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AN IMPROVED CONVERGENCE ANALYSIS OF NEWTON’S
METHOD FOR SYSTEMS OF EQUATIONS WITH CONSTANT

RANK DERIVATIVES
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Abstract. We use Newton’s method to solve systems of equations with constant
rank derivatives. Motivated by optimization considerations, and using more
precise estimates, we provide a convergence analysis for Newton’s method with
the following advantages over the work in [11]: larger convergence domain; finer
error estimates on the distances involved, and an at least as precise information
on the location of the solution. These improvements are obtained under the
same hypotheses and computational cost as in [11]. Kantorovich-type as well as
Smale-type point estimate applications are also provided.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a solution
x? of equation

(1) F ′(x)+F (x) = 0,

where F is a Fréchet-differentiable operator defined on a convex subset D of an
Euclidean space X into an Euclidean space Y. We assume that m = dim X ≤
n = dim Y.

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations,
and their solutions usually represent the states of the systems. For the sake
of simplicity, assume that a time–invariant system is driven by the equation
ẋ = T (x), for some suitable operator T , where x is the state. Then the equi-
librium states are determined by solving equation (1). Similar equations are
used in the case of discrete systems. The unknowns of engineering equations
can be functions (difference, differential, and integral equations), vectors (sys-
tems of linear or nonlinear algebraic equations), or real or complex numbers
(single algebraic equations with single unknowns). Except in special cases,
the most commonly used solution methods are iterative–when starting from
one or several initial approximations a sequence is constructed that converges
to a solution of the equation. Iteration methods are also applied for solving
optimization problems. In such cases, the iteration sequences converge to an
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optimal solution of the problem at hand. Since all of these methods have the
same recursive structure, they can be introduced and discussed in a general
framework.

Let M : X −→ Y be an m × n matrix. Then the m × n matrix M+ :
Y −→ X is the Moore–Penrose inverse of M if it satisfies

MM+M =M, M+MM+ =M+,
(MM+)? =MM+, (M+M)? =M+M,

where M? is the adjoint of M. Let Ker M and Im M denote the kernel
and image of M, respectively. For a subspace S of X , we denote by PS the
projection onto S. We then have:

M+M = PKerM⊥ and MM+ = PImM.

The most popular method for generating a sequence {xk} (k ≥ 0) approxi-
mating x? is undoubtedly Newton’s method

(2) xk+1 = xk − F ′(xk)+ F (xk) (x0 ∈ D), (k ≥ 0).

Here F ′(x) denote the Fréchet–derivative of operator F [3], [4].
In case F ′(xk) is an isomorphism (k ≥ 0), then (2) reduces to the classical
Newton’s method:

(3) xk+1 = xk − F ′(xk)−1 F (xk) (x0 ∈ D), (k ≥ 0).

There is an extensive literature on the local as well as the semilocal conver-
gence analysis of methods (2) and (3) [1]–[13].

In particular, there are two ways of studying the convergence of methods
(2) and (3). The first way one is the Kantorovich approach using information
from the bound of F ′′ in a neighborhood of the initial guess x0 [1]–[4], [7], [8].
Refinements of this theory were provided by Argyros in [1]–[5], where weaker
sufficient conditions have extended the applicability of these methods. The
new idea is to use a combination of Lipschitz and center-Lipschitz condition
instead of only the Lipschitz condition in the error analysis of this methods.
The second way is the Smale’s point estimate theory based on the invariant
(see [12])

(4) γ(F, x0) = sup
i≥2

∥∥∥∥∥F ′(x0)−1F (i)(x0)
i !

∥∥∥∥∥
1

i−1

.

In the case when F ′(x) is not an isomorphism, Dedieu and Kim [6], Li et
al. [10], [11], Argyros [3], [4], have provided sufficient convergence conditions
for Newton’s method (2) under various conditions.

In this paper, we are motivated by optimization considerations and the
elegant paper by Li and Xu [11], where Wang’s theory [13] was extended using
Lipschitz conditions with L average to study Newton’s method (2). Here we
also use some ideas introduced by us in [5] to enlarge the radius of convergence
of Newton’s method provided by Huang in [9]. In particular, using more
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precise estimates than in [11], and under the same computational cost, we
provide a semilocal convergence analysis for method (2) with the following
advantages: weaker sufficient convergence conditions (i.e., the convergence
domain is extended); finer estimates on the distances ‖ xk − x? ‖, and an at
least as precise information on the location of solution x?.

The paper ends with some applications of Kantorovich-type and Smale-type
results.

2. SEMILOCAL CONVERGENCE ANALYSIS OF NEWTON’S METHOD (2)

To make the paper as self–contained as possible, we provide two lemmas
concerning the perturbation bounds for the Moore–Penrose inverse:

Lemma 1. [11] Let A and B be m × n matrices and let r ≤ min{m, n}.
Suppose that rank(A) = r, rank(A+B) ≤ r, and ‖ A+ ‖‖ B ‖< 1. Then, the
following hold:

rank(A+B) = r and ‖ (A+B)+ ‖≤ ‖ A+ ‖
1− ‖ A+ ‖‖ B ‖

.

Lemma 2. [11] Let A and B be m × n matrices and let r ≤ min{m, n}.
Suppose that rank(A) = r, rank(B) ≤ r, and ‖ A+ ‖‖ B − A ‖< 1. Then, the
following hold:

‖ B+ −A+ ‖≤ cr
‖ A+ ‖2‖ B −A ‖

1− ‖ A+ ‖‖ B −A ‖
,

where,

cr =


1 +
√

5
2

if r < min{m, n}
√

2 if r = min{m, n},m 6= n
1 if r = m = n.

We need the following terminology.
Let IX denote the identity on X and K(A) =‖ A+ ‖‖ A ‖ denote the

condition number of a linear operator A : X −→ Y. Denote by U(x0, R),
(x0 ∈ D, R > 0) the open ball in X with center x0 and radius R.

Let L0(t) and L(t) be positive non–decreasing functions defined on [0,∞).
We need the following notions of Lipschitz conditions with L average.

Definition 1. Let D ⊆ X and y ∈ D. Then F ′ : D −→ Y is said to
satisfy:
(i) The center-Lipschitz condition with L0 average at y on D if

(5) ‖ F ′(x)− F ′(y) ‖≤
∫ ‖x−y‖

0
L0(t)dt, x ∈ D;
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(ii) The radius Lipschitz condition with L average at y on D if

‖ F ′(x)− F ′(xτ ) ‖≤
∫ ‖x−y‖
τ‖x−y‖

L(t)dt, x ∈ D, 0 ≤ τ ≤ 1, xτ = y + τ(x− y).

(6)

Remark 1. If F : D ⊆ X −→ Y satisfies the radius Lipschitz condition
L with average at y on D, then it also satisfies the center-Lipschitz condition
with L average at y on D. Note also that in this case

(7) L0(t) ≤ L(t) t ∈ [0,∞)

holds in general and
L(t)
L0(t)

can be arbitrarily large [1], [3], [4].

Let x, y ∈ D, we set

(8) θ0 = θ0(L0, y, x) =‖ F ′(y)+ ‖
∫ ‖x−y‖

0
L0(t)dt.

If L0(t) = L(t) on [0,∞), then our Definition 1 reduces to the one in [11]
(see [4], [9], [13]). If L0(t) < L(t) on [0,∞), then we have:

(9) θ0 = θ0(L0, y, x) < θ = θ(L, y, x) =‖ F ′(y)+ ‖
∫ ‖x−y‖

0
L(t)dt.

It turns out more precise θ0 can replace θ in all the subsequent results in
[11, starting on page 707]. Note that the computation of θ0 is also cheaper
that of parameter θ. This observation leads to the advantages of our approach
over the corresponding ones in [11] (as stated at the end of the introduction
of our paper).

The following four lemmas on the properties of F ′ and F+ under center-
Lipschitz condition and the theorem that follows reduce to the corresponding
ones in [11] if L = L0. It will become clear from the proof that θ0 can replace
θ in all the results in [11].

Therefore, to avoid repetitions we will only provide the proof of Lemma
4 (see also Lemma 3.1 in [11]). For the rest of the following results, simply
replace θ by θ0 in [11].

Lemma 3. Let x, y ∈ D be such that rank F ′(x) ≤ rank F ′(y) = r, and
θ0(L0, y, x) < 1. Suppose that F ′ satisfies the center-Lipschitz condition with
L0 average at y on {y, x}. Then the following hold:

(10) rankF ′(x) = r,

(11) ‖ F ′(x) ‖≤‖ F ′(y)+ ‖−1
(
K(F ′(y)) + θ0

)
,

(12) ‖ F ′(x)+ ‖≤ ‖ F
′(y)+ ‖

1− θ0
,
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and

(13) ‖ F ′(x)+ − F ′(y)+ ‖≤ cr
‖ F ′(y)+ ‖ θ0

1− θ0
.

Proof. Simply replace θ by θ0 in Lemma 3.1 in [11]. �

Lemma 4. Let x ∈ D, and y ∈ Z = {y ∈ D : F ′(y)+ F (y) = 0} be such that
rank F ′(x) ≤ rank F ′(y) = r, and θ0(L0, y, x) < 1. Suppose that F ′ satisfies
the center-Lipschitz condition with L0 average at y on {y, x}, and the radius
Lipschitz condition with L average at y on the line segment {y + τ(x − y) :
0 ≤ τ ≤ 1}. Then for NF (x) = x− F ′(x)+F (x) (x ∈ D), the following hold:

‖ NF (x)− y ‖ ≤‖ PKerF ′(y)(x− y) ‖ +θ0 ‖ x− y ‖(14)

+ cr
(
K(F ′(y)) + θ0

) θ0 ‖ x− y ‖
1− θ0

+
‖ F ′(y)+ ‖

∫ ‖x−y‖
0

tL(t)dt

1− θ0
+ cr
‖ F ′(y)+ ‖‖ F (y) ‖ θ0

1− θ0
.

Moreover, if F ′(x) is full rank, then the following hold:

‖ NF (x)− y ‖ ≤
‖ F ′(y)+ ‖

∫ ‖x−y‖
0

tL(t)dt

1− θ0
+ cr
‖ F ′(y)+ ‖‖ F (y) ‖ θ0

1− θ0
.(15)

Proof. We shall use the identity
(16)
NF (x)− y = PKerF ′(x)(x− y) + F ′(x)+F ′(x)(x− y)− F ′(x)+F (x)

= PKerF ′(x)(x− y) + F ′(x)+[F ′(x)(x− y)− F (x) + F (y)]
−F ′(x)+F (y).

We need estimates on

E1 =‖ PKerF ′(x)(x− y) ‖, E2 =‖ F ′(x)+[F ′(x)(x− y)− F (x) + F (y)] ‖,

and E3 =‖ F ′(x)+F (y) ‖ .
In view of (16), we have:

(17) ‖ NF (x)− y ‖ ≤ E1 + E2 + E3.

We shall first estimate E1. We can have:

PKerF ′(x) = IX − F ′(y)+F ′(y) + F ′(y)+F ′(y)− F ′(x)+F ′(x)
(18)

= PKerF ′(x) + F ′(y)+(F ′(y)− F ′(x)) + (F ′(y)+ − F ′(x)+)F ′(x),
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and consequently by (5), (11)–(13), we obtain in turn:

E1 ≤‖ PKerF ′(y)(x− y) ‖ +(‖ F ′(y)+ ‖‖ F ′(y)− F ′(x) ‖

(19)

+ ‖ F ′(y)+ − F ′(x)+ ‖‖ F ′(x) ‖) ‖ x− y ‖

≤‖ PKerF ′(y)(x− y) ‖ + ‖ F ′(y)+ ‖
∫ ‖x−y‖

0
L0(t)dt ‖ x− y ‖

+ cr
‖ F ′(y)+ ‖ θ0

1− θ0
‖ F ′(y)+ ‖−1 (K(F ′(y)) + θ0) ‖ x− y ‖

=‖ PKerF ′(y)(x− y) ‖ +θ0 ‖ x− y ‖ +cr(K(F ′(y)) + θ0)
θ0 ‖ x− y ‖

1− θ0
.

We also estimate E2. By (6), we have:

‖ F ′(x)(x− y)− F (x) + F (y) ‖(20)

= ‖
∫ 1

0
[F ′(x)− F ′(y + τ(x− y))](x− y)dτ ‖

≤
∫ 1

0

∫ ‖x−y‖
τ‖x−y‖

L(t)dt ‖ x− y ‖ dτ =
∫ ‖x−y‖

0
tL(t)dt.

It then follows from (12) and (20):

(21)
E2 ≤

‖ F ′(y)+ ‖
∫ ‖x−y‖

0
tL(t)dt

1− θ0
.

Finally, using (13), we estimate E3:

E3 ≤‖ F ′(x)+ − F ′(y)+ ‖‖ F (y) ‖≤ cr
‖ F ′(y)+ ‖‖ F (y) ‖ θ0

1− θ0
.(22)

Estimate (14) now follows from (17), (19), (21) and (22). Moreover, if F ′(x)
is of full rank, Ker F ′(x) = {0}. That is E1 = 0. Hence (15) follows from
(14). That completes the proof of Lemma 4. �

Lemma 5. (Lemma 3.2 in [11]) Let F : D ⊆ X −→ Y be twice Fréchet-
differentiable and assume y ∈ Z = {y ∈ D : F ′(y)+ F (y) = 0}. Then the
following holds:

(23) (F ′+F )′(y)w = PKerF ′(y)w + (F ′(y)?F ′(y))+(F ′′(y)w)?F (y), w ∈ D.

Set

(24) a(y) =‖ F ′(y)+ ‖2‖ F (y) ‖‖ F ′′(y) ‖, y ∈ Z.

Lemma 6. (Lemma 3.3 in [11]) Let F : D ⊆ X −→ Y be twice Fréchet-
differentiable. Let x ∈ D, y ∈ Z, and a(y) < 1, where Z and a are defined in
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the previous lemma and by (24) respectively. Then the following hold:

‖ PKerF ′(y)(x− y) ‖ ≤‖ PKer(F ′+F )′(y)(x− y) ‖(25)

+
(
cr
a(y)(1 + a(y))

1− a(y)

)
‖ x− y ‖ .

Remark 2. It is convenient to define for y ∈ Z, x ∈ D, with x 6= y, the
parameters P0, P , Q0, and Q by:

(26) P0 = P0(L0, y, x) = cr
‖ F ′(y)+ ‖‖ F (y) ‖ θ0

(1− θ0) ‖ x− y ‖
+ cr

a(y)(1 + a(y))
1− a(y)

+ a(y),

(27)
Q0 = Q0(L0, y, x)

=
‖ F ′(y)+ ‖

∫ ‖x−y‖
0

tL(t)dt

(1− θ0) ‖ x− y ‖2
+

θ0
‖ x− y ‖

+ cr
(K(F ′(y)) + θ0)θ0
(1− θ0) ‖ x− y ‖

and P , Q as P0 and Q0 respectively by replacing θ0 by θ.

By convention, we set P0(L0, y, y) = lim
x→y

P0(L0, y, x), and Q0(L0, y, y) =

lim
x→y

Q0(L0, y, x). Similarly, we define P (L, y, y) and Q(L, y, y).

In view of the above definitions we have:

(28) P0 ≤ P, and

(29) Q0 ≤ Q.

Moreover, if L0(t) < L(t) on [0,∞), then strict inequality holds in (28) and
(29).

We can state the main convergence theorem for Newton’s method (2):

Theorem 1. Assume:
F : D ⊆ X −→ Y is twice Fréchet-differentiable;
x? ∈ Z, and R > 0 such that

(30) ‖ F ′(x?)+ ‖
∫ R

0
L0(t)dt < 1,

(31) sup{a(y) : y ∈ Z ∩ U(x?, R)} < 1, and

(32) v0 = sup{Q0 ‖ x− y ‖ +P0 : y ∈ Z ∩ U(x?, R), x ∈ U(x?, R)} < 1;

the set Z ∩ U(x?, R) is a smooth submanifold in X , with rank F ′(x) ≤ rank
F ′(x?), x ∈ U(x?, R);
the operator F ′ satisfies the center-Lipschitz condition with L0 average on
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{x?, x}, and the radius Lipschitz condition with L average at each y ∈ Z ∩
U(x?, R) on U(x?, R).

Let

(33) R0
0 = Rmin

{
1,

1− v0
2v0

}
.

Further, assume x0 ∈ U(x?, R0) is such that x? is the projection of x0 onto Z.
Then, sequence {xk} generated by Newton’s method (2) is well defined, remains
in U(x?, R) for all k ≥ 0, and converges to a point in Z.

Moreover, the following estimates hold:

(34) d(xk,Z) ≤ v0d(xk−1,Z), k ≥ 1,

(35) d(xk,Z) ≤ q0d(xk−1,Z)2 + p0d(xk−1,Z), k ≥ 1,

where, d(xk,Z) is the distance from xk to Z (k ≥ 0), and p0, q0 are defined
by:

(36) p0 = sup{P0 : y ∈ Z ∩ U(x?, R), x ∈ U(x?, R)},
and

(37) q0 = sup{Q0 : y ∈ Z ∩ U(x?, R), x ∈ U(x?, R)}.

Denote also by v, R0, p, and q the parameters (used in [11]) obtained from
v0, R0

0, p0 and q0 by simply replacing P0, Q0 by P , and Q, respectively.

Proof. (Proof of Theorem 1) Simply replace v, R0, p, q by v0, R0
0, p0, q0 in

the proof of Theorem 3.1 in [11]. �

Remark 3. If L0(t) = L(t) on [0,∞), our Theorem 1, reduces to Theorem
3.1 in [11]. Otherwise (i.e., if L0(t) < L(t)), Theorem 1 constitutes an im-
provement with advantages as already stated in the introduction. Note also
that in this case

(38) v0 < v,

(39) R0 ≤ R0
0,

(40) p0 < p,

and

(41) q0 < q.

Corollary 1. Assume:
F : D ⊆ X −→ Y is twice Fréchet-differentiable;
the operator F has zeros;
there exist x? ∈ Z, and R > 0 such that

(42) ‖ F ′(x?)+ ‖
∫ R

0
L0(t)dt < 1, and λ0 = q0R < 1;

rank F ′(x) ≤ rank F ′(x?) for x ∈ U(x?, R);
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the operator F ′ satisfies the center-Lipschitz condition with L0 average on
{x?, x}, and the radius Lipschitz condition with L average at each y ∈ Z ∩
U(x?, R) on U(x?, R).

Let

R0
0 = Rmin

{
1,

1− λ2
0

2λ0

}
,

and x0 ∈ U(x?, R) be such that x? is the projection of x0 onto Z.
Then, sequence {xk} generated by Newton’s method (2) is well defined, re-

mains in U(x?, R) for all k ≥ 0, and converges to a zero of F .
Moreover, the following estimates hold:

(43) d(xk,Z) ≤ q0d(xk−1,Z)2 ≤ λ2k − 1
0 d(x0,Z), k ≥ 1.

Denote by λ, R0, the parameters obtained from λ0, R0
0 for L0 replaced by

L.

Proof. (Proof of Corollary 1) Simply replace λ, R0 by λ0, R0
0 in the proof

of Corollary 3.1 in [11]. �

Remark 4. It follows by (37), (42) and the definition of R0 and R0
0 that

(44) λ0 ≤ λ,
and

(45) R0 ≤ R0
0.

Note also that strict inequality holds in (44) if so does in (7).

3. APPLICATIONS

We provide two applications:

Case 1 (The Kantorovich-type). Let us assume

(46) L0(t) = L0, t ∈ [0,∞)

and

(47) L(t) = L, t ∈ [0,∞)

for some L0 > 0 and L > 0.
We can have the following corollaries:

Corollary 2. Assume:
F : D ⊆ X −→ Y is twice Fréchet-differentiable;
there exist x? ∈ Z, R > 0, L0 > 0 such that

(48) L0R ‖ F ′(x?)+ ‖< 1, v0 < 1,

and

(49) sup{a(y) : y ∈ Z ∩ U(x?, R), x ∈ U(x?, R)} < 1;
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Z ∩ U(x?, R) is a smooth submanifold in X ;
rank F ′(x) ≤ rank F ′(x?), x ∈ U(x?, R);
the operator F ′ satisfies the center-Lipschitz condition, and Lipschitz condition

(50) ‖ F ′(x)− F ′(x?) ‖≤ L0 ‖ x− x? ‖

and

(51) ‖ F ′(x)− F ′(y) ‖≤ L ‖ x− y ‖

for x ∈ U(x?, R) and y ∈ Z ∩ U(x?, R).
Let

R0
0 = Rmin

{
1,

1− v0
2v0

}
,

and let x0 ∈ U(x?, R0
0) be such that x? is the projection of x0 onto Z.

Then, sequence {xk} generated by Newton’s method (2) is well defined, re-
mains in U(x?, R) for all k ≥ 0, and converges to a point in Z.

Moreover, the following estimates hold:

(52) d(xk,Z) ≤ v0d(xk−1,Z) ≤ vk0d(x0,Z) (k ≥ 1),

(53) d(xk,Z) ≤ q0d(xk−1,Z)2 + p0d(xk−1,Z) (k ≥ 1).

Similarly, we can have a corollary corresponding to Corollary 1 in this case.

Case 2 (The Smale point estimate-type). Let

(54) L0(t) = 2bγ0(1− γ0t)−3

and

(55) L(t) = 2bγ(1− γt)−3

where

b =
1

sup{‖ F ′(y)+ ‖ : y ∈ Z}
,

γ0 > 0, and γ > 0 with

(56) γ0 ≤ γ.

We use standard notations:

u = γ0 ‖ x− y ‖, ψ(u) = 1− 4u+ 2u2, α =‖ F ′(y)+ ‖‖ F (y) ‖ γ,

and assume

(57) ‖ F ′(y)+ ‖‖ F ′′(y) ‖≤ 2γ, y ∈ Z,

which leads to

(58) a(y) ≤ 2 ‖ F ′(y)+ ‖‖ F (y) ‖ γ = 2α.

Let R > 0, x? ∈ Z, and x ∈ U(x?, R).
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Then, u ≤ γ0R, and

(59) θ0 < 1, if 0 ≤ Rγ0 < 1−
√

2
2
,

where

(60) θ0 = b ‖ F ′(y+) ‖
(

1
(1− γ0 ‖ x− y ‖)2

− 1
)
,

(61) ‖ F ′(x)− F ′(y) ‖≤
(

1
(1− γ0 ‖ x− y ‖)2

− 1
)
b,

(62) ‖ F ′(x)− F ′(xτ ) ‖≤
(

1
(1− γ ‖ x− y ‖)2

− 1
(1− 2γ ‖ x− y ‖)2

)
b.

As in [6], [11], define for 0 ≤ u < 1−
√

2
2

, K ≥ 0, and α ≥ 0:

A0 = A0(u,K) =
1

ψ(u)
+

2− u
(1− u)2

+ cr
2− u
ψ(u)

(
K +

2u− u2

(1− u)2

)
,

B0 = B0(u, α) = cr
2− u
ψ(u)2

+ 2
(

1 + cr
1 + 2α
1− 2α

)
,

which lead to

(63) P0 ≤ αB0, Q0 ≤ γ0A0,

(64) q0 ≤ γAR = γ sup{A0(u,K(F ′(y))) : x, y ∈ U(x?, R)},

and

v0 ≤ Λ0

(65)

= sup{uA0(u,K(F ′(y))) + αB0(u, α) : y ∈ Z ∩ U(x?, R), x ∈ U(x?, R)}.

It follows from (54)–(65) that Theorem 1 leads to:

Corollary 3. Assume:
F : D ⊆ X −→ Y is twice Fréchet-differentiable;
the condition (57) is satisfied;
there exist x? ∈ Z, R > 0, γ0 > 0, γ > 0 such that U(x?, R) ⊆ D,

0 < Rγ0 < 1−
√

2
2
, v0 < 1 and sup

y∈Z∩U(x?,R)
α <

1
2

;

and the rest of the hypotheses of Corollary 2 hold.
Then the conclusions of Corollary 2 hold true.
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Remark 5. If γ0 = γ, the results of this section reduce to corresponding
ones in section 4 in [11]. However, if γ0 < γ, then our results constitute an
improvement of the ones in [11] (which in turn improved the ones in [6]) with
benefits as stated in the introduction of this paper.
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