAN SĂCĂREA, CSABA SZÁNTÓ and ISTVÁN ŞUTEU SZÖLLŐSI

Abstract. We use a “byte” variant of Bruce Schneier’s Solitaire Encryption
Algorithm to produce the seed and weight system of a lagged Fibonacci pseu-
dorandom number generator which generates a sequence of bytes. We analyze
variants of the procedure above by testing them using some up to date random-
ness tests.

MSC 2000. 65C10.
Key words. Pseudorandom number generator, lagged Fibonacci generator,
Solitaire algorithm.

1. PSEUDORANDOM NUMBER GENERATORS, LAGGED FIBONACCI GENERATORS

AND SOLITAIRE

According to [2] a pseudorandom number generator (PRNG) is an algorithm
for generating a sequence of numbers that approximates the properties of
random numbers. The sequence is not truly random in that it is completely
determined by a relatively small set of initial values, called seed. PRNG’s
are used in cryptography for generating a “keystream” of a so called stream
cipher.

Confidence in the fact that a PRNG generates numbers that are sufficiently
“random” to suit the intended use is usually gained through careful mathemat-
ical analysis. This is especially important in case of PRNG’s for cryptographic
use. There is an up to date collection of 15 tests which can help in testing
the quality of our generated sequence (mainly for cryptographic use). The
implementation of these tests and further details can be found in [3].

Common classes of PRNG algorithms are linear congruential generators,
lagged Fibonacci generators, linear feedback shift registers and generalized
feedback shift registers. Recent instances of pseudo-random algorithms include
Blum Blum Shub, Fortuna, and the Mersenne twister.

We will focus on lagged Fibonacci generators. These are defined by the
following recurrence

Xi := (a1Xi−1 + ... + arXi−r) mod m,

where r > 1 and ar 6= 0. The seed in this case is the sequence of initial values
X1, ..., Xr ∈ Zm. Here a1, ..., ar will be called weights.

The maximum length of a pseudorandom sequence before it begins to repeat
is called period. Of course changing the seed will change the period and an



164 Christian Săcărea, Csaba Szántó and István Şuteu Szöllősi 2

important goal is to have huge periods. A seed is weak if it produces a shorter
period or if the generated sequence is failing certain statistical tests.

One can see that in case of a lagged Fibonacci generator the maximal period
is mr−1. So with fixed weights a huge m and a big r will increase periods. In
contrast, our aim is to increase the period and cryptographic quality of lagged
Fibonacci generators not by increasing m or r but rather periodically changing
the weights. In order to do that we use as a weight changing algorithm Bruce
Schneier’s Solitaire. More precisely we need to slightly modify the Solitaire
algorithm such that it generates bytes instead of letters. To achieve this we
keep the steps of the algorithm the only modification being the size of the
“deck”. Instead of a deck with 52 cards and two jokers we will use a virtual
deck of 28 = 256 cards (numbered from 0 to 255) and two jokers (A and B). An
unkeyed deck will mean in this situation the virtual cards in increasing order
(followed by the jokers A and B). We will use a key to shuffle this unkeyed deck
converting it into a keyed deck. From now on Solitaire will mean for us this
modified “byte” version of the initial algorithm which produces a sequence of
bytes.

The steps of this algorithm are (as taken from [4])

• Key the unkeyed deck (see * after the last step) and use this as your
initial deck.
• Find the A joker. Move it one card down. (That is, swap it with the

card beneath it.) If the joker is the bottom card of the deck, move it
just below the top card.
• Find the B joker. Move it two cards down. If the joker is the bottom

card of the deck, move it just below the second card. If the joker is
one up from the bottom card, move it just below the top card.
• Perform a triple cut. That is, swap the cards above the first joker with

the cards below the second joker. “First” and “second” jokers refer to
whatever joker is nearest to, and furthest from, the top of the deck.
Ignore the “A” and “B” designations for this step. Remember that the
jokers and the cards between them don’t move; the other cards move
around them. If there are no cards in one of the three sections (either
the jokers are adjacent, or one is on top or the bottom), just treat that
section as empty and move it anyway.
• Perform a count cut. Look at the bottom card (it is a number in the

range 0-255). Count down from the top card that number+1. Cut
after the card that you counted down to, leaving the bottom card on
the bottom. The reason the last card is left in place is to make the step
reversible. This is important for mathematical analysis of its security.
A deck with a joker as the bottom card will remain unchanged by this
step.
• Find the output card (and so the output number which is a byte). To

do this, look at the top card. Count down that many cards+1. (Count



3 Combining the Solitaire Encryption Algorithm 165

the top card as number one.) Write the card after the one you counted
to on a piece of paper; don’t remove it from the deck. (If you hit a
joker, don’t write anything down and start over again with step 1.)
This is the first output card (and so the first byte). Note that this
step does not modify the state of the deck.

* Keying the unkeyed deck: We will use as a key a string of arbitrary
length, the characters being converted into numbers (bytes) by their ASCII
codes. Start with the unkeyed deck. Perform the Solitaire operation, but
instead of Step (6), do another count cut based on the character of the key. In
other words, do step (5) a second time, using the character number as the cut
number instead of the last card. Remember to put the top cards just above
the bottom card in the deck, as before. Repeat the five steps of the Solitaire
algorithm once for each character of the key. That is, the second time through
the Solitaire steps use the second character of the key, the third time through
use the third character, etc.

We denote by Sol(K, n) the nth byte and by Solk(K, n) the nth byte with
at least k nonzero bits from the byte-sequence generated by the Solitaire al-
gorithm keyed with the key K. Let Biti(R) be ith bit of the byte R.

2. THE ALGORITHM

Consider the key K as a string of at least 8 characters (so this means that
the key is at least 8 bytes). This will be called initial seed. Let m = 28 =
256, r = 8, X1 = Sol(K, 1), ..., X8 = Sol(K, 8), so the initial seed generates
the seed X1, ..., X8. Let also be l ≥ 2 the “weight changing” period.

Then the pseudorandom sequence is given by the following recurrence for
n ≥ 9:

Xn = Bit1(Solk(K, 9 + [
n− 9

l
]))Xn−8 + ... + Bit8(Solk(K, 9 + [

n− 9
l

]))Xn−1

mod 256
So we have a lagged Fibonacci generator of bytes given by a recurrence

of order 8 modulo 256 (modulo a byte) with a periodically changing weight
system generated by the Solitaire algorithm.

Our new pseudorandom generator will be called LFibSol, where
LFibSolk(K, l, n) denotes the first n terms (bytes) of the pseudorandom se-
quence above.

3. THE ALGORITHM IN PSEUDOCODE

The pseudocode for our byte version of Solitaire is easily deducible from the
first paragraph. Moreover the source code which only needs a slight modifi-
cation can be found in [4]. So from now on we suppose that we already have
the function Solk(K, n) giving the nth byte with at least k nonzero bits from
the byte-sequence generated by the Solitaire algorithm keyed with the key K.



166 Christian Săcărea, Csaba Szántó and István Şuteu Szöllősi 4

THE ALGORITHM LFibSolm(K, l, n)

INPUT: K - key; l ≥ 2 - weight changing period; k = 3, 4, 5 ; Solk(K, n)
OUTPUT: n pseudorandom bytes
for i := 1, 8 do {generate 8 initial values}

Xi := Sol(K, i)
end for
R := Solk(K, 9) {the bits of R are the actual weight system controlling the

recursion}
p := 0
i := 10
for k := 1, n do

if p = l then{after l iterations, a new value is given to R}
R := Solk(K, i)
i := i + 1

end if
X := 0
for j := 1, 8 do

X := X + Xj ·Bit(R, j) mod 256
end for
for j := 2, 8 do

Xj−1 := Xj

end for
X8 := X
p := (p + 1) mod (l + 1)
OUTPUT X

end for

4. SOME TEST RESULTS

To measure the quality of LFibSol we used a statistical test suite for ran-
dom and pseudo-random number generators for cryptographic applications,
as described in NIST Special Publication 800-22 (with revisions dated May
15, 2001) (see [3]). The test suite performs the following 15 types of tests (as
cited from [3]):

1. Frequency (Monobits) Test
Description: The focus of the test is the proportion of zeroes and ones for

the entire sequence. The purpose of this test is to determine whether that
number of ones and zeros in a sequence are approximately the same as would
be expected for a truly random sequence. The test assesses the closeness of
the fraction of ones to 1

2 , that is, the number of ones and zeroes in a sequence
should be about the same.

2. Test for Frequency within a Block



5 Combining the Solitaire Encryption Algorithm 167

Description: The focus of the test is the proportion of zeroes and ones
within M -bit blocks. The purpose of this test is to determine whether the
frequency of ones is an M -bit block is approximately M

2 .

3. Cumulative Sum (Cusum) Test
Description: The focus of this test is the maximal excursion (from zero) of

the random walk defined by the cumulative sum of adjusted (−1, +1) digits in
the sequence. The purpose of the test is to determine whether the cumulative
sum of the partial sequences occurring in the tested sequence is too large or
too small relative to the expected behavior of that cumulative sum for random
sequences. This cumulative sum may be considered as a random walk. For
a random sequence, the random walk should be near zero. For non-random
sequences, the excursions of this random walk away from zero will be too large.

4. Runs Test
Description: The focus of this test is the total number of zero and one runs

in the entire sequence, where a run is an uninterrupted sequence of identical
bits. A run of length k means that a run consists of exactly k identical bits
and is bounded before and after with a bit of the opposite value. The purpose
of the runs test is to determine whether the number of runs of ones and zeros
of various lengths is as expected for a random sequence. In particular, this
test determines whether the oscillation between such substrings is too fast or
too slow.

5. Test for the Longest Run of Ones in a Block
Description: The focus of the test is the longest run of ones within M -bit

blocks. The purpose of this test is to determine whether the length of the
longest run of ones within the tested sequence is consistent with the length of
the longest run of ones that would be expected in a random sequence. Note
that an irregularity in the expected length of the longest run of ones implies
that there is also an irregularity in the expected length of the longest run of
zeroes. Long runs of zeroes were not evaluated separately due to a concern
about statistical independence among the tests.

6. Random Binary Matrix Rank Test
Description: The focus of the test is the rank of disjoint sub-matrices of

the entire sequence. The purpose of this test is to check for linear dependence
among fixed length substrings of the original sequence.

7. Discrete Fourier Transform (Spectral) Test
Description: The focus of this test is the peak heights in the discrete Fast

Fourier Transform. The purpose of this test is to detect periodic features (i.e.,
repetitive patterns that are near each other) in the tested sequence that would
indicate a deviation from the assumption of randomness.

8. Non-overlapping (Aperiodic) Template Matching Test



168 Christian Săcărea, Csaba Szántó and István Şuteu Szöllősi 6

Description: The focus of this test is the number of occurrences of pre-
defined target substrings. The purpose of this test is to reject sequences that
exhibit too many occurrences of a given non-periodic (aperiodic) pattern. For
this test and for the Overlapping Template Matching test, an m-bit window
is used to search for a specific m-bit pattern. If the pattern is not found, the
window slides one bit position. For this test, when the pattern is found, the
window is reset to the bit after the found pattern, and the search resumes.

9. Overlapping (Periodic) Template Matching Test
Description: The focus of this test is the number of pre-defined target

substrings. The purpose of this test is to reject sequences that show deviations
from the expected number of runs of ones of a given length. Note that when
there is a deviation from the expected number of ones of a given length, there
is also a deviation in the runs of zeroes. Runs of zeroes were not evaluated
separately due to a concern about statistical independence among the tests.
For this test and for the Non-overlapping Template Matching test, an m-bit
window is used to search for a specific m-bit pattern. If the pattern is not
found, the window slides one bit position. For this test, when the pattern is
found, the window again slides one bit, and the search is resumed.

10. Maurer’s Universal Statistical Test
Description: The focus of this test is the number of bits between matching

patterns. The purpose of the test is to detect whether or not the sequence can
be significantly compressed without loss of information. An overly compress-
ible sequence is considered to be non-random.

11. Approximate Entropy Test
Description: The focus of this test is the frequency of each and every over-

lapping m-bit pattern. The purpose of the test is to compare the frequency of
overlapping blocks of two consecutive/adjacent lengths (m and m+ 1) against
the expected result for a random sequence.

12. Random Excursions Test
Description: The focus of this test is the number of cycles having exactly

K visits in a cumulative sum random walk. The cumulative sum random walk
is found if partial sums of the (0, 1) sequence are adjusted to (−1, +1). A
random excursion of a random walk consists of a sequence of n steps of unit
length taken at random that begin at and return to the origin. The purpose
of this test is to determine if the number of visits to a state within a random
walk exceeds what one would expect for a random sequence.

13. Random Excursions Variant Test
Description: The focus of this test is the number of times that a particular

state occurs in a cumulative sum random walk. The purpose of this test is to
detect deviations from the expected number of occurrences of various states
in the random walk.



7 Combining the Solitaire Encryption Algorithm 169

14. Serial Test
Description: The focus of this test is the frequency of each and every over-

lapping m-bit pattern across the entire sequence. The purpose of this test
is to determine whether the number of occurrences of the 2m m-bit overlap-
ping patterns is approximately the same as would be expected for a random
sequence. The pattern can overlap.

15. Linear Complexity Test
Description: The focus of this test is the length of a generating feedback

register. The purpose of this test is to determine whether or not the se-
quence is complex enough to be considered random. Random sequences are
characterized by a longer feedback register. A short feedback register implies
non-randomness.

Since every random number generator failed test 11 (that is Approximate
Entropy Test) every time, we will ignore Approximate Entropy failures. Due to
lack of computational capacity we also had to ignore tests 8 and 9 (that is the
Non-overlapping (Aperiodic) Template Matching Test and the Overlapping
(Periodic) Template Matching Test).

We have empirically noticed that the algorithm LFibSolk(K, l, n) behaves
particularly well in the case k = 5 and l = 13. We don’t exclude the possibility
of even better choices of constants. This is the subject of further research.

We explain now the testing procedure of LFibSol5(K, 13, 12500000) (here
12500000 is the length of the generated sequence, in bytes). Each of the
tests checks 100 streams of n bits from LFibSol5(K, 13, 12500000) for any
given key (initial seed) K. The values of n and the additional parameters are
summarized in the following table (see [3] for further details).

Nr. Test name n(bits) Add. param.

1. Frequency (Monobit) Test 100000
2. Frequency Test within a Block 11000 M=128
3. Cumulative Sums (Cusum) Test 100000
4. Runs Test 100000
5. Test for the Longest Run of Ones in a Block 1000000
6. Binary Matrix Rank Test 100000
7. Discrete Fourier Transform (Spectral) Test 100000
10. Maurer’s “Universal Statistical” Test 1000000
12. Random Excursions Test 1000000
13. Random Excursions Variant Test 1000000
14. Serial Test 1000000 m=4
15. Linear Complexity Test 1000000 M=500
The table below presents the test results for 20 randomly chosen keys. A

pass is denoted by 1 and a failure by 0.



170 Christian Săcărea, Csaba Szántó and István Şuteu Szöllősi 8

Seq. nr. Key(Seed) 1 2 3 4 5 6 7 10 12 13 14 15
1. [no key] 1 0 1 1 0 1 0 1 1 1 0 1
2. dk2893hs 1 1 1 1 0 1 0 0 1 1 0 1
3. j9dk6xa3 1 1 1 1 0 1 0 0 1 1 0 1
4. aslw3vk9 1 0 1 1 0 1 0 0 1 1 0 1
5. 11sucwl8 1 1 1 1 0 1 0 0 0 1 0 1
6. 5pq7n2ye 1 0 1 1 0 1 0 1 1 1 0 1
7. dj7sle8a 1 0 1 0 0 1 0 1 1 1 0 1
8. cristina 1 1 1 1 0 1 0 0 1 1 0 1
9. twmmb713 1 0 1 1 0 1 0 1 0 1 0 1
10. dwwi6sle 1 1 1 1 0 1 0 0 1 1 0 1
11. pTsTD7Qw 1 1 1 0 0 1 0 0 1 1 0 1
12. 1ieklsMW 1 1 1 1 0 1 0 0 1 1 0 1
13. utKK1Zpk 1 1 1 0 0 1 0 0 1 1 0 1
14. Vk5S9FHT 1 1 1 0 0 1 0 0 1 1 0 1
15. Eoc28H4q 1 1 1 1 0 1 0 0 1 1 0 1
16. GCEvmtfa 1 1 1 1 0 1 0 0 1 1 0 1
17. mJ5zigDj 1 1 1 0 0 1 0 0 1 1 0 1
18. kDGMqioe 1 1 1 1 0 1 0 0 1 1 0 1
19. g7gGhvUo 1 1 1 1 0 1 0 1 1 1 0 1
20. EpgSg4nu 1 1 1 1 0 1 0 0 1 1 0 1

The success rates for the 20 keys (initial seeds) are the following (here the
percentage means the proportion of the keys passing the test, in other words
the percentage of strong initial seeds for the given test):

Nr. Test name Success rate for 20 keys

1. Frequency (Monobit) Test 100%
2. Frequency Test within a Block 75%
3. Cumulative Sums (Cusum) Test 100%
4. Runs Test 75%
5. Test for the Longest Run of Ones in a Block 0%
6. Binary Matrix Rank Test 100%
7. Discrete Fourier Transform (Spectral) Test 0%
10. Maurer’s “Universal Statistical” Test 25%
12. Random Excursions Test 90%
13. Random Excursions Variant Test 100%
14. Serial Test 0%
15. Linear Complexity Test 100%

We remark that failures in test 10 (Maurer’s “Universal Statistical” Test)
were very close to the limit between a pass and a failure. The results above
give us hope that our PRNG is at least a medium level generator (see [5] for



9 Combining the Solitaire Encryption Algorithm 171

a classification of different random number generators). Further research on
the right choice of parameters may lead to an improvement.

Acknowledgements. The research for this paper was supported by grant
PN2-P4-11-020/2007.

REFERENCES

[1] Janke, W., Pseudo Random Numbers: Generation and Quality Checks, Quantum Sim-
ulations of Complex Many-Body Systems: From Theory to Algorithms, Lecture Notes,
J. Grotendorst, D. Marx, A. Muramatsu (Eds.), John von Neumann Institute for Com-
puting, NIC Series, Vol. 10, 447–458.

[2] http://en.wikipedia.org/wiki/Pseudorandom number generator

[3] http://csrc.nist.gov/groups/ST/toolkit/rng/stats tests.html

[4] http://www.schneier.com/solitaire.html

[5] http://www.lavarnd.org/what/nist-test.html

Received December 1, 2008
Accepted March 11, 2009

“Babeş-Bolyai” University Cluj
Faculty of Mathematics and Computer Science

Str. M. Kogălniceanu nr.1.
RO-400084 Cluj-Napoca, România

E-mail: csacarea@math.ubbcluj.ro

E-mail: szanto.cs@gmail.com


