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REMARKS ON INDUCTION OF G-ALGEBRAS
AND SKEW GROUP ALGEBRAS

TIBERIU COCONET

Abstract. In the first section we give a pointed group version of a result of
Dade on Green theory. Related to this, in the second section we consider an
H-algebra B, where H is a subgroup of a finite group G. For the skew group
algebra Bx H, we prove that its induction to G in the sense of Puig is isomorphic
to the skew group algebra over G of the induction, in the sense of Turull, of B
to G.
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1. PRELIMINARIES

Let O be a discrete valuation, and let A be an O-algebra with identity,
finitely generated as an (O-module. Let G be a finite group acting as auto-
morphisms of A, hence A is a G-algebra. For any a € A, and g € G we will
denote by 9a the action of g on the element a.

For any subgroup H of GG, denote by

Al =f{ac A|% =aforall g€ H},

the subalgebra of fixed elements of A by the action of H. Observe that by
restriction, A is a H-algebra. Obviously this subalgebra contains the identity
of the bigger algebra. For two subgroups K and H of GG such that K C H, we
have the relative trace map

Tl : AN = A7 Trff(a) = ) Y
9€[H/K]

We denoted by [H/K] a set of representatives of the right cosets H/K. It
is clearly, a well-defined map which is a additive group homomorphism. If
b€ AH then Trfl(ab) = Tri(a)b and Tri(ba) = b Tril(a) which implies that
the image A := Tril(AK) is a two-sided ideal of AH.

We are going to need the following definitions and remarks, hence for the
sake of completeness we just state them here, for further details the reader is
referred to [4].
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DEFINITION 1. A pointed group on the G-algebra A is a pair (H, ), where
H is a subgroup of G and « is a point on AY, ie. a conjugacy class of a
primitive idempotent i € Af; we shall use the notation H, for a pointed
group.

REMARK 1. There is an partial order relation denoted “<” which can be
defined on the set of pointed groups of the G-algebra A. Two subgroups
Kpg, H, satisty Kg < H,, if K < H and for every 7 € « there exists j € 3 such
that j = iji.

DEFINITION 2. A pointed group P, is called a defect pointed group of H,
if and only if P, is a minimal pointed group such that oo C Trg (APyAP). The
last condition is equivalent to the following statement: for every ¢ € « there
exists j € 7 such that i = Tr¥ (ajb) for some a,b € AP. We also say that H,
is projective relative to P,.

REMARK 2. Without specifying the point v one can equivalently define P
to be the defect of the pointed group H,, that is, P is minimal such that
a C Ag . One easily shows that these two definitions are equivalent.

2. A POINTED GROUP VERSION OF A RESULT IN GREEN THEORY

Let e be an idempotent of A satisfying:
1) If g € G and 9e # e, then 9ee = 0;
2) For all a € A9 we have ea = ae;

Let Go. = {g € G | 9¢ = e} be the subgroup of G fixing e under the
conjugation action. Condition 1) implies that

c:= Trge(e) = Z Je
9€lG/G.]

is an idempotent of AY, and using 2) we see that c is central in A®. Since G,
fixes e we have (eAe)® = eACee.

ProproSITION 1. With the above notations, the map

cA® — eA%e, a— ae = ea

s a Ting isomorphism.

The inverse map sends any b € eA%<e into trge (b) € cAC.

Since this is the exact restatement of a result in [1, Section 4], we leave the
proof out of this paper.

Because e is fixed by G, we deduce that eAe is a Gc-algebra. The next
result is the pointed group version of [1, 4.9].

PROPOSITION 2. Let P, be a defect pointed group of (Ge)s on eAe. Then
P,Y/ is a defect pointed group of Go on cA%. Moreover, the point o is the

correspondent of 3 with respect to the above isomorphism and ~' is a point of

cAL,



3 Induction of G-algebras 137

Proof. By definition P, < (G.)g is minimal such that
8 C TrZGDC (eAPe) = e TrGe (A )e = eAIGfe.
It follows that for every i € 3 there exists w € eAre such that
i =eTrpe(w)e = Tric(w).
It follows that
ji= Trge (i) = Tr(w) € cA%,
and moreover j is a primitive idempotent of cA satisfying j = ¢j. We may

take o to be a point of cA“ containing j, hence a = Trge (8). Since ewe = w,
it follows

w=ew = cew = cw € cA",

and because j = Tr$(w), where w € cA”, we deduce that
o C Tr8(cAP) = (cA)G.

The pointed group G, is projective relative to P, hence there exists 'yl a such
that G, is projective relative to Pv"

Suppose there would exist a pointed group R on cA such that R, < Pvf.
Then we would have R < P < G, and by [4, Exercise 13.5, p. 109], for
the points 8 and v there would exist a point ¢ such that R, < P,, which
contradicts the minimality of P,. O

3. INDUCTION AND SKEW GROUP ALGEBRAS

Let H be a subgroup of a finite group G, and consider an H-algebra A. We
use the definition of induction of A as in [5, Section 8]. The induction of A
from H to G is

md%(A) = OG @og A,
where an element g®a € OG®Ro A is denoted by Ya, and for b € Ind%(A) and

g € G the element 9b is the result of g acting on b. If a,b € A and ¢1, g2 € G,
the multiplication in this algebra is given by:

oy {0 o =01 = g2
0 if ng ?é ggH.

As noted in [3, 4.3], this is a particular case of the induction of crossed
products introduced in [2].
Consider the map

Y : G — Autp(Ind%(4)), g~ ¥(g)(a) :=Ya.

If o € Ind%(A) then a = g ® a for some g € G and some a € A, hence
a = (g)(a’) and this means 1 is surjective. For a € Ind%(A) such that
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¥(g)(a) = g®a = 0, it clearly follows that a = 0, hence 1(g) is injective.
Even more, for g € G and a,b € Ind%(A) we have

¥(g)(ab) = ?(ab) = ?(a)?(b) = ¥(g)(a)(g) (D).

We have shown that for any g € G, 1(g) is an automorphism of Ind% (A)
which is clearly O-linear.
Let g1,92 € G and a € Ind%(A). We have

P(g192)(a) = 9%2a = 9(%a) = 7 (d(g2)(a)) = (¥(91) © ¥ (g2))(a),

hence v is a group homomorphism which endows Ind%(A) with a structure of
a G-algebra.

Now let B be an H-algebra over O and consider the skew group algebra
S:=BxH of Band H. Let A =Ind%(B) be the above induced algebra, and
denote by R := A x G the skew group algebra of A over G. The algebra R has
a natural structure of interior G-algebra given by

G—-R,g—1-g=g-1,

in the same manner S has a structure of interior H-algebra.

We may view the elements of R as pairs of the form a-g = (a,g) = (¢ ®b, g)
where b€ B, g€ G and ¢ € [G/H]. The subset of R consisting of elements
in which ¢ = 1 and ¢ € H is a subalgebra of R isomorphic to S. Identifying
S with that subalgebra, the action of G on S is defined in the same way as
the action of G on the elements of A.

There is another type of induction which is due to Puig and which can be
applied to the interior H-algebra S, namely OG Qo S @og OG. Recall that
its algebra structure is given by

/ W Jeges-gdg-siegifdneH
(9®s5®9)(91 @51 ©9) {0 it g1 ¢ I,
where g, g/, g1, gll € G and s,s1 € S. The interior G-algebra structure is given
by g-(z®s5®y) = gr@s®y and (x®sQy)-g = x®s®yg for all g, z,y € G and
s € §. Observe that the induction of S is completely determined by elements
in B and by sets of representatives of the left, respectively right cosets of H
in G. We have the following result.

THEOREM 1. The map
0:0G®on S®@on OG — R, gRs®@frg-s-f,

where g, f € G and s € S, is an isomorphism of G-graded G-interior algebras,
and the diagram
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OG Rog S ®og OG——=R
OG

of G-graded G-interior algebras is commutative.

Proof. For x,y € [G/H] and b € B, the map ¢ sends z ® b® y to b - (zy).
It is clear that ¢ is a well-defined map, since for other representatives of the
right respectively left cosets 2, y we have

cp(ac/ Rb® y/) = go(la:, RO ly/)

=p(z(@) ' @bey(y)”
=p(z@b®y).

)

Let us show that ¢ is indeed a morphism of algebras. Let x ® b ® y and
# @b @1y be two elements of the Puig’s induction of S. Then by definition
we have

t@b-yxr b @y ifyr € H

b ! b/ ! _ ,
(zeboy@ b oy) {0 if yr ¢ H.

Note that in our case yx, € H is equivalent to yx/ = 1. Then

ple@b-yx' b ®@y)if yz' € H

p(rebay)(r @b @y)) = {0 e ¢ H

T(bb') - (xy) if yr' =1
0 if yo' # 1.
On the other hand, p(z ® b®y) = *b- (zy), and p(z' b @y') = 7y (z'y),

hence by applying the definition of the product in R the definition of the
product in A we get

plrebey)p(r @b @y)=2b-(ry)-*b -(z'y)
p— xb(xy)x/ bl . (xyx/yl)

B T(bb) - (zyx'y) if & = xyx’
~]o if H # zyz' H

@) - (wy) i1 = ya
~]o if 14 yx'.
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Now let g € G. Then

plg-(z@boy)) =plgr@by) =9 (gry)
=(1-g)("b- (zy))
=g - p(rRbxy),

and

P((z@b®y)-g9) =p(r@bRYg) ="b- (2Y9)
=("b-(zy))(1-9) =p(z@b®Y) - g.

So ¢ is indeed a morphism of interior G-algebras. Note that in the above

equalities
Z gR1lp = Z I1p

9€[G/H] 9€[G/H]
is the identity of A and multiplying this identity by b on either side the
product is different from zero exactly when g = x.

In order to check the sur3ect1v1ty of ¢ we consider a - g = g b-g € R where
g, € Gand b € B. Let 2,z € [G/H] be two representatives such that
g/ = 2'h" and g = hz for some h',h € H. Then denoting by b the element of

A being " b, we have

a-g="b-(he)= (b -B)(1-x)

=z ®b @h)
=z @b -h®1l)- -z
= @b -h®),

hence ¢ is surjective.
I3, veia/m T ®bay ®y € Ker(p), then

(D T®bey@y) = Y. “bay - (zy) =0.

z,y€[G/H] z,y€[G/H]
Consider a € A and invertible element, then for any g € G the element Ya is
invertible. Fix z’ ,y € [G/H] and multiply the above equahty Wlth 2’ a-1on
the left and with (W) a -1 on the right. One obtains * a” b / y/ a = 0, which

means ab,_/ 4,a=0 hence b/ 4 =0 Thus ¢ is injective and the theorem is
proven. O
REMARK 3. a) Since we identified S with its isomorphic subalgebra of R,
viewing s = b - h, then the product g -s- f is 9b- hf, where 9b € A.
b) One can easily verify that ¢(1) = 1, and that for ¢ = xh € G with
x € [G/H] and h € H, we have

thy — g b=z @ " =("b).
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In order to clarify the choice of ¢, observe that

g-s-f=g-O_bu-h)-f=> 9by-ghf,

heH heH

and for another element ¢ - s - f = Yonen? b,h g hf', one gets

(515 -5 f) = - ghf)(3 9 by-g'hf)

heH heH

On the other hand,

s td s oty = d Cner Ton - ghf)(Cpen? bh ghf)if fg € H
plg®s-fg-s@f) { € € £ 7g ¢ H

The product (g-s- f)(g -s - f') contains sums of elements of the form
"% by - (ghfg b f)

which are zero if gH # ghfg H that is fg' ¢ H.
¢) R has a G-algebra structure induced by its interior structure, namely if
¢ : G — R* is the homomorphism giving the interior structure, then

VG — Aut(R), (g9) =Inn(¢(g)),

where for a € R, ¥(g)(a) = g-a-g~ ' :=Ya, gives R an G-algebras structure.

The same argument works for the interior G-algebra OG ®pgy S oy OG,

which becomes a G-algebra by
I2r@s0y)=grRsDyg .

The isomorphism in the theorem is actually an isomorphism of G-algebras, in

other words R and OG ®pg S ®og OG are isomorphic as G-algebras. Indeed,

forgeGand x®@s®y € OG Roy S Qor OG we obtain

fllz®s®y)=flgz@s®yg ) =gz s yg '

=g(z-s-y)g ' =9fr®s®Y).

d) Let ¢ = > gelc/c.) 7€ be the G-invariant idempotent constructed in the
second paragraph. Then c is the identity of the algebra (cAc) * G = ¢(A*G)c.
These two algebras are in particular crossed products of A and G, and of
cAc and G respectively. The idempotent e is the identity, hence a central
idempotent of e(A * G.)e = (eAe) * G.. By using the uniqueness of the
induction as presented in [2], we may write

c(A*xG)e = Indge(e(A x Ge)e).
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IftB= Indge (eAe) is the induction to G in the sense of Turull of the algebra
e(A x G¢)e, by using the above theorem we have
c(A*xG)e= Indge (e(AxG.e)
= 0G ®oq, e(A* Ge)e ®oa, OG
~ Bx@.

The equality (cAc) * G = ¢(A x G)c forces the isomorphism
cAc~ B = OG ®og, eAe,
hence the G-algebra cAc is the Turull induction to G of the G-algebra eAe.

REFERENCES

[1] DaDE, E.C., Block extensions, Illinois J. Math., 17 (1973), 198-272.

[2] KLASEN, W. and ScHMID, P., Induced crossed products. Comm. Algebra, 18 (1990),
2573-2586.

[3] MARrcus, A., Derived invariance of Clifford classes, J. Group Theory, 12 (2009), 83-94.

[4] THEVENAZ, J., G-Algebras and Modular Representation Theory, Clarendon Press, Oxford
1995.

[5] TUrRULL, A., Reduction theorems for Clifford classes, J. Group Theory, 9 (2006), 27-47.

Received November 18, 2008 “Babes-Bolyai” University

Accepted December 5, 2008 Faculty of Mathematics and Computer Science
Str. Mihail Kogalniceanu nr. 1
400084 Cluj-Napoca, Romania

E-mail: coconet.tibi@gmail.com



