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ON SOME STARLIKE MAPPINGS INVOLVING CERTAIN
CONVOLUTION OPERATORS

K. O. BABALOLA

Abstract. This paper makes a modest contribution to the family of starlike
univalent mappings in the open unit disk, by the introduction of some new
subclasses of them via certain convolution operators. A new univalence condition
is given with examples. Some basic characterizations of functions of the new
subclasses are also mentioned.
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1. BACKGOUND

First geometry: A domain D ⊂ C is said to be starlike with respect to a
point ξ0 ∈ D if the linear segment joining ξ0 to every other point ξ ∈ D lies
entirely in D. In more picturesque language, every point of D is visible from
ξ0. If ξ0 = 0, the origin, D is simply called starlike [3].

Let A denote the class of functions f(z) = z+a2z
2 + · · · , which are analytic

in the open unit disk E = {z ∈ C : |z| < 1}. A function f ∈ A is called starlike
if and only if f maps E onto a starlike domain. Analytically, f is starlike (see
[7]) if and only if, for z ∈ E,

(1) Re
zf ′(z)
f(z)

> 0.

Let S∗ denote the family of functions starlike in E. This family of univalent
mappings has recieved so much attention in geometric functions theory, hav-
ing found applications in many physical problems. In the sequel we employ
convolution operators defined in [2] to identify new subclasses of this impor-
tant family. A principal discovery in this paper is a new univalence condition
in the open unit disk.

Let f ∈ A. For g(z) = z + b2z
2 + · · · ∈ A, the convolution (or Hadamard

product) of f(z) and g(z) (written as (f ∗ g)(z)) is defined as

(f ∗ g)(z) = z +
∞∑
k=2

akbkz
k.

In [2] we defined the operators Lσn : A→ A (using the convolution ∗) as follows:

Lσnf(z) = (τσ ∗ τ (−1)
σ,n ∗ f)(z).

where
τσ,n(z) =

z

(1− z)σ−(n−1)
, σ − (n− 1) > 0,
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τσ = τσ,0 and τ
(−1)
σ,n such that

(τσ,n ∗ τ (−1)
σ,n )(z) =

z

1− z
for a fixed real number σ and n ∈ N. We noted that Lσ0f(z) = L0

0f(z) = f(z),
L1

1f(z) = zf ′(z). Given f ∈ A, we have

Lσnf(z) = z +
∞∑
k=2


n−1∏
j=0

(
σ + k − 1− j

σ − j

) akz
k

= z +
∞∑
k=2

{
(σ + k − 1)!

σ!
(σ − n)!

(σ + k − 1− n)!

}
akz

k(2)

(see [2]).
Similarly we defined lσn : A→ A as follows:

lσnf(z) = (τ (−1)
σ ∗ τσ,n ∗ f)(z)

so that for f ∈ A we have

Lσn(lσnf(z)) = lσn(Lσnf(z)) = f(z).

In this paper we further restrict σ and n by requiring σ ≥ n + 1 in the
definitions above. Thus the following relations hold:

(3) (σ − n)Lσn+1f(z) = (σ − (n+ 1))Lσnf(z) + z(Lσnf(z))′

from which we have

(4) (σ − n)(Lσn+1f(z))′ = (σ − n)(Lσnf(z))′ + z(Lσnf(z))′′.

Now we say:

Definition. A function f ∈ A belongs to the class Sσn if and only if

Re
Lσn+1f(z)
Lσnf(z)

>
σ − (n+ 1)
σ − n

, σ ≥ n+ 1, n ∈ N.

Observing from (3) that

Lσn+1f(z)
Lσnf(z)

=
σ − (n+ 1)
σ − n

+
z(Lσnf(z))′

(σ − n)Lσnf(z)

and the fact that Lσ0f(z) = f(z) we have the following remarks.

Remark 1. (a) Sσ0 ≡ S∗ and
(b) f ∈ Sσn if and only if Lσnf(z) is starlike.

Following from inclusion relations we will deduce that all members of the
class Sσn are starlike univalent in E. We also give a univalence condition based
on the inclusion relations and provide some examples. Furthermore we give
some basic properties of the class, namely, integral representation, coefficient
inequalities, closure under certain integral operators.
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This paper is organised as follows: In the next section we give some prelim-
inary lemmas while Section 3 contains the main results characterizing Sσn .

2. PRELIMINARY LEMMAS

Let P denote the class of functions p(z) = 1 + c1z + c2z
2 + · · · which are

regular in E and satisfy Rep(z) > 0, z ∈ E.

Lemma 1 ([1, 5]). Let u = u1 + u2i, v = v1 + v2i and ψ a complex-valued
function satisfying: (a) ψ(u, v) is continuous in a domain Ω of C2, (b) (1, 0) ∈
Ω and Reψ(1, 0) > 0 and (c) Reψ(u2i, v1) ≤ 0 when (u2i, v1) ∈ Ω and 2v1 ≤
−(1 + u2

2). If p(z) = 1 + c1z + c2z
2 + · · · satisfies (p(z), zp′(z)) ∈ Ω and

Reψ(p(z), zp′(z)) > 0 for z ∈ E, then Rep(z) > 0 in E.

Lemma 2 ([4]). Let η and µ be complex constants and h(z) a convex univa-
lent function in E satisfying h(0) = 1, and Re(ηh(z) +µ) > 0. Suppose p ∈ P
satisfies the differential subordination:

(5) p(z) +
zp′(z)

ηp(z) + µ
≺ h(z), z ∈ E.

If the differential equation:

(6) q(z) +
zq′(z)

ηq(z) + µ
= h(z), q(0) = 1

has univalent solution q(z) in E, then p(z) ≺ q(z) ≺ h(z) and q(z) is the best
dominant in (5).

The formal solution of (6) is given as

(7) q(z) =
zF ′(z)
F (z)

where

F (z)η =
η + µ

zµ

∫ z

0
tµ−1H(t)ηdt

and

H(z) = z exp
(∫ z

0

h(t)− 1
t

dt
)

(see [6, 9]). The conditions for the univalence of the solution q(z) of (6) (given
by (7)) as given in [6] are that

Lemma 3 ([6]). Let η 6= 0 and µ be complex constants, and h(z) regular in
E with h′(0) 6= 0, then the solution q(z) of (6) (given by (7)) is univalent
in E if (i) Re{G(z) = ηh(z) + µ} > 0 and (ii) Q(z) = zG′(z)/G(z) and
R(z) = Q(z)/G(z) are both starlike in E.
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3. MAIN RESULTS

Theorem 1. Let σ ≥ n + 1 and h(z) a convex univalent function in E
satisfying h(0) = 1, and Re(σ − (n + 1) + h(z)) > 0, z ∈ E. Let f ∈ A. If
Lσn+2f(z)

Lσn+1f(z) ≺ h(z), then
Lσn+1f(z)

Lσnf(z) ≺ h(z).

Proof. By Remark 1(b), it is sufficient to prove that: if

z(Lσn+1f(z))′

Lσn+1f(z)
≺ h(z),

then
z(Lσnf(z))′

Lσnf(z)
≺ h(z).

Now let

p =
z(Lσnf(z))′

Lσnf(z)
.

Then
z(Lσnf(z))′′ + (Lσnf(z))′ = p′(z)Lσnf(z) + p(z)(Lσnf(z))′

Using (4) we obtain

(σ−n)z(Lσn+1f(z))′ = zp′(z)Lσnf(z)+zp(z)(Lσnf(z))′+(σ−(n+1))z(Lσnf(z))′

so with (3) we have

z(Lσn+1f(z))′

Lσn+1f(z)
=
zp′(z)Lσnf(z) + zp(z)(Lσnf(z))′ + (σ − (n+ 1))z(Lσnf(z))′

(σ − (n+ 1))Lσnf(z) + z(Lσnf(z))′

=
zp′(z) + p(z)2 + (σ − (n+ 1))p(z)

σ − (n+ 1) + p(z)

= p(z) +
zp′(z)

σ − (n+ 1) + p(z)
.(8)

Now take η = 1 and µ = σ − (n+ 1) in Lemma 2, the result follows. �

Theorem 2. Let σ ≥ n + 1 and h(z) a convex univalent function in E
satisfying h(0) = 1, and Re(σ − (n + 1) + h(z)) > 0, z ∈ E. Let f ∈ A. If
f ∈ Sσn+1, then

Lσn+1f(z)
Lσnf(z)

≺ q(z)

where

(9) q(z) =
1 +

∑∞
k=1

σ−n
σ−n+k (k + 1)2zk

1 +
∑∞

k=1
σ−n

σ−n+k (k + 1)zk

and it is the best dominant.
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Proof. By Remark 1(b) also, if f ∈ Sσn+1, then

z(Lσn+1f(z))′

Lσn+1f(z)
≺ 1 + z

1− z
.

So we have to prove that
z(Lσnf(z))′

Lσnf(z)
≺ q(z).

By considering the differential equation

q(z) +
zq′(z)

σ − (n+ 1) + q(z)
=

1 + z

1− z
whose solution (using (7)) is given by (9), our result follows from Lemma
2 if we prove that q(z) (given by (9)) is univalent in E. Now set η = 1,
µ = σ − (n+ 1) and h(z) = (1 + z)/(1− z) in Lemma 3, we have

(i)
ReG(z) = Re[µ+ h(z)] > µ ≥ 0.

(ii)

Q(z) =
zG′(z)
G(z)

=
2

1 + µ

z

(1 + az)(1− z)
where a = (1− µ)/(1 + µ), so that

zQ′(z)
Q(z)

=
1 + az2

(1 + az)(1− z)

=
1

1− z
+

1
1 + az

− 1.

Thus RezQ′(z)/Q(z) > µ/2 > 0. And finally we have

R(z) =
Q(z)
G(z)

=
2

1 + µ

z

(1 + az)2

so that zR′(z)/R(z) = (1−az)/(1+az) with real part greater than zero. Thus
q(z) satisfies all conditions of Lemma 3, hence univalent in E. This completes
the proof. �

Theorem 3.
Sσn+1 ⊂ Sσn , n ∈ N.

Proof. Let f ∈ Sσn+1. From (8) above, define ψ(p(z), zp′(z)) = p(z) +
zp′(z)

σ−(n+1)+p(z) for Ω = [C − {−(σ − (n + 1))}] × C. Obviously ψ satisfies the
conditions (a) and (b) of Lemma 1. Now ψ(u2i, v1) = u2i + v1

σ−(n+1)+u2i so

that Reψ(u2i, v1) = (σ−(n+1))v1
(σ−(n+1))2+u2

2
≤ 0 if v1 ≤ −1

2(1 + u2
2). Hence by Lemma

1, we have Re
z(Lσn+1f(z))′

Lσn+1f(z) > 0 implies Re z(L
σ
nf(z))′

Lσnf(z) > 0. By Remark 1(b)

Re
Lσn+1f(z)
Lσnf(z)

>
σ − (n+ 1)
σ − n

.
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This completes the proof. �

Corollary 1. All functions in Sσn are starlike univalent in E.

Following from the inclusion relations, setting σ = 2 and n = 1, we have
the following important univalence condition.

Corollary 2. Let f ∈ A satisfy

Re
2zf ′(z) + z2f ′′(z)
f(z) + zf ′(z)

> 0, z ∈ E.

Then f(z) is starlike univalent in E.

Example 1. The functions fj(z) j = 1, 2, 3, 4., given by

f1(z) =
2[1− (1− z)ez]

z
, f2(z) =

2[1− (1 + z)e−z]
z

,

f3(z) =
−2[z + log(1− z)]

z
, f4(z) =

2[z − log(1 + z)]
z

.

are starlike univalent in the open unit disk.

Proof. By direct computation we find that

2zf ′j(z) + z2f ′′j (z)
fj(z) + zf ′j(z)

=


1 + z if j = 1,
1− z if j = 2,

1
1−z if j = 3,
1

1+z if j = 4.

Observe that the right hand side of the above equations are all functions in
P , hence we have

Re
2zf ′j(z) + z2f ′′j (z)
fj(z) + zf ′j(z)

> 0, j = 1, 2, 3, 4

so that fj ∈ S2
1 ⊂ S∗. The proof is complete. �

Theorem 4. Functions in Sσn have integral representation:

f(z) = lσn

{
z exp

(∫ z

0

p(t)− 1
t

dt
)}

for some p ∈ P .

Proof. Let f ∈ Sσn , then for some p ∈ P we have
Lσn+1f(z)
Lσnf(z)

=
σ − (n+ 1)
σ − n

+
z(Lσnf(z))′

(σ − n)Lσnf(z)

=
σ − (n+ 1)
σ − n

+
p(z)

(σ − n)
.

Hence we have
z(Lσnf(z))′

Lσnf(z)
= p(z).
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Simple calculation now leads to

Lσnf(z) = z exp
(∫ z

0

p(t)− 1
t

dt
)
.

Applying lσn on both sides we have the representation. �

If we choose p(z) = (1 + z)/(1 − z), we obtain the leading example of the
class Sσn , which is

(10) kσn(z) = z +
∞∑
k=2

{
σ!

(σ + k − 1)!
(σ + k − 1− n)!

(σ − n)!

}
kzk.

Next we investigate the closure property of the class Sσn under the Bernardi
integral transformation:

(11) F (z) =
γ + 1
zγ

∫ z

0
tγ−1f(t)dt, γ > −1.

The well known Libera integral corresponds to γ = 1.

Theorem 5. The class Sσn is closed under F .

Proof. From (11) we have

(12) γF (z) + zF ′(z) = (γ + 1)f(z).

If we apply Lσn on (12), noting from (2) that Lσn(zF ′(z)) = z(LσnF (z))′ we have

z(Lσnf(z))′

Lσnf(z)
=

(γ + 1)z(LσnF (z))′ + z2(LσnF (z))′′

γLσnF (z) + z(LσnF (z))′
.

Let p(z) = z(Lσnf(z))′/Lσnf(z). Then by some calculation we find that

z(Lσnf(z))′

Lσnf(z)
= p(z) +

zp′(z)
γ + p(z)

= ψ(p(z), zp′(z))

Define ψ(p(z), zp′(z)) = p(z) + zp′(z)
γ+p(z) for Ω = [C − {−γ}] × C. Then, as in

Theorem 2, ψ satisfies all the conditions of Lemma 1, hence z(Lσnf(z))′

Lσnf(z) > 0

implies Re z(L
σ
nF (z))′

LσnF (z) > 0 and by Remark 1(b) we have

Re
Lσn+1F (z)
LσnF (z)

>
σ − (n+ 1)
σ − n

as required. �

Theorem 6. Let f ∈ Sσn . Then we have the inequalities

|ak| ≤
σ!

(σ + k − 1)!
(σ + k − 1− n)!

(σ − n)!
k, k ≥ 2.

The function kσn(z), given by (10), show that the inequalities are sharp.
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Proof. It is known that for each f ∈ S∗, |ak| ≤ k, k ≥ 2. Thus by Remark
1(b), for each f ∈ Sσn the coefficients of Lσnf(z) satisfy |ak| ≤ k, k ≥ 2. Hence
using (2) we have the inequalities. �
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