FUNCTIONS WITH STRONGLY β - θ -CLOSED GRAPHS

C. K. BASU, B. M. UZZAL AFSAN and S. S. MANDAL

Abstract. In this paper, by the use of β -open [1] sets, the notion of functions having strongly β - θ -closed graphs is being initiated. Several characterizations and basic properties of it are investigated. Important applications of this investigation are exhibited by establishing a new characterization of the concept β -closedness [7] and a sufficient condition for common fixed points of a family of functions having strongly β - θ -closed graphs.

MSC 2000. 54C50, 54D20, 54D25, 54D30.

Key words. β -open set, β -closure, β - θ -adherent, β -connected, (θ, β) -continuity, β -closed spaces, strongly β - θ -closed graph, β - T_2 .

1. INTRODUCTION

In 1986, Monsef et al. [1] initiated the study of β -open sets, which is equivalent to semi-preopen sets due to Andrijević [4]. This notion has been studied extensively in recent years by a good many researchers, specially, on functions, covering properties and connectedness. It is worth to be mentioned some of recent research works related to β -open sets which are found in papers of Monsef et al. [1, 2], Andrijević [4, 5, 6], Basu and Ghosh [7, 8], Beceren and Noiri [9], Caldas and Jafari [11, 12], Duszyński [13], Halvac [16], Jafari and Noiri [17], Noiri [23], Popa and Noiri [24, 25, 26] and Tahiliani [27]. Keeping in mind the tremendous influences of functions having closed graphs on covering properties, we introduce the notion of strong β - θ -closedness of functions in terms of β -open sets and try to obtain its formulations and some of its basic properties. As applications, this idea is exploited to ultimately achieve a new characterization of the covering property β -closedness [7] and a sufficient condition for common fixed points of a family of functions having strongly β - θ -closed graphs.

2. PRELIMINARIES

Throughout this paper spaces (X, τ) and (Y, σ) (or simply X and Y) represent non-empty topological spaces and $\psi : (X, \tau) \to (Y, \sigma)$ (or $\psi : X \to Y$) denotes a function of a space (X, τ) into a space (Y, σ) . The closure and the interior of a subset A of a space X are denoted by cl(A) and int(A) respectively.

DEFINITION 1. A subset A of a space X is called semi-open [19] if $A \subset \operatorname{cl}(\operatorname{int}(A))$, α -open [22] if $A \subset \operatorname{int}(\operatorname{cl}(\operatorname{int}(A)))$, pre-open [21] if $A \subset \operatorname{int}(\operatorname{cl}(A))$, β -open [1] or semi-preopen [4] if $A \subset \operatorname{cl}(\operatorname{int}(\operatorname{cl}(A)))$.

The complement of a β -open set is called a β -closed set. A subset A of X is said to be β -regular [7] (=semi-preregular [23]) if it is both β -open as well as β -closed. The family of all semi-open (resp. α -open, pre-open, β -open, β -regular) subsets of (X, τ) is denoted by SO(X) (resp. τ^{α} , PO(X), $\beta O(X)$, $\beta R(X)$). It is well known that $\tau \subset \tau^{\alpha} = PO(X) \cap SO(X) \subset PO(X) \cup SO(X) \subset \beta O(X)$. None of the reverse implications is true in general. The family of all β -open (resp. β -regular, open) subsets of X containing $x \in X$ is denoted by $\beta O(X, x)$ (resp. $\beta R(X, x)$, O(x)). The graph of a function $\psi : X \to Y$, denoted by $G(\psi)$, is defined as the set $\{(x, \psi(x)) \in X \times Y : x \in X\}$.

DEFINITION 2. (a) A space X is called extremally disconnected [22] if closure of each.

(b) A space X is called submaximal [10] if each dense subset of X is.

(c) A space X is called β -T₂ [20] if for points x and y in X with $x \neq y$ there exist disjoint β -open sets $U \in \beta O(X, x)$ and $V \in \beta O(X, y)$.

(d) A space X is called β -connected [3] if X can not be expressed as the union of two non-empty disjoint β -open sets.

LEMMA 1. [4, 23] The following hold, for a subset A of X (a) β -cl(A) = A \cup int(cl(int(A))), (b) $A \in \beta O(X)$ if and only if β -cl(A) $\in \beta R(X)$.

DEFINITION 3. A point x of X is said to be in the β - θ -closure [7] (= sp- θ closure [23]) of a subset A of X denoted by β - θ -cl(A), if $A \cap \beta$ -cl(V) $\neq \emptyset$ for each $V \in \beta O(X, x)$. If $A = \beta$ - θ -cl(A), then A is called β - θ -closed [7] (= sp- θ closed [23]). The complement of a β - θ -closed (= sp- θ -closed) set is said to be a β - θ -open [7] (sp- θ -open [23]) set.

LEMMA 2. [23] Let A and B be any subsets of a space X. The following properties hold:

(a) $\beta - \theta - \operatorname{cl}(A) = \cap \{V : A \subset V \text{ and } V \in \beta R(X)\},\$

(b) $x \in \beta - \theta - cl(A)$ if and only if $A \cap U \neq \emptyset$ for each $U \in \beta R(X, x)$,

(c) if $A \subset B$ then β - θ -cl $(A) \subset \beta$ - θ -cl(B),

(d) $\beta - \theta - \operatorname{cl}(\beta - \theta - \operatorname{cl}(A)) = \beta - \theta - \operatorname{cl}(A),$

(e) if $A \in \beta O(X)$ then β -cl $(A) = \beta$ - θ -cl(A),

(g) intersection of an arbitrary family of β - θ -closed sets is β - θ -closed in X,

(h) A is β - θ -open if and only if for each $x \in A$ there exists an $U \in \beta R(X, x)$ such that $x \in U \subset A$.

DEFINITION 4. [7] A filter base \mathcal{F} on X said to (a) β - θ -adherent at x (written as $x \in \beta$ - θ -ad \mathcal{F}) if for each $U \in \beta O(X, x)$ and each $F \in \mathcal{F}, F \cap \beta$ -cl $(U) \neq \emptyset$, (b) β - θ -converge to x if for each $U \in \beta O(X, x)$ there exists an $E \in \mathcal{F}$ such

(b) β - θ -converge to x if for each $U \in \beta O(X, x)$, there exists an $F \in \mathcal{F}$ such that $F \subset \beta$ -cl(U).

The corresponding definitions of nets are obvious.

If S = X and S is β -closed set relative to X then X is called a β -closed space.

3. STRONGLY β - θ -CLOSED GRAPHS

DEFINITION 6. A function $\psi : X \to Y$ has a strongly β - θ -closed graph if for each $(x, y) \notin G(\psi)$, there exist an $U \in O(x)$ and a $V \in \beta O(Y, y)$ satisfying $(U \times \beta$ -cl $(V)) \cap G(\psi) = \emptyset$.

LEMMA 3. A function $\psi : X \to Y$ has a strongly β - θ -closed graph $G(\psi)$ if and only if for each $(x, y) \notin G(\psi)$, there exist an $U \in O(x)$ and a $V \in \beta O(Y, y)$ such that $\psi(U) \cap \beta$ -cl(V) = \emptyset .

Proof. The proof is straight forward.

THEOREM 1. For a function $\psi : X \to Y$ following statements are equivalent: (a) ψ has a strongly β - θ -closed graph,

(b) $\psi(x) = \cap \{\beta \cdot \theta \cdot \operatorname{cl}(\psi(U)) : U \in O(x)\}$ for each $x \in X$.

Proof. (a) \Rightarrow (b) Let the function ψ have a strongly β - θ -closed graph. Suppose for some $x \in X$, there is a point $y(\neq \psi(x))$ in Y such that $y \in \cap\{\beta-\theta-\operatorname{cl}(\psi(U)): U \in O(x)\}$. Then $y \in \beta-\theta-\operatorname{cl}(\psi(U))$ for each $U \in O(x)$. So, for each $V \in \beta O(Y, y), \beta-\theta-\operatorname{cl}(V) \cap \psi(U) \neq \emptyset$. Hence $(U \times \beta-\operatorname{cl}(V)) \cap G(\psi) \neq \emptyset$ — a contradiction. So, for each $x \in X, \psi(x) = \cap\{\beta-\theta-\operatorname{cl}(\psi(U)): U \in O(x)\}$.

(b) \Rightarrow (a) Suppose for the function $\psi : X \to Y$, $\psi(x) = \cap \{\beta \cdot \theta \cdot \operatorname{cl}(\psi(U)) : U \in O(x)\}$ for each $x \in X$. If $(x, y) \notin G(\psi)$ then $y \neq \psi(x)$ and hence $y \notin \beta \cdot \theta \cdot \operatorname{cl}(\psi(U))$ for some $U \in O(x)$. So, there is a $V \in \beta O(Y, y)$ such that $\psi(U) \cap \beta \cdot \operatorname{cl}(V) = \emptyset$ and hence $(U \times \beta \cdot \operatorname{cl}(V)) \cap G(\psi) = \emptyset$ for some $U \in O(x)$ and some $V \in \beta O(Y, y)$. Therefore ψ has a strongly $\beta \cdot \theta \cdot \operatorname{closed}$ graph. \Box

DEFINITION 7. A space (X, τ) is β -O-regular if for each β -closed set F of X and $x \notin F$, there is an $U \in O(x)$ and a β -open set V containing F such that $V \cap U = \emptyset$.

THEOREM 2. For a function $\psi : X \to Y$, consider the following statements: (a) ψ has a strongly β - θ -closed graph $G(\psi)$,

(b) whenever a filter base $\mathcal{F} \to x$ in X and $\psi(\mathcal{F}) \beta$ - θ -converges to y in Y, it follows that $y = \psi(x)$,

(c) whenever a net $x_{\lambda} \to x$ in X and $\psi(x_{\lambda}) \beta$ - θ -converges to y in Y, it follows that $y = \psi(x)$.

Then (a) \Rightarrow (b) \Rightarrow (c). Moreover, if Y is β -O-regular, then (c) \Rightarrow (a) and hence the above statements are equivalent.

Proof. (a) \Rightarrow (b) Let the function $\psi : X \to Y$ has a strongly β - θ -closed graph and let \mathcal{F} be a filter base on X such that $\mathcal{F} \to x$ and $\psi(\mathcal{F}) \beta$ - θ -converges to y. Suppose $y \neq \psi(x)$. Then $(x, y) \notin G(\psi)$. Therefore $O(x) \subset \mathcal{F}$

and $\{\beta\text{-cl}(V) : V \in \beta O(Y, y)\} \subset \psi(\mathcal{F})$. So, for each $U \in O(x)$ and each $V \in \beta O(Y, y)$ there exist $F_1 \in \mathcal{F}$ and $F_2 \in \mathcal{F}$ such that $F_1 \subset U$ and $\psi(F_2) \subset \beta\text{-cl}(V)$. Hence there exists an $F_3 \in \mathcal{F}$ such that $F_3 \subset F_1 \cap F_2$ and satisfies $F_3 \subset U$ as well as $\psi(F_3) \subset \beta\text{-cl}(V)$. Hence $\emptyset \neq \psi(F_3) \subset \psi(U) \cap \beta\text{-cl}(V)$ and so $(U \times \beta\text{-cl}(V)) \cap G(\psi) \neq \emptyset$ — a contradiction. So $y = \psi(x)$.

(b) \Rightarrow (c) Obvious.

(c) \Rightarrow (a) Suppose Y is β -O-regular. Let the given condition holds for the function $\psi : X \to Y$, but if possible, the function ψ does not have a strongly β - θ -closed graph. Then there exists $(x, y) \notin G(\psi)$ for which $(U \times \beta \operatorname{-cl}(V)) \cap G(\psi) \neq \emptyset$ for each $U \in O(x)$ and each $V \in \beta O(Y, y)$. Consider the family $\mathcal{F} = \{F_{UV} = \{z \in U : (z, \psi(z)) \in (U \times \beta \operatorname{-cl}(V)) \cap G(\psi)\} : U \in O(x)$ and $V \in \beta O(Y, y)\}$. Since Y is β -O-regular then \mathcal{F} is clearly a filter base on X. But $\mathcal{F} \to x$ in X and $\psi(\mathcal{F}) \beta$ - θ -converges to y and $y \neq \psi(x)$ — a contradiction. So ψ has a strongly β - θ -closed graph. \Box

DEFINITION 8. Let $\{S_{\alpha} : \alpha \in D\}$ be a net of sets in X, where D is a directed set. The superior and inferior limits denoted respectively by $\limsup S_{\alpha}$ and $\liminf S_{\alpha}$ are defined as follows:

 $\limsup S_{\alpha} = \{x \in X : \text{ for any } U \in O(x) \text{ and for any } \alpha \in D \text{ there exists } \beta \in D \text{ with } \beta \geq \alpha \text{ such that } U \cap S_{\beta} \neq \emptyset \},$

 $\liminf S_{\alpha} = \{x \in X : \text{ for any } U \in O(x) \text{ there exists an } \alpha \in D \text{ such that } U \cap S_{\beta} \neq \emptyset \text{ for all } \beta \geq \alpha \}.$

THEOREM 3. For a function $\psi : X \to Y$, consider the following statements: (a) ψ has a strongly β - θ -closed graph,

(b) for any net (y_{α}) in Y which β - θ -converges to $y^{\star} \in Y$, $\limsup \psi^{-1}(y_{\alpha}) \subseteq \psi^{-1}(y^{\star})$,

(c) for any net (y_{α}) in Y which β - θ -converges to $y^{\star} \in Y$, $\liminf \psi^{-1}(y_{\alpha}) \subseteq \psi^{-1}(y^{\star})$.

Then we have that (a) \Rightarrow (b) \Rightarrow (c). Moreover, if Y is β -O-regular, then (c) \Rightarrow (a) and hence the above statements are equivalent.

Proof. (a) \Rightarrow (b). Suppose $(y_{\alpha})_{\alpha \in D}$ be a net in Y that β -d-converges to y^{\star} in Y. Let $x \in \limsup \psi^{-1}(y_{\alpha})$. If $x \notin \psi^{-1}(y^{\star})$ then $y^{\star} \neq \psi(x)$ and hence $(x, y^{\star}) \notin G(\psi)$. Since ψ has a strongly β -d-closed graph there exist an $U \in O(x)$ and $V \in \beta O(Y, y^{\star})$ such that $\psi(U) \cap \beta$ -cl $(V) = \emptyset$. Since $(y_{\alpha})_{\alpha \in D} \beta$ -d-converges to y^{\star} , there exists $\alpha_0 \in D$ such that $y_{\alpha} \in \cap \beta$ -cl(V) for all $\alpha \geq \alpha_0$. Now as $x \in \limsup \psi^{-1}(y_{\alpha})$, there exists $\alpha_1 \geq \alpha_0$ such that $U \cap \psi^{-1}(y_{\alpha_1}) \neq \emptyset$. Let $x_1 \in U \cap \psi^{-1}(y_{\alpha_1})$. Hence $\psi(x_1) = y_{\alpha_1} \in \beta$ -cl(V) and thus $\psi(U) \cap \beta$ -cl $(V) \neq \emptyset$ — a contradiction. So $x \in \psi^{-1}(y^{\star})$.

(b) \Rightarrow (c) Since $\operatorname{liminf}\psi^{-1}(y_{\alpha}) \subseteq \operatorname{limsup}\psi^{-1}(y_{\alpha})$, the proof follows immediately.

(c) \Rightarrow (a) Suppose Y is β -O-regular. If possible let ψ has no strongly β - θ closed graph. Then by Theorem 2, there exists a net $(x_{\alpha})_{\alpha \in D}$ in X such that $(x_{\alpha}) \rightarrow x^{\star} \in X$, the net $(y_{\alpha}) = (\psi(x_{\alpha})) \beta$ - θ -converges to $y^{\star} \in Y$ and $y^{\star} \neq \psi(x^{\star})$. Clearly, $x^{\star} \in \liminf \psi^{-1}(y_{\alpha})$ and hence by hypothesis (c), $x^{\star} \in \psi^{-1}(y^{\star})$.

Thus $\psi(x^*) = y^*$ — a contradiction. Therefore ψ has a strongly β - θ -closed graph.

DEFINITION 9. A function $\psi : X \to Y$ is called (θ, β) -continuous [7] if each filter base \mathcal{F} on X satisfies $\psi(\mathrm{ad}\mathcal{F}) \subset \beta - \theta - \mathrm{ad}\psi(\mathcal{F})$.

Equivalently, $\psi : X \to Y$ is (θ, β) -continuous if for each $x \in X$ and each $V \in \beta O(Y, \psi(x))$, there is an open set U containing x such that $\psi(U) \subset \beta$ -cl(V).

THEOREM 4. If $\psi : X \to Y$ is (θ, β) -continuous and Y is β -T₂ then ψ has a strongly β - θ -closed graph.

Proof. Let $(x, y) \notin G(\psi)$. Then $y \neq \psi(x)$. Hence there exists $V \in \beta O(Y, y)$ and $U \in \beta O(Y, \psi(x))$ such that $U \cap V = \emptyset$. This implies that $\psi(x) \notin \beta$ -cl(V). Since β -cl(V) is β -regular, $Y - \beta$ -cl(V) is also a β -regular set containing $\psi(x)$. Now as ψ is being (θ, β) -continuous, there is a $W \in O(x)$ such that $\psi(W) \subset Y - \beta$ -cl(V). Hence $\psi(W) \cap \beta$ -cl(V) = \emptyset . Consequently, $(W \times \beta$ -cl(V)) $\cap G(\psi) = \emptyset$ for some $W \in O(x)$ and some $V \in \beta O(Y, y)$. Therefore ψ has a strongly β - θ -closed graph. \Box

THEOREM 5. If a surjective function $\psi : X \to Y$ has a strongly β - θ -closed graph then Y is β - T_2 .

Proof. Let y_1 and y_2 be any two distinct points in Y. As ψ is surjective, there is $x_1 \in X$ such that $y_1 = \psi(x_1)$ and hence $(x_1, y_2) \notin G(\psi)$. Since ψ has a strongly β - θ -closed graph there exist an $U \in O(x_1)$ and a $V \in \beta O(Y, y_2)$ such that $(U \times \beta$ -cl $(V)) \cap G(\psi) = \emptyset$ i.e. $\psi(U) \cap \beta$ -cl $(V) = \emptyset$. Since $Y - \beta$ -cl $(V) \in \beta O(Y, y_1)$ and $V \in \beta O(Y, y_2)$ then Y is β - T_2 .

THEOREM 6. A β -connected space X is β -T₂ if and only if the identity function $i: X \to X$ has a strongly β - θ -closed graph.

Proof. The sufficiency part follows from Theorem 5.

Let X is β -T₂. Since X be β -connected then for any non-empty β -open set U, β -cl(U) = X and hence the identity function $i : X \to X$ is obviously (θ, β) -continuous. Then by Theorem 4, $i : X \to X$ has a strongly β - θ -closed graph.

THEOREM 7. If an injection $\psi : X \to Y$ has a strongly β - θ -closed graph then X is T_1 .

Proof. Let x_1 and x_2 be any two distinct points in X. Since ψ is injective, $(x_2, \psi(x_1)) \notin G(\psi)$. As ψ has a strongly β - θ -closed graph, there is an $U \in O(x_2)$ and a $W \in \beta O(Y, \psi(x_1))$ satisfying $(U \times \beta$ -cl $(W)) \cap G(\psi) = \emptyset$ i.e. $\psi(U) \cap \beta$ -cl $(W) = \emptyset$ and hence $x_1 \notin U$. Similarly, we can obtain $V \in O(x_1)$ with $x_2 \notin V$. Hence X is T_1 .

COROLLARY 1. If a bijection $\psi : X \to Y$ has a strongly β - θ -closed graph then both X and Y are β - T_1 . *Proof.* The proof follows from the facts that every β - T_2 space is β - T_1 and every T_1 space is β - T_1 and from the Theorem 5 and the Theorem 7.

THEOREM 8. Let $\phi, \psi : X \to Y$ be two functions such that ϕ is (θ, β) continuous and ψ has a strongly β - θ -closed graph. Then the set $\{(x_1, x_2) \in X \times X : \phi(x_1) \neq \psi(x_2)\}$ is open in $X \times X$.

Proof. To prove this theorem it is enough to prove that the set $E = \{(x_1, x_2) \in X \times X : \phi(x_1) = \psi(x_2)\}$ is closed in $X \times X$. Let $(x_1, x_2) \notin E$. Then $\phi(x_1) \neq \psi(x_2)$ and hence $(x_2, \phi(x_1)) \notin G(\psi)$. Since ψ has strongly β - θ -closed graph, then by Lemma 3, there exist an open set U containing x_2 and a $V \in \beta O(Y, \phi(x_1))$ such that $\psi(U) \cap \beta$ -cl $(V) = \emptyset$. Since ϕ is (θ, β) -continuous, there exists an open set W containing x_1 such that $\phi(W) \subset \beta$ -cl(V). So we have $\psi(U) \cap \phi(W) = \emptyset$. Therefore $(W \times U) \cap E = \emptyset$ and hence E is closed in $X \times X$.

COROLLARY 2. If $\psi : X \to Y$ is a (θ, β) -continuous function where Y is β -T₂ then the set $\{(x_1, x_2) \in X \times X : \psi(x_1) \neq \psi(x_2)\}$ is open in $X \times X$.

Proof. Since ψ is (θ, β) -continuous and Y is β -T₂ then by Theorem 4 ψ has a strongly β - θ -closed graph. Hence the result is followed from Theorem 8. \Box

THEOREM 9. Let $\psi : X \to Y$ be a function having strongly β - θ -closed graph. If K is a subset β -closed relative to Y, then $\psi^{-1}(K)$ is closed in X.

Proof. Let $x \notin \psi^{-1}(K)$. So $(x,y) \notin G(\psi)$ for each $y \in K$. As ψ has strongly β - θ -closed graph, then there exist an open set U_y containing x and a $V_y \in \beta O(Y, y)$ such that $\psi(U_y) \cap \beta$ -cl $(V_y) = \emptyset$. Since K is β -closed relative to Y and $\{V_y : y \in K\}$ is a cover of K by β -open sets of Y, there exist $V_{y_1}, V_{y_2}, ..., V_{y_n}$ such that $K \subset \bigcup_{i=1}^n \beta$ -cl (V_{y_i}) . Let $U = \bigcap_{i=1}^n U_{y_i}$. Then clearly $\psi(U) \cap (\bigcup_{i=1}^n \beta$ -cl $(V_{y_i})) = \emptyset$ and hence $\psi(U) \cap K = \emptyset$. Thus $x \in U \subset X - \psi^{-1}(K)$. So $\psi^{-1}(K)$ is closed in X.

THEOREM 10. Let $\psi : X \to Y$ be a function having strongly β - θ -closed graph where Y is either β -O-regular or submaximal and extremally disconnected. If K is a compact subset of X then $\psi(K)$ is closed in Y.

Proof. The proof is analogous to the proof of the Theorem 9 and is thus omitted. \Box

4. APPLICATIONS

In the earlier section, we have derived several characterizations and properties of strongly β - θ -closed graphs of functions. In this section, applications of such notion we derive a new characterization of the covering property β closedness [7] and a theorem that concerns on common fixed points of a family of functions having strongly β - θ -closed graphs.

DEFINITION 10. [7] A space X is said to be β -closed [7] if every cover of X by β -open sets has a finite subfamily whose β -closures cover X.

THEOREM 11. [7] The following are equivalent for a space X

(a) X is β -closed,

(b) each family of β - θ -closed sets with the finite intersection property has nonempty intersection,

(c) each filter base on X has at least β - θ -adherent point,

(d) each filter base on X with at most one β - θ -adherent point is β - θ -convergent,

(e) every maximal filter base β - θ -converges to some point in X.

THEOREM 12. Let Y be a β -closed space. Then every function ψ from any space X to Y having strongly β - θ -closed graph is (θ, β) -continuous.

Proof. In order to show that $\psi: X \to Y$ is (θ, β) -continuous it is sufficient to show Theorem 11 that for each $B \subset Y$, $\operatorname{cl}(\psi^{-1}(B)) \subset \psi^{-1}(\beta - \theta - \operatorname{cl}(B))$. Let $x \in \operatorname{cl}(\psi^{-1}(B))$. If $x \in \psi^{-1}(B)$ then obviously $x \in \psi^{-1}(\beta - \theta - \operatorname{cl}(B))$. If $x \notin \psi^{-1}(B)$ then there exists a filter base \mathcal{F} containing $\psi^{-1}(B)$ such that $\mathcal{F} \to x$. Now as $\psi(\mathcal{F})$ is a filter base on the β -closed space Y, then by Theorem 11, we have $\emptyset \neq \beta - \theta - \operatorname{ad}\psi(\mathcal{F}) \subset \beta - \theta - \operatorname{cl}(B)$. We claim that $\beta - \theta - \operatorname{ad}\psi(\mathcal{F}) \subset$ $\{\psi(x)\}$. Indeed if $y \neq \psi(x)$ then $(x, y) \notin G(\psi)$. Since ψ has a strongly $\beta - \theta$ -closed graph then there are an $U \in O(x)$ and a $V \in \beta O(Y, y)$ satisfying $(U \times \beta - \operatorname{cl}(V)) \cap G(\psi) = \emptyset$ i.e. $\psi(U) \cap \beta - \operatorname{cl}(V) = \emptyset$. Since $\mathcal{F} \to x$ then there is an $F \in \mathcal{F}$ such that $F \subset U$. Therefore $\psi(F) \cap \beta - \operatorname{cl}(V) = \emptyset$. So, $y \notin \beta - \theta - \operatorname{cl}(\psi(F))$ and hence $y \notin \beta - \theta - \operatorname{ad}\psi(F)$. Therefore $\beta - \theta - \operatorname{ad}\psi(\mathcal{F}) \subset \{\psi(x)\}$. So $\{\psi(x)\} =$ $\beta - \theta - \operatorname{ad}\psi(\mathcal{F}) \subset \beta - \theta - \operatorname{cl}(B)$ i.e. $\psi(x) \in \beta - \theta - \operatorname{cl}(B)$ and hence $x \in \psi^{-1}(\beta - \theta - \operatorname{cl}(B))$. Therefore ψ is (θ, β) -continuous.

THEOREM 13. A space (Y, τ) is β -closed if each function ψ from any space X to Y having strongly β - θ -closed graph is (θ, β) -continuous.

Proof. Let for any space X, any function $\psi: X \to Y$ is (θ, β) -continuous whenever ψ has a strongly β - θ -closed graph. In order to show that Y is β closed it suffices to show by virtue of Theorem 11 that each filter base on Yhas a β - θ -adherent point. If not, then there exists a filter base Ω on Y such that $\beta - \theta - \operatorname{ad}\Omega = \emptyset$. Let us choose and fix some $y_0 \in Y$. If we take collection $\tau_0 = \{A \subset Y : y_0 \in Y - A \text{ or } F \subset A \text{ for some } F \in \Omega\}$ then (Y, τ_0) is a topological space [18] and we write $(Y, \tau_0) = Y(y_0, \Omega)$. Clearly $\Omega \to y_0$ in $Y(y_0,\Omega)$. If $p \in Y$, $p \neq y_0$ and \mathcal{F} is a filter base on $Y - \{p\}$ then \mathcal{F} can not converge to p in $Y(y_0, \Omega)$, since $\{p\}$ is open. So whenever a filter base \mathcal{F} on $Y - \{p\}$ converges to p then $p = y_0$. Also it is clear that $\Omega \subset \mathcal{G}$, whenever \mathcal{G} is a filter base on $Y - \{y_0\}$ such that $\mathcal{G} \to y_0$ in $Y(y_0, \Omega)$. We define a function $\psi: Y(y_0, \Omega) \to (Y, \tau)$ as follows: $\psi(y) = y$ for each $y \in Y$. We shall show that ψ has strongly β - θ -closed graph. Suppose $(y, z) \notin G(\psi)$. Then $z \neq \psi(y) = y$. Consider $\mathcal{G} = \{V - \{y\} : V \text{ is an open set in } Y(y_0, \Omega)$ containing y}. If \mathcal{G} is a filter base, then $\mathcal{G} \to y$ in $Y(y_0, \Omega)$. So by the argument given above $y = y_0$ and $\Omega \subset \mathcal{G}$. Now $\beta - \theta - \mathrm{ad}\psi(\mathcal{G}) = \beta - \theta - \mathrm{ad}\mathcal{G} \subset \beta - \theta - \mathrm{ad}\Omega$ (since $\Omega \subset \mathcal{G} = \emptyset$. So $z \notin \beta - \theta - \mathrm{ad}\psi(\mathcal{G})$. Therefore there exist an open set V in $Y(y_0,\Omega)$ containing y and a β -open set W in (Y,τ) containing $z \ (\neq \psi(y))$ such that $\psi(V - \{y\}) \cap \beta$ -cl $(W) = \emptyset$. So $((V - \{y\}) \times \beta$ -cl $(W)) \cap G(\psi) = \emptyset$ and hence $(V \times \beta$ -cl $(W)) \cap G(\psi) = \emptyset$. If \mathcal{G} is not a filter base, then $V = \{y\}$ for some open set V containing y in $Y(y_0, \Omega)$ and the rest is trivial. Therefore ψ has a strongly β - θ -closed graph. But ψ is not (θ, β) -continuous. In fact in the space $Y(y_0, \Omega)$, ad $\Omega = \{y_0\}$. Since $\psi(y_0) = y_0$ and β - θ -ad $\Omega = \emptyset$, we can not have $\psi(\mathrm{ad}\Omega) \subset \beta$ - θ -ad $\psi(\Omega)$ — a contradiction. Hence every filter base Ω on (Y, τ) has a β - θ -adherent point. So (Y, τ) is β -closed.

COROLLARY 3. A space Y is β -closed if and only if each function from any space X into Y having strongly β - θ -closed graph is (θ, β) -continuous.

LEMMA 4. Let Y be β -T₂. If $\psi : X \to Y$ has a strongly β - θ -closed graph and if $\phi : X \to Y$ is (θ, β) -continuous then the set $\{x \in X : \phi(x) \neq \psi(x)\}$ is an open subset of X.

Proof. To prove this theorem it is enough to prove that the set $E = \{x \in X : \phi(x) = \psi(x)\}$ is a closed subset of X. Let $z \in cl(E) - E$. Then there exists a filter base Ω on E such that $\Omega \to z$. Since ϕ is (θ, β) -continuous then by Theorem 11, $\phi(\Omega) \beta$ - θ -converges to $\phi(z)$. Now as $\phi(F) = \psi(F)$ for each $F \in \Omega$, the filter base $\psi(\Omega)$ is also β - θ -converging to some point, say, y in Y. Since ψ has a strongly β - θ -closed graph then by Theorem 2 $y = \psi(z)$. But as Y is being β - T_2 and $\phi(\Omega)$ and $\psi(\Omega)$ are being the same filter base on Y, $\psi(z) = \phi(z)$. Therefore $z \in E$ — a contradiction. So E is closed in X.

THEOREM 14. Let X be β -T₂ β -connected space. If $\psi : X \to X$ has a strongly β - θ -closed graph then the set of fixed points of ψ is a closed subset of X.

Proof. As X is β -connected then for any non-empty β -open set V, β -cl(V) = X [17] and hence the identity function $\phi : X \to X$ is obviously (θ, β) continuous. So by Lemma 4, it follows that the set of fixed points of ψ i.e. $E_{\psi} = \{x \in X : \psi(x) = \phi(x) = x\}$ is closed in X.

THEOREM 15. Let X be a β -T₂ semi-preregular [23] β -connected β -closed space. Also let \mathcal{F} be a family of functions from X into itself with strongly β - θ -closed graph. If for each finite $\mathcal{F}_0 \subset \mathcal{F}$ there exists an $x \in X$ such that $\psi(x) = x$ for all $\psi \in \mathcal{F}_0$ then there exists an $x \in X$ such that $\psi(x) = x$ for all $\psi \in \mathcal{F}$.

Proof. Since X is β -connected the identity function $\phi : X \to X$ is obviously (θ, β) -continuous. Then by Lemma 4, and by hypothesis, the family of closed sets $\Omega = \{E_{\psi} = \{x \in X : \psi(x) = \phi(x)\} : \psi \in \Omega\}$ has the finite intersection property. Let \mathcal{G} be the filter base generated by Ω . Then as X is being β -closed, β - θ -ad $\mathcal{G} \neq \emptyset$. Now, $\emptyset \neq \beta$ - θ -ad $\mathcal{G} \subset \cap \{E_{\psi} : \psi \in \Omega\}$. Hence there exists at least one $x \in X$ such that $\psi(x) = \phi(x) = x$ for all $\psi \in \Omega$.

Acknowledgements. The authors are grateful to the learned referee for his valuable suggestions in modifying the paper.

REFERENCES

- ABD. EL-MONSEF, M.E., EL-DEEB, S.N. and MAHMOUDND, R.A., β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77–90.
- [2] ABD. EL-MONSEF, M.E. and KOZAE, A.M., Some generalized forms of compactness and closedness, Delta J. Sci., 9 (1985), 257–269.
- [3] AHO, T. and NIEMINEN, T., Spaces in which preopen subsets are semi-open, Ricerche Mat., 43 (1994), 45–59.
- [4] ANDRIJEVIĆ, D., Semi-preopen sets, Mat. Vesnik, 38 (1986), 24–32.
- [5] ANDRIJEVIĆ, D., On SPO-equivalent topologies, Rend. Circ. Mat. Palermo (2) Suppl., 29 (1992), 317–328.
- [6] ANDRIJEVIĆ, D., On b-open sets, Mat. Vesnik, 48 (1996), 59-64.
- [7] BASU, C.K. and GHOSH, M.K., β-closed spaces and β-θ-subclosed graphs, Eur. J. Pure Appl. Math., 1 (2008), 40–50.
- [8] BASU, C.K. and GHOSH, M.K., Non-continuous functions associated with a covering property defined by β -open sets, (Submitted).
- BECEREN, Y. and NOIRI, T., Some functions defined by semi-open and β-open sets, Chaos Solitons Fractals, 36 (2008), 1225–1231.
- [10] BOURBAKI, N., General Topology, Addition-Wesley, Reading, Mass, 1966.
- [11] CALDAS, M. and JAFARI, S., Some propertires of contra β-continuous functions, Mem. Fac. Sci. Kochi Univ. Ser. A Math., 22 (2001), 19–28.
- [12] CALDAS, M. and JAFARI, S., A new decomposition of β -open functions, Chaos Solitons Fractals, 40 (2009), 10–12.
- [13] DUSZYŃSKI, Z., On some concepts of weak connectedness of topological spaces, Acta. Math. Hungar., 110 (2006), 81–90.
- [14] EKICI, E., A note on almost β -continuous functions, Chaos Solitons Fractals, **41** (2009), 1010–1013.
- [15] GANSTER, M. and ANDRIJEVIĆ, D., On some questions concerning semi-preopen sets, J. Inst. Math. Comput. Sci. Math. Ser., 1 (1988), 65–75.
- [16] HALVAC, T.H., Relations between new topologies odtained from old ones, Acta Math. Hungar., 64 (1994), 231–235.
- [17] JAFARI, S. and NOIRI, T., Properties of β-connected spaces, Acta Math. Hungar., 101 (2003), 227–236.
- [18] JOSEPH, J.E. and KWACK, M.H., On S-closed spaces, Proc. Amer. Math. Soc., 80 (1980), 341–348.
- [19] LEVINE, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [20] MAHMOUD, R.A. and ABD EL-MONSEF, M.E., β-irressolute and β-topological invariants, Proc. Pakistan Acad. Sci, 27 (1990), 285–296.
- [21] MASHHOUR, A.S., ABD EL-MONSEF, M.E. and EL-DEEB, S.N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [22] NJÅSTAD, O., On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [23] NOIRI, T., Weak and strong forms of β-irressolute functions, Acta Math. Hungar., 99 (2003), 315–328.
- [24] POPA, V. and NOIRI, T., On β-continuous functions, Real Anal. Exchange, 18 (1992-1993), 544–548.
- [25] POPA, V. and NOIRI, T., Weakly β-continuous functions, An. Univ. Timisoara Ser. Mat. Inform., 32 (1994), 83–92.
- [26] POPA, V. and NOIRI, T., On upper and lower β-continuous multifunctions, Real Anal. Exchange, 22 (1) (1996-1997), 362–376.
- [27] TAHILIANI, S., A study of some spaces related to β -open sets, Note Mat., **27** (2007), 145–152.

[28] ZORLUTUNA, I., On strong forms of completely irressolute functions, Chaos Solitons Fractals, 38 (2008), 970–979.

Received November 18, 2008 Accepted June 6, 2009 Department of Mathematics West Bengal State University Barasat, Kolkata-700126 North 24 Parganas, West Bengal, India E-mail: ckbasu1962@yahoo.com

> Department of Mathematics Sripat Singh College Jiaganj-742123, Murshidabad West Bengal, India

> Department of Mathematics Krishnagar Women's College Krishnagar-741101, Nadia West Bengal, India