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TWO-DIMENSIONAL POTENTIALS GENERATING A GIVEN
ONE-PARAMETER FAMILY OF ORBITS ON A SURFACE

THOMAS KOTOULAS

Abstract. We say that a potential generates a curve on a surface if a unit mass
traces the curve under the action of the potential. We consider the following
problem: a one-parameter family of regular curves f(u, v) = c on a surface
~r(u, v) = {x(u, v), y(u, v), z(u, v)} is given. We seek two-dimensional potentials
of the form V (u, v) = umR( v

u
), R being an arbitrary C2-function, which generate

this family of regular curves as trajectories on the above surface. We show that
if the given family of orbits satisfies exactly two differential conditions, then such
a potential exists and it is determined uniquely. Special cases are also studied
and pertinent examples are given for each case. At a second step, if we consider
that the “slope function” γ(u, v) = fv/fu is homogeneous of zero degree and the
components of the metric tensor are homogeneous functions of zero degree too,
then a potential of the above form always exists and it is found as a solution of
an ordinary second-order O.D.E. Several examples are offered and implications
of this study are discussed.
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1. INTRODUCTION

The inverse problem of dynamics in a broad sense consists of the determina-
tion of forces, parameters and constraints which are required for the realization
of the motion of a mechanical system with some properties given in advance
[12]. Especially, the inverse problem of dynamics, as introduced by [17], seeks
all the potentials V = V (x, y) which can generate a one-parameter family of
planar orbits f(x, y) = c, traced in the xy Cartesian plane by a material point
of unit mass, with a preassigned dependence of its total energy E = E(f(x, y))
on the given family. There results a first-order partial differential equation,
linear in the unknown function V = V (x, y) and the coefficients depend on
the family of orbits. This equation (written again by [5]) reads:

(1) Vx + γVy +
2Γ

1 + γ2
(E − V ) = 0,

where

(2) γ =
fy

fx
, Γ = γγx − γy.

Bozis [6] presented a second order linear partial differential equation giving
the potential functions V = V (x, y) which give rise to a preassigned family of
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planar curves f(x, y) = c. This equation is the following one:

(3) −Vxx + κVxy + Vyy = λVx + µVy,

where

(4) κ =
1− γ2

γ
, λ =

Γy − γΓx

γΓ
, µ = λγ +

3Γ
γ

.

Bozis’ equation does not include the energy E and consequently no assumption
about the energy dependence E = E(f) needs to be made.

Mertens [15] studied a family of curves f(u, v) = c on a smooth surface S in
3-D space using Szebehely’s method and obtained a linear partial differential
equation in the potential function V (u, v). This equation is the following one:

(5) (g22fu − g12fv)Vu + (g11fv − g12fu)Vv = 2W (E − V ),

where

W =
1
A

[g(f2
v fuu − 2fufvfuv + f2

ufvv)−

−B1(g22fu − g12fv)−B2(g11fv − g12fu)],

A = g11f
2
v − 2g12fufv + g22f

2
u ,

B1 =
1
2
(g11)uf2

v + [(g12)v −
1
2
(g22)u]f2

u − (g11)vfufv,

B2 = [(g12)u −
1
2
(g11)v]f2

v +
1
2
(g22)vf

2
u − (g22)ufufv,

g = g11g22 − (g12)2.

(6)

The subscripts denote partial differentiation with respect to the corresponding
variable.

Furthermore, Bozis and Mertens [7] derived a second order partial differen-
tial equation of hyperbolic type for the potential V in which all the coefficients
are known functions of the coordinates u, v and gave some examples. This PDE
reads:

(7) k1Vuu + k2Vuv − βVvv + k3Vu + k4Vv = 0,

where

k1 = αγ, k2 = βγ − α, k3 = γ + γαu − αv, k4 = γβu − βv − 1,

α =
1

2W
(g22fu − g12fv), β =

1
2W

(−g12fu + g11fv), γ =
fv

fu
.(8)

Other works related to this topic are those by [3], [9], [13], [14].
In the present work we deal with the second order PDE (7) and we seek

homogeneous solutions of the form V (u, v)= umR(w) where w = v
u and R is

an arbitrary C2-function. Similar works concerning homogeneous potentials
in the planar and three-dimensional version of the problem are those by [8]
and [11]. A review on basic facts of inverse problem in dynamics was presented
in [10] and [1]. Recently, Betsakos and Grigoriadou [2] studied the problem
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of the determination of all measures supported in a compact set K whose
logarithmic potentials generate each of the given curve.

In Section 2 we give a full description of this problem and we modify the
eqs. (5) and (6) in such a way that we can handle them easier than previously.
In Section 3 we prove there is no homogeneous potential which generates
this family of orbits unless two differential conditions are fulfilled by the one-
parameter family of orbits on a certain surface. In Section 4 we make two more
restrictions: (a) we take into account that the “slope function” γ = γ(u, v)
is homogeneous of zero degree and (b) the components of the metric tensor
are homogeneous functions of zero degree too. In this case a homogeneous
potential of degree m always exists. These potentials are solutions of a second-
order ODE in the unknown function R(w). Pertinent examples are given. We
conclude in Section 5.

2. DESCRIPTION OF THE PROBLEM

In an Euclidean 3D-space E3 with an orthonormal Cartesian system of ref-
erence Oxyz we assign a smooth surface S:

(9) P = P (u, v) ⇐⇒ {x = x(u, v), y = y(u, v), z = z(u, v)}
with u, v as curvilinear coordinates on S. On this surface we also consider a
one-parameter family of regular curves given in the solved form

(10) f(u, v) = c, c ∈ R,

where c is the parameter of the family (10). By regular curve we mean that
the function f is of C3-class on a domain D ⊂ E3 and such that ∇f 6= 0.

For the given family of orbits we define γ as follows: γ = fv/fu. The “slope
function” γ represents the family (10) in the sense that if the family (10) is
given, then γ is determined uniquely. On the other hand, if γ is given, we
can obtain a unique family (10). The inverse problem of dynamics consists in
finding potentials V which can give rise to this family of curves as trajectories
on a given surface. In all over the paper we shall regard V = V (u, v) as the
potential function.

The line-element on the surface S in this system of parameters is given by:

(11) ds2 = g11du2 + 2g12dudv + g22dv2,

where g11, g12, g22 are known functions of u, v.
Now, we consider a particle of unit mass which describes any member of

the given family (10). Here we have to clear out that trajectories are bound
to a given surface by constraints. The kinetic energy (T ) of the test particle
is given by ([15])

(12) T =
1
2
(g11u̇

2 + 2g12u̇v̇ + g22v̇
2),

where the dot denotes differentiation with respect to time. Then the Hamil-
tonian governing this system reads: H = T + V .
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Using the notations:

(13) γ =
(∂f

∂v

)(∂f

∂u

)−1
and Γ = γ

∂γ

∂u
− ∂γ

∂v
,

the equation (5) takes a simpler form:

(14) (g22 − γg12)Vu + (γg11 − g12)Vv +
2∆
A1

(E − V ) = 0,

where
∆ = gΓ + B′

1(g22 − γg12) + B′
2(γg11 − g12),

A1 = g11γ
2 − 2g12γ + g22,

B′
1 =

1
2
(g11)uγ2 + [(g12)v −

1
2
(g22)u]− (g11)vγ,

B′
2 = [(g12)u −

1
2
(g11)v]γ2 +

1
2
(g22)v − (g22)uγ.

(15)

Eliminating the energy-dependence function, we obtain the PDE of [7]:

(16) k1Vuu + k2Vuv − βVvv + k3Vu + k4, Vv = 0

where

(17) k1 = αγ, k2 = βγ − α, k3 = γ + γαu − αv, k4 = γβu − βv − 1

and the quantities α and β are given now as follows:

(18) α = −A1(g22 − γg12)
2∆

, β = −A1(γg11 − g12)
2∆

.

In the present work we consider the PDE (16) and we shall look for solu-
tions of the form V (u, v)= umR( v

u) of any degree m. We have to solve a
linear, second order PDE in V (u, v) and we shall try to find adequate triplets[
γ, (gij), V (u, v)

]
(i, j = 1, 2) satisfying the above equation. The choice

of the potential function of this form makes the mathematical calculations
simpler. To our knowledge, there are not so many results in the literature
concerning this subject.

3. THE GENERIC CASE

We emphasize in homogeneous potentials

(19) V (u, v) = umR(w), w =
v

u
,

where R is an arbitrary C2-function. We shall offer two criteria which must
be fulfilled by the given family of orbits (10) on a certain surface so that the
problem has a solution of type (19). Since V (u, v) is a homogeneous function
of degree m, the following relation holds

(20) uVu + vVv = mV.
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We differentiate both members of (20) twice with respect to u, v and we get
the relations

uVuu + vVuv = (m− 1)Vu,

uVuv + vVvv = (m− 1)Vv.
(21)

Then we solve algebraically the system of 1 + 2 = 3 eqs. ((16) and (21)) for
the second-order derivatives of the potential function V . We find

Vuu =
D1

D0
,

Vuv =
D2

D0
,

Vvv =
D3

D0
,

(22)

where:
D1 = λ1Vu + λ2Vv, D2 = λ3Vu + λ4Vv, D3 = λ5Vu + λ6Vv,

λ1 = −[(m− 1)βu + v2k3 + (m− 1)k2v], λ2 = −[v2k4 − (m− 1)βv],

λ3 = (m− 1)vk1 + uvk3, λ4 = (1−m)uβ + uvk4,

λ5 = −[(m− 1)uk1 + u2k3], λ6 = (m− 1)(vk1 − uk2)− u2k4

(23)

and

(24) D0 = k1v
2 − k2uv − βu2.

We continue our work assuming D0 6= 0. Thus, we write two necessary and
sufficient conditions V(uu)v = V(uv)u, V(uv)v = V(vv)u for the system (22) to
be compatible. In doing so, there appear again second order derivatives of V
which we intend to replace by the expressions (22) themselves. Thus we end
up to a system of two equations in Vu, Vv. This system is

(25) TVu + SVv = 0, CVu + BVv = 0,

where
T = µ1 − λ1p2 + λ3p1, S = µ2 − λ2p2 + λ4p1,

C = µ3 − λ3p2 + λ5p1, B = µ4 − λ4p2 + λ6p1
(26)

and
µ1 = (λ1v − λ3u)D0 + (λ2λ5 − λ3λ4),

µ2 = (λ2v − λ4u)D0 + (λ2λ6 − λ2
4 + λ1λ4 − λ2λ3),

µ3 = (λ3v − λ5u)D0 + (λ2
3 − λ1λ5 + λ4λ5 − λ3λ6),

µ4 = (λ4v − λ6u)D0 + (λ3λ4 − λ2λ5),

p1 =
∂D0

∂u
, p2 =

∂D0

∂v
.

(27)
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However, the calculations show that the above two eqs. (25) are not indepen-
dent. Thus, we have left only with one of them, let’s say the first one. At this
point we assume that T 6= 0, S 6= 0 and we define the ratio

(28) ρ =
S

T
.

Hence the first of eqs. (25) is written as

(29) Vu + ρVv = 0.

Since ρ = −Vu
Vv

, the map ρ must be a homogeneous function of zero degree,
namely

(30) uρu + vρv = 0.

We replace ρ (ρ defined in (28)) into (30) and we obtain the first differential
condition:

(31) (uSu + vSv)T − (uTu + vTv)S = 0.

We solve the system of eqs. (20) and (29) and we find:
Vu

V
= − mρ

v − ρu
,

Vv

V
=

m

v − ρu
.

(32)

It can be proved directly that the compatibility condition for the system (32)
is the differential condition (31). Since the potential function V (u, v) is de-
termined uniquely (apart from a multiplicative constant), we have to take
only into consideration that it satisfies the PDE (16). Hence, we prepare the
derivatives of second order from (32) and we replace them into (16). In doing
so, we obtain the second differential condition for the family of orbits on a
certain surface:

(m− 1)(k1S
2 − k2TS − βT 2) + k1v(STu − TSu)+

+ (k2v + βu)(STv − TSv) + (k3S − k4T )(uS − vT ) = 0.
(33)

Now we can formulate the following:

Proposition 1. If for the given family of orbits (10) the following condi-
tions hold:

(i) D0, T, S 6= 0,
(ii) there exists a real m for which the two differential conditions (31) and

(33) are satisfied,
then this family of orbits is generated by a homogeneous potential of degree m.
The corresponding potential is determined uniquely, apart from a multiplicative
factor, by the system (32).

Remark 1. If ρ = 0 (ρ is defined in (28)), then from (29) we obtain Vu = 0
and, hence, the potential is one-dimensional: V = V (v).



7 Families of orbits on a given surface 65

Example 1. It is known ([18], p. 70, example 7) that the Liouville-type dy-
namical system, described in curvilinear coordinates (u, v) by the Lagrangian

(34) L =
1
2
(u2 + v2)(u̇2 + v̇2)− 1

u2 + v2

admits the one-parameter family of orbits

(35) f(u, v) =
1− u2

v2
= c.

Indeed, we assign the metric

(36) g11 = g22 = u2 + v2, g12 = 0

and the family of curves (35). Here we have D0 6= 0 and ρ = −u
v . We

checked the two conditions (31) and (33) and we ascertained that the first
one is satisfied for any value of m, while the second one is satisfied only for
m = −2 and m = −4. Thus, for m = −2, the system (32) reads

Vu

V
=

−2u

u2 + v2
,

Vv

V
=

−2v

u2 + v2

(37)

and the potential is

(38) V (u, v) =
1

u2 + v2
.

Remark 2. We note here that the value m = −4 leads to the special case
T = S = 0 (ρ is undefined in this case) and it will be studied in section 4.2.

Example 2. We assign the surface S:

~r(u, v) = {u + v, u− v, u + v2}

and the one-parameter family of curves f = u + v2 = c on it. Then we have:

g11 = 3, g12 = 2v, g22 = 2 + 4v2.(39)

It is: D0 6= 0 and ρ = (m+2)u
(m−1)v . We checked the two conditions (31) and (33);

the first one is satisfied for any value of m, while the second one is satisfied
for m ∈ {2, 1,−2}. Thus, for m = 2, the system (32) reads

Vu

V
=

8u

4u2 + v2
,

Vv

V
=

2v

4u2 + v2

(40)

and the potential is

(41) V (u, v) = 4u2 + v2.
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For m = −2 we take S = 0 and T 6= 0. Then ρ = 0 and the corresponding
potential is one-dimensional: V = V (v). The second of the eqs. (32) becomes:

(42)
Vv

V
= −2

v

and the potential is: V = V (v) = 1/v2.
For m = 1 we take S 6= 0 and T = 0. Now we define ρ = T/S = 0 and the

corresponding potential is again one-dimensional: V = V (u). The first of the
eqs. (32) is:

(43)
Vu

V
=

1
u

and the potential is: V = V (u) = u.

Example 3. We assign the surface S:

~r(u, v) =
{

u− u3

3
+ uv2, −v +

v3

3
− vu2, u2 − v2

}
(“Enneper’s” surface)

and the one-parameter family of curves f = u + v = c on it. Then we have:

g11 = g22 = (1 + u2 + v2)2, g12 = 0.(44)

It is: D0 6= 0 and ρ = −u
v . We checked the two conditions (31) and (33); the

first one is satisfied for any value of m, while the second one is satisfied only
for m = 2. Thus, for m = 2, the system (32) becomes

Vu

V
=

2(u + 3v)
u2 + 6uv + v2

,

Vv

V
=

2(3u + v)
u2 + 6uv + v2

(45)

and the potential is

(46) V (u, v) = u2 + 6uv + v2.

Counterexample. We assign the previous surface and the family of curves
f = u2 − v2 = c now. We found that none of the conditions (31) and (33) is
satisfied. So, this family of curves is not generated by a potential of the form
(19).

4. SPECIAL CASES

Up to now we supposed that D0 6= 0 and T , S 6= 0. In this paragraph we
shall examine the cases D0 = 0 and T = S = 0.
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4.1. The case D0 = 0. The linear system (22) is meaningful only if D0 6= 0.
Otherwise, i.e., if D0 = 0, then each of the three quantities in the rhs of (22)
should be zero. This leads to a (linear, homogeneous) algebraic system in
Vu, Vv of “three” equations. It can be checked, however, that, for the given
family satisfying the relation D0 = 0, the rank of the matrix λ1 λ2

λ3 λ4

λ5 λ6


is equal to one. This means that the aforementioned system consists of just
one equation, say the equation

(47) λ1Vu + λ2Vv = 0

which ensures the compatibility of equations (16) and (20). We define ρ = λ2
λ1

and then we combine (47) with (20). So, we obtain the system (32). Then we
have to check two differential conditions analogous with (31) and (33). In this
case it is: S → λ2 and T → λ1.

Example 4. We assign the sphere:

~r(u, v) =
{

u2 + v2 − 1
u2 + v2 + 1

,
2u

u2 + v2 + 1
,

2v

u2 + v2 + 1

}
and we consider the one-parameter family of curves f = u2 + v2 = c on it.
Then we have:

g11 = g22 =
4

(1 + u2 + v2)2
, g12 = 0.(48)

In this case we have D0 = 0. We checked the two conditions (31) and (33) and
we found that these conditions are both verified for any value of m. Thus, the
system (32) becomes:

Vu

V
=

mu

u2 + v2
,

Vv

V
=

mv

u2 + v2
.

(49)

Hence the potential function V (u, v) is

(50) V (u, v) = (u2 + v2)m/2.

4.2. The case T = S = 0. If for the given one-parameter family of orbits we
have:

(51) T = 0 and S = 0,

but D0 6= 0, then the ratio ρ cannot be determined in (28). Thus, for the
pertinent family (10), none of the eqs. (25) provides fruitful information for
the determination of the potential function V . In other words, no additional
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condition is imposed for the compatibility of the system (22). So, we deal only
with the second-order PDE (16) and solve it when it is possible.

Example 5. We consider again the metric

(52) g11 = g22 = u2 + v2, g12 = 0

and the one-parameter family of curves

(53) f(u, v) =
1− u2

v2
= c.

We look for potentials of degree m = −4. As we explained in Example 1, we
have to face the case T = S = 0. We replace the expression for the potential

(54) V (u, v) =
1
u4

R(w), w =
v

u

into (16). Then the PDE (16) is transformed into the following second-order
ODE

(55) (w + w3)R′′(w) + (7w2 + 3)R′(w) + 8wR(w) = 0,

where “′” denotes differentiation of R with respect to its argument w. The
general solution of (55) is

(56) R(w) =
[
c2 +

c1

8

∫
eh(w)

w
dw

]
e−h(w) (c1, c2 const.)

with

(57) h(w) =
7
16

w2 − 5
8

log w.

5. THE RESTRICTIVE CASE

We shall make here the following assumptions:
(i) We suppose that such potentials can give rise, among others, to a

family of curves (10), where f(u, v) is homogeneous function in (u, v)
of any degree. Then the “slope function” γ(u, v) is homogeneous of
zero degree, i.e.,

(58) γ = γ(w), w =
v

u
.

(ii) We consider that the components of the metric tensor are homogeneous
functions of zero degree, namely

(59) g11 = g11(w), g12 = g12(w), g22 = g22(w).

After some straightforward calculations, the PDE (16) is transformed into a
new ODE of second order for the function R(w):

(60) C2R
′′(w) + C1R

′(w) + C0R(w) = 0,
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where the primes denote total differentiation of the function R with respect
to its argument w. The coefficients C2, C1, C0 are given as follows

C2 = w2F1 − wF2 + F3,

C1 = −2(m− 1)wF1 + (m− 1)F2 − wF4 + F5,

C0 = m[(m− 1)F1 + F4],

(61)

and the expressions of Fj (j = 1, . . . , 5) are given in the Appendix.

Remark 3. If we search for potentials of zero degree (m = 0), then we have
C0 = 0 and the ODE (60) is solvable (e.g. Example 7).

5.1. Pertinent Examples. In this paragraph we shall present some results
for potentials possessing one-parameter families of regular orbits (10) on a
smooth surface (9) under the previous restrictions. Let us begin with

Example 6. We consider the metric: ds2 = w(du2 + dv2) (u, v > 0) and
the one-parameter family of curves f = v2 − u2 = c. It is: γ = − v

u = −w.
Here all the coefficients C2, C1 and C0 in (8) depend on the variable w. We
shall search for potentials of fourth degree (m = 4). From (8) we obtain

C2 =
1
2
w(w4 − 1),

C1 = −1
2
(w2 + 1)(3w2 + 1),

C0 = 2w(1 + w2).

(62)

Thus, using the method of undetermined coefficients, we found a particular
solution of (7) for the unknown function R(w). This is:

(63) r(w) = w2 + 1.

Now, applying the transformation R(w) = r(w)
∫

z(w)dw, we computed the
general solution of (31). We replaced the expression R(w) = r(w)

∫
z(w)dw

into (7) and we found that the unknown function z(w) has to satisfy the
following ODE:

(64) C2r
dz

dw
+

[
2C2

dr

dw
+ C1r

]
z = 0.

The general solution of (64) is:

(65) z(w) =
(w2 − 1)2

w(w2 + 1)2
.

Then the function R(w) is determined uniquely:

(66) R(w) = 2 + (1 + w2) log(w).

Hence the potential function V (u, v) is given by:

(67) V (u, v) = 2u4 + (u4 + u2v2) log
(v

u

)
.
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Remark 4. Working in a similar way for m = 6, we found the following
result:

(68) V (u, v) = u6 + 6u4v2 + u2v4.

Example 7. In this example we shall consider a surface whose metric has
the property (6) and we shall seek for potentials of zero degree (m = 0). We
consider the surface: ~r = {u, v, uv

u+v} and the one-parameter family of helical
lines f(u, v) = u = c on it. It is:

g11 =
1 + 4w + 6w2 + 4w3 + 2w4

(1 + w)4
, g12 =

w2

(1 + w)4
,

g22 =
2 + 4w + 6w2 + 4w3 + w4

(1 + w)4
, g =

2(1 + w + w2)2

(1 + w)4
.

(69)

From (8) we obtain:

C2 =
4 + 14w + 30w2 + 40w3 + 36w4 + 21w5 + 7w6 + w7

4w(1 + w)2
,

C1 =
P11

4w2(1 + w)3
,

P11 = −4− 12w − 2w2 + 38w3 + 96w4 + 116w5 + 77w6 + 27w7 + 4w8,

C0 = 0.

(70)

Solving (7) for R(w), we found

(71) R(w) =
2 + 4w + 6w2 + 4w3 + w4

4(2 + 3w + 3w2 + w3)4/3
,

consequently the potential function V (u, v) is

(72) V (u, v) =
u4 + (u + v)4

4[u3 + (u + v)3]4/3
.

6. CONCLUDING COMMENTS

In the present work we dealt with potentials of the form V (u, v) = umR( v
u)

generating a one-parameter family of regular orbits f(u, v) = c on a certain
surface S. We used the property of homogeneity for the potentials which is
very common in physical problems. We studied the following two cases: (a)
homogeneous potentials producing families of orbits on a given smooth surface
and (b) homogeneous potentials producing homogeneous families of orbits on
surfaces with homogeneous components of the metric tensor. Generally speak-
ing, this problem has no solution. It is not expected to find such a solution
for any one-parameter family of orbits (10) on a given surface (9) unless two
necessary and sufficient conditions for the family of orbits are satisfied. With
the aid of these conditions we can check whether a given family of orbits does
indeed fulfill them or not and then find uniquely the corresponding potential.
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All the potentials found are real. The mathematical treatment of the prob-
lem led us to study certain special cases. Several new results concerning this
interesting version of the inverse problem in Dynamics were given. All the
computations were aided by the symbolic algebra program MATHEMATICA
5.2.
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Appendix (The restrictive case of Section 4)

F1 = −γA1K1

2H , F2 = γA1(g22−γ2g11)
2H , F3 = γA1K2

2H ,
F4 = γ + γda1 − da2, F5 = γdb1 − db2 − 1,

da1 = −par1
2H2 ,

par1 = (P1K1 + wA1Q1)H −A1K1T1,

P1 = −w(g11)wγ2 − 2γwg11γw + 2wγwg12 + 2γw(g12)w − w(g22)w,

K1 = g22 − γg12, K2 = γg11 − g12,

Z1 = −1
2 [γ2w(g11)w]− (g11)wγ + (g12)w + 1

2w(g22)w,

Z2 = −[w(g12)w + 1
2(g11)w]γ2 + w(g22)wγ + 1

2(g22)w,

H = −g(wγγw + γw) + Z1K1 + Z2K2,

Q1 = −(g22)w + γwg12 + γ(g12)w,

ε1 = −1
2w(g11)w, ε2 = −(g11)w,

η1 = 1
2w[(g11)w + w(g11)ww], η2 = w(g11)ww,

η3 = −w[(g12)ww + 1
2((g22)w + w(g22)w)], η4 = −w(2ε1γ + ε2)γw,

Z3 = η1γ
2 + η2γ + η3 + η4,

θ1 = −[w(g12)w + 1
2(g11)w], θ2 = w(g22)w,

λ1 = [(g12)w + w(g12)w + 1
2(g11)ww]w,

λ2 = −w[(g22)w + w(g22)w],
λ3 = −1

2w(g22)ww, λ4 = −w(2θ1γ + θ2)γw,

Z4 = λ1γ
2 + λ2γ + λ3 + λ4,

L1 = w[−(g22)w + g12γw + γ(g12)w],
L2 = −w[g11γw + γ(g11)w − (g12)w],

N1 = (wγw)2 + γγwww2 + 2γwγw + wγww + γw,

L0 = (g11)wg22 + g11(g22)w − 2g12(g12)w,

M1 = L0wγw(γw + 1),
T1 = M1 + gN1 + Z1L1 + Z2L2 + (Z3 − Z1)K1 + (Z4 − Z2)K2,
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da2 = −par2
2H2 ,

par2 = (P2K1 + A1Q2)H −A1K1T2,

P2 = (g11)wγ2 + 2g11γγw − 2γwg12 − 2γ(g12)w + (g22)w,

Q2 = (g22)w − γwg12 − γ(g12)w,

µ1 = −1
2 [(g11)w + w(g11)ww], µ2 = −(g11)ww,

µ3 = [(g12)w + 1
2((g22)w + w(g22)ww)], µ4 = [2ε1γ + ε2]γw,

Z5 = µ1γ
2 + µ2γ + µ3 + µ4,

ρ1 = −[(g12)w + w(g12)ww + 1
2(g11)ww]w, ρ2 = (g22)w + w(g22)ww,

ρ3 = 1
2(g22)w, ρ4 = (2θ1γ + θ2)γw,

Z6 = ρ1γ
2 + ρ2γ + ρ3 + ρ4,

L3 = (g22)w − γ1g12 − γ(g12)w, L4 = γwg12 + γ(g11)w − (g12)w,

N2 = −[wγ2
w + wγγww + γγw + γww],

M2 = −L0γw(1 + wγw),
T2 = M2 + gN2 + Z1L3 + Z2L4 + Z5K1 + Z6K2,

db1 = −par3
2H2 ,

par3 = (P1K2 + wA1Q3)H −A1K2T1,

db2 = −par4
2H2 ,

par4 = (P2K2 + A1Q4)H −A1K2T2.
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