ON NEIGHBORHOODS OF CERTAIN CLASSES OF ANALYTIC FUNCTIONS WITH NEGATIVE COEFFICIENTS

S. LATHA and N. POORNIMA

Abstract. Let $\mathcal{A}(n)$ denote the class of functions of the form

$$f(z) = z - \sum_{k=n+1}^{\infty} a_k z^k \quad (a_k \ge 0, \ n \in \mathbb{N} = \{1, 2, \dots\}),$$

which are analytic in the open unit disk $\mathcal{U} = \{z : |z| < 1\}$. In this note, we define certain subclasses $\mathcal{S}_n^*(A, B)$, $\mathcal{C}_n(A, B)$, $\mathcal{R}_n(A, B)$, $\mathcal{Q}_n(A, B)$, $\mathcal{S}_n(A, B; C, D)$ and $\mathcal{C}_n(A, B; C, D)$ of $\mathcal{A}(n)$ and some properties of neighborhoods are studied for these classes.

MSC 2000. 30C45.

Key words. Univalent functions, neighborhoods, convex functions, starlike functions.

1. INTRODUCTION

Let $\mathcal{A}(n)$ denote the class of functions of the form

(1)
$$f(z) = z - \sum_{k=n+1}^{\infty} a_k z^k \quad (a_k \ge 0, \ n \in \mathbb{N} = \{1, 2, \dots\}),$$

which are analytic in the open unit disk $\mathcal{U} = \{z : |z| < 1\}$. Denote by Ω the class of analytic functions ω on \mathcal{U} satisfying the conditions $\omega(0) = 0$ and $|\omega(z)| < 1$, for $z \in \mathcal{U}$.

For any function $f \in \mathcal{A}(n)$ and $\delta \ge 0$ we define

(2)
$$\mathcal{N}_{n,\delta}(f) = \left\{ g \in \mathcal{A}(n) : g(z) = z - \sum_{k=n+1}^{\infty} b_k z^k, \sum_{k=n+1}^{\infty} k |a_k - b_k| \le \delta \right\}$$

which is the (n, δ) -neighborhood of f.

For e(z) = z we see that

(3)
$$\mathcal{N}_{n,\delta}(e) = \left\{ g \in \mathcal{A}(n) : g(z) = z - \sum_{k=n+1}^{\infty} b_k z^k, \sum_{k=n+1}^{\infty} k |b_k| \le \delta \right\}.$$

The concept of neighborhoods was first introduced by Goodman and then generalized by Ruschweyh [7].

In this paper, we consider (n, δ) -neighborhoods for functions with negative coefficients in \mathcal{U} .

We designate $\mathcal{P}_n(A, B)$ as the class of functions defined on \mathcal{U} , which are of the form

$$\frac{1+A\omega(z)}{1+B\omega(z)}$$
, $-1 \le A < B \le 1$ and $\omega \in \Omega$.

2. Neighborhoods for classes $\mathcal{S}^*_N(A,B)$ and $\mathcal{C}_N(A,B)$

In this section we obtain a necessary and sufficient conditions for functions to be in the classes $S_n^*(A, B)$ and $C_n(A, B)$. Further, neighborhoods of these classes are determined. The classes $S_n^*(A, B)$ and $C_n(A, B)$ are defined as follows:

$$\mathcal{S}_n^*(A,B) = \left\{ f : f \in \mathcal{A}(n) \text{ and } z \mapsto \frac{zf'(z)}{f(z)} \text{ is in } P_n(A,B) \right\}$$

and

$$\mathcal{C}_n(A,B) = \left\{ f : f \in \mathcal{A}(n) \text{ and } z \mapsto \frac{(zf'(z))'}{f'(z)} \text{ is in } P_n(A,B) \right\}.$$

LEMMA 1. A function $f \in \mathcal{S}_n^*(A, B)$ if and only if

(4)
$$\sum_{k=n+1}^{\infty} \frac{k(B+1) - (A+1)}{B-A} a_k \le 1, \quad -1 \le A < B \le 1.$$

Proof. Suppose $f \in \mathcal{S}_n^*(A, B)$. Then

$$\frac{zf'(z)}{f(z)} = \frac{1 + A\omega(z)}{1 + B\omega(z)}, \quad -1 \le A < B \le 1.$$

That is,

$$\omega(z) = \frac{1 - \frac{zf'(z)}{f(z)}}{B\frac{zf'(z)}{f(z)} - A}, \qquad \omega(0) = 0,$$

and

$$|\omega(z)| = \left|\frac{zf'(z) - f(z)}{Bzf'(z) - Af(z)}\right| = \left|\frac{\sum_{k=n+1}^{\infty} (k-1)a_k z^k}{(B-A)z - \sum_{k=n+1}^{\infty} (Bk-A)a_k z^k}\right| < 1.$$

Thus

(5)
$$\Re\left\{\frac{\sum_{k=n+1}^{\infty} (k-1)a_k z^k}{(B-A)z - \sum_{k=n+1}^{\infty} (Bk-A)a_k z^k}\right\} < 1.$$

$$\sum_{k=n+1}^{\infty} (k-1)a_k r^k < (B-A)r - \sum_{k=n+1}^{\infty} (Bk-A)a_k r^k.$$

That is,

$$\sum_{k=n+1}^{\infty} [k(B+1) - (A+1)]a_k r^k < (B-A)r.$$

Letting $r \mapsto 1$, we obtain (4).

Conversely, for |z| = r, 0 < r < 1, we have, by (4) and since $r^k < r$,

$$\sum_{k=n+1}^{\infty} [k(B+1) - (A+1)]a_k r^k < r \sum_{k=n+1}^{\infty} [k(B+1) - (A+1)]a_k < (B-A)r.$$

So we get

$$\left| \sum_{k=n+1}^{\infty} (k-1)a_k z^k \right| \le \sum_{k=n+1}^{\infty} (k-1)a_k r^k < (B-A)r - \sum_{k=n+1}^{\infty} (Bk-A)a_k r^k < (B-A)z - \sum_{k=n+1}^{\infty} (Bk-A)a_k z^k \right|.$$

This proves that $\frac{zf'(z)}{f(z)}$ is of the form

$$\frac{1+A\omega(z)}{1+B\omega(z)}, \quad (\omega(z)\in\Omega).$$

Therefore $f \in \mathcal{S}_n^*(A, B)$. Thus the proof is complete.

LEMMA 2. A function $f \in C_n(A, B)$ if and only if

(6)
$$\sum_{k=n+1}^{\infty} \frac{k[k(B+1) - (A+1)]}{B-A} a_k \le 1, \quad -1 \le A < B \le 1.$$

Proof. A function $f \in C_n(A, B)$ if and only if the function $z \mapsto zf'(z)$ belongs to $\mathcal{S}_n^*(A, B)$, so the conclusion follows from Lemma 1.

THEOREM 1. $\mathcal{S}_n^*(A, B) \subset \mathcal{N}_{n,\delta}(e)$, where

$$\delta = \frac{(n+1)(B-A)}{(n+1)(B+1) - (A+1)}$$

and $\mathcal{S}_n^*(-1,1) \subset \mathcal{N}_{n,1}(e).$

Proof. It follows from Lemma 1 that, if $f \in \mathcal{S}_n^*(A, B)$, then

$$\sum_{k=n+1}^{\infty} ka_k \le \frac{(n+1)(B-A)}{(n+1)(B+1) - (A+1)} = \delta.$$

This implies, $\mathcal{S}_n^*(A, B) \subset \mathcal{N}_{n,\delta}(e).$

Further, for
$$A = -1$$
 and $B = 1$, we have $f \in \mathcal{S}_n^*(-1, 1)$ if and only if

(7)
$$\sum_{k=n+1}^{\infty} ka_k \le 1.$$

This gives that $f(z) \in \mathcal{N}_{n,1}(e)$.

COROLLARY 1. For n = 1, $\mathcal{S}_1^*(A, B) \subset \mathcal{N}_{1,\delta}(e)$, where

$$\delta = \frac{2(B-A)}{2B-A+1}$$

and $\mathcal{S}_1^*(-1,1) \subset \mathcal{N}_{1,1}(e).$

COROLLARY 2. For $A = 2\alpha - 1$ and B = 1, we obtain Theorem 2.1 in [4] which reads as: $S_n^*(\alpha) \subset \mathcal{N}_{n,\delta}(e)$, where

$$\delta = \frac{(n+1)(1-\alpha)}{n+1-\alpha},$$

and $\mathcal{S}_1^*(0) \subset \mathcal{N}_{n,1}(e)$.

THEOREM 2. $C_n(A, B) \subset \mathcal{N}_{n,\delta}(e)$, where

$$\delta = \frac{B - A}{(n+1)(B+1) - (A+1)}.$$

Proof. It follows from Lemma 2 that, if $f \in \mathcal{C}_n(A, B)$ then

$$\sum_{k=n+1}^{\infty} ka_k \le \frac{B-A}{(n+1)(B+1) - (A+1)} = \delta.$$

This implies that $\mathcal{C}_n(A, B) \subset \mathcal{N}_{n,\delta}(e)$.

COROLLARY 3. For $A = 2\alpha - 1$ and B = 1, we obtain Theorem 2.2 in [4] which reads as: $C_n(\alpha) \subset \mathcal{N}_{n,\delta}(e)$, where

$$\delta = \frac{1 - \alpha}{n + 1 - \alpha}.$$

3. NEIGHBORHOODS FOR CLASSES $\mathcal{Q}_N(A, B)$ and $\mathcal{R}_N(A, B)$

In this section we obtain necessary and sufficient conditions for functions to be in $Q_n(A, B)$ and $\mathcal{R}_n(A, B)$, and also neighborhoods of these classes are determined. For $-1 \leq A < B \leq 1$ we define the classes $Q_n(A, B)$ and $\mathcal{R}_n(A, B)$ as:

$$Q_n(A,B) = \left\{ f : f \in \mathcal{A}(n) \text{ and } z \mapsto \frac{f(z)}{z} \text{ is in } P_n(A,B) \right\}$$

5

$$\mathcal{R}_n(A,B) = \left\{ f : f \in \mathcal{A}(n) \text{ and } f' \in P_n(A,B) \right\}.$$

LEMMA 3. A function $f \in Q_n(A, B)$ if and only if

(8)
$$\sum_{k=n+1}^{\infty} \frac{(B+1)}{B-A} a_k \le 1, \quad -1 \le A < B \le 1.$$

Proof. Suppose $f \in \mathcal{Q}_n(A, B)$. Then

$$\frac{f(z)}{z} = \frac{1 + A\omega(z)}{1 + B\omega(z)}, \quad -1 \le A < B \le 1, \quad \omega \in \Omega, \quad z \in \mathcal{U}.$$

That is,

$$\omega(z) = \frac{1 - \frac{f(z)}{z}}{B\frac{f(z)}{z} - A}, \qquad \omega(0) = 0,$$

and

$$|\omega w(z)| = \left|\frac{z - f(z)}{Bf(z) - Az}\right| = \left|\frac{\sum_{k=n+1}^{\infty} a_k z^k}{(B - A)z - \sum_{k=n+1}^{\infty} Ba_k z^k}\right| < 1$$

Thus

(9)
$$\Re\left\{\frac{\sum_{k=n+1}^{\infty}ka_kz^k}{(B-A)z-\sum_{k=n+1}^{\infty}Ba_kz^k}\right\} < 1.$$

Let z = r, with 0 < r < 1. Then, for sufficiently small r, the denominator of (9) is positive and so it is positive for all r, with 0 < r < 1, since ω is regular for |z| < 1. Then (9) gives

$$\sum_{k=n+1}^{\infty} a_k r^k < (B-A)r - \sum_{k=n+1}^{\infty} Ba_k r^k.$$

That is,

$$\sum_{k=n+1}^{\infty} (B+1)a_k r^k < (B-A)r.$$

Letting $r \mapsto 1$, we obtain (8).

Conversely, for |z| = r, 0 < r < 1, we have, by (8) and since $r^k < r$,

$$\sum_{k=n+1}^{\infty} (B+1)a_k r^k < r \sum_{k=n+1}^{\infty} (B+1)a_k < (B-A)r.$$

So we have

$$\left|\sum_{k=n+1}^{\infty} ka_k z^k\right| \le \sum_{k=n+1}^{\infty} a_k r^k < (B-A)r - \sum_{k=n+1}^{\infty} Ba_k r^k < \left|(B-A)z - \sum_{k=n+1}^{\infty} Ba_k z^k\right|.$$

This proves that $\frac{f(z)}{z}$ is of the form

$$\frac{1+A\omega(z)}{1+B\omega(z)} \quad (\omega(z)\in\Omega).$$

Therefore $f \in \mathcal{Q}_n(A, B)$. Thus the proof is complete.

LEMMA 4. A function $f \in \mathcal{R}_n(A, B)$ if and only if

(10)
$$\sum_{k=n+1}^{\infty} \frac{k(B+1)}{B-A} a_k \le 1, \quad -1 \le A < B \le 1.$$

Proof. A function $f \in \mathcal{R}_n(A, B)$ if and only if $zf'(z) \in \mathcal{Q}_n(A, B)$ and hence the conclusion follows from Lemma 3.

REMARK 1. From Lemma 3 and Lemma 4 we have $\mathcal{R}_n(A, B) \subset \mathcal{Q}_n(A, B)$. THEOREM 3. $\mathcal{Q}_n(A, B) = \mathcal{N}_{n,\delta}(e)$, where

$$\delta = \frac{B - A}{B + 1}.$$

Proof. The equality follows from Lemma 4.

COROLLARY 4. For $A = 2\alpha - 1$ and B = 1, we obtain Theorem 3.1 in [4] which reads as: $Q_n(\alpha) = \mathcal{N}_{n,\delta}(e)$, where $\delta = 1 - \alpha$.

THEOREM 4. $\mathcal{N}_{n,\delta}(e) \subset \mathcal{Q}_n(A,B)$, where

$$A = \frac{n+1-2\delta}{n+1} \quad and \quad B = 1.$$

Proof. If $f \in \mathcal{N}_{n,\delta}(e)$, we have

(11)
$$\sum_{k=n+1}^{\infty} ka_k \le \delta_k$$

which gives that

(12)
$$\sum_{k=n+1}^{\infty} a_k \le \frac{\delta}{n+1} = 1 - \frac{n+1-\delta}{n+1}.$$

Thus we see that $f \in \mathcal{Q}_n(A, B)$.

COROLLARY 5. For $A = 2\alpha - 1$ and B = 1 we obtain Theorem 3.2 in [4] which reads as: $\mathcal{N}_{n,\delta}(e) \subset \mathcal{Q}_n(\alpha)$, where $\alpha = \frac{n+1-\delta}{n+1}$.

4. NEIGHBORHOODS FOR CLASSES $\mathcal{C}_N(A, B; C, D)$ and $\mathcal{S}_N(A, B; C, D)$

Let
$$f(z) = z - \sum_{k=n+1}^{\infty} a_k z^k$$
 and $g(z) = z - \sum_{k=n+1}^{\infty} b_k z^k$, with $a_k, b_k \ge 0$.

If a function $f \in \mathcal{A}(n)$ satisfies the conditions

(13)
$$\frac{f'(z)}{g'(z)} \in \mathcal{P}_n(A, B), \quad \text{for } -1 \le A < B \le 1, \quad z \in \mathcal{U},$$

and $g \in \mathcal{S}_n^*(C, D)$, for $-1 \leq C < D \leq 1$, then we say that $f \in \mathcal{C}_n(A, B; C, D).$

If we take
$$g(z) = z$$
, then $C_n(A, B; C, D)$ becomes $\mathcal{R}_n(A, B)$. Further, a function $f \in \mathcal{A}(n)$ is said to be in the class $\mathcal{S}_n(A, B; C, D)$ if it satisfies

(14)
$$\left| \frac{f(z)}{g(z)} - 1 \right| < \frac{B-A}{1+B}, \quad \text{for } -1 \le A < B \le 1, \quad z \in \mathcal{U},$$

and $g \in \mathcal{S}_n^*(C,D)$, for $-1 \leq C < D \leq 1$. If we put g(z) = z, then $\mathcal{S}_n(A,B;C,D)$ becomes $\mathcal{Q}_n(A,B)$.

We prove the following results for the classes $\mathcal{C}_n(A, B; C, D)$ and $\mathcal{S}_n(A, B; C, D)$.

THEOREM 5. $\mathcal{C}_n(A, B; C, D) \subset \mathcal{N}_{n,\delta}(e)$, where

$$\delta = \frac{n(B-A)(D+1) + (D-C)(B+1)}{(B+1)[(n+1)(D+1) - (C+1)]}$$

Proof. If $f \in C_n(A, B; C, D)$, then we have

(15)
$$\Re\left\{\frac{1-\sum_{k=n+1}^{\infty}ka_k z^{k-1}}{1-\sum_{k=n+1}^{\infty}kb_k z^{k-1}}\right\} > \frac{1-\sum_{k=n+1}^{\infty}ka_k}{1-\sum_{k=n+1}^{\infty}kb_k} \ge \frac{1+A}{1+B}$$

It follows from (15) that

$$\sum_{k=n+1}^{\infty} ka_k \leq \left(\frac{B-A}{1+B}\right) + \left(\frac{1+A}{1+B}\right) \left(\sum_{k=n+1}^{\infty} kb_k\right) \leq \\ \leq \left(\frac{B-A}{1+B}\right) + \left(\frac{1+A}{1+B}\right) \left[\frac{D-C}{(n+1)(1+D)-(1+C)}\right] \leq \\ \leq \frac{n(B-A)(D+1) + (D-C)(B+1)}{[(n+1)(D+1)-(C+1)](B+1)} = \delta.$$

This yields $f \in \mathcal{N}_{n,\delta}(e)$.

COROLLARY 6. For n = 1 we have $C_1(A, B; C, D) \subset \mathcal{N}_{1,\delta}(e)$, where

$$\delta = \frac{(2B - A + 1)(D + 1) - (C + 1)(B + 1)}{(B + 1)(2D - C + 1)}.$$

COROLLARY 7. For $A = 2\alpha - 1C = 2\beta - 1$ and B = D = 1, we obtain Theorem 4.1 in [4] which reads as: $C_n(\alpha, \beta) \subset \mathcal{N}_{n,\delta}(e)$, where

$$\delta = \frac{n(1-\alpha) + (1-\beta)}{n+1-\beta}$$

THEOREM 6. $\mathcal{N}_{n,\delta}(g) \subset \mathcal{S}_n(A, B; C, D)$, where $g \in \mathcal{S}_n^*(C, D)$, for $-1 \leq C < D \leq 1$,

$$A = 1 - \frac{2[(n+1)(D+1) - (C+1)]\delta}{n(n+1)(D+1)} \quad and \quad B = 1.$$

Proof. Let $f \in \mathcal{N}_{n,\delta}(g)$, for $g(z) \in \mathcal{S}_n^*(C, D)$. Then we know that

$$\sum_{k=n+1}^{\infty} k|a_k - b_k| \le \delta$$

and

$$\sum_{k=n+1}^{\infty} b_k \le \frac{D-C}{(n+1)(D+1) - (C+1)}.$$

Thus we have

$$\begin{aligned} \left| \frac{f(z)}{g(z)} - 1 \right| &< \sum_{k=n+1}^{\infty} k |a_k - b_k| \le \left(\frac{\delta}{n+1} \right) \left(\frac{(n+1)(D+1) - (C+1)}{n(D+1)} \right) \\ &= \frac{[(n+1)(D+1) - (C+1)]\delta}{n(n+1)(D+1)} = \frac{B-A}{B+1}. \end{aligned}$$

This implies that $f \in \mathcal{S}_n(A, B; C, D)$.

COROLLARY 8. For
$$n = 1$$
 we obtain $\mathcal{N}_{1,\delta}(g) \subset \mathcal{S}_1(A, B; C, D)$, where $g \in \mathcal{S}_1^*(C, D), A = 1 - \left(\frac{2D - C + 1}{D + 1}\right)\delta$ and $B = 1$.

COROLLARY 9. For $A = 2\alpha - 1$, $C = 2\beta - 1$ and B = D = 1, we obtain Theorem 4.2 in [4] which reads as: $\mathcal{N}_{n,\delta}(g) \subset \mathcal{S}_n(\alpha,\beta)$, where $g \in \mathcal{S}_n^*(\beta)$ and

$$\alpha = 1 - \left(\frac{n+1-\beta}{n(n+1)}\right)\delta.$$

REFERENCES

- [1] CHATTERJEA, S.K., On starlike functions, J. Pure Math., 1 (1981), 23-26.
- [2] DUREN, P.L., Univalent functions, Springer-Verlag, 1983.
- [3] LAKSHMA REDDY, G. and PADMANABHAN, K.S., p-valent regular functions with negative coefficients, Commentarii Mathematici Universitatis Sancti Pauli, Volume 32, No. 1, 1983.
- [4] OSMAN ALTINTAS and SHIGEYOSHI OWA, Neighborhoods of certain analytic functions with negative coefficients, Internat. J. Math. and Math. Sci., Volume 19, No. 4 (1996), 797–800.
- [5] SARABGI, S.M. and URALEGADDI, B.A., The radius of convexity and starlikeness for certain classes of analytic functions with negative coefficients, Atti. Accad. Nazion. Lincer., 65 (1978), 38–42.
- [6] SRIVASTAVA, H.M., OWA, S. and CHATTERJEA, S.K., A note on certain classes of starlike functions, Rend. Semin. Mat. Univ. Pandova, 77 (1987), 115–124.
- [7] RUSCHEWEYH, S., Neighbohoods of univalent functions, Proc. Amer. Math. Soc., 81 (1981), 521–527.

Received January 21, 2007

Department of Mathematics and Computer Science Maharaja's College University of Mysore Mysore - 570 005, India E-mail: drlatha@gmail.com

> Department of Mathematics Yuvaraja's College University of Mysore Mysore - 570 005, India E-mail: poornimn@gmail.com