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CHARACTERIZATIONS OF CLOSED SETS IN PRODUCT
SPACES
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Abstract. In this paper we characterize different types of closed sets in product
spaces using the notion of upper limit.
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1. INTRODUCTION

Let X be a set. A net in X is a map S : Λ → X of a directed set Λ into X.
The net S is also denoted by {sλ, λ ∈ Λ}, where sλ = S(λ) (see, for example,
[3] and [10]).

Let X be a topological space, A be a subset of X, and x ∈ X. By Cl(A)
(respectively, Int(A)) we denote the closure (respectively, the interior) of A
in X. It is known that:

(i) The point x of X belongs to the closure of A in X if and only if there is
a net in A converging to x (see [10]).

(ii) The point x is in the ϑ-closure (respectively, in the δ-closure) of A of
X, x ∈ Clϑ(A) (respectively, x ∈ Clδ(A)), if each open subset V containing
x satisfies A ∩ Cl(V ) 6= ∅ (respectively, A ∩ Int(Cl(V )) 6= ∅). A is ϑ-closed
(respectively, δ-closed) if Clϑ(A) = A (respectively, Clδ(A) = A) (see, for
example, [12] and [15]).

(iii) A net {xλ : λ ∈ Λ} in X ϑ-converges (respectively, δ-converges) (see, for
example, [2], [5], [6], and [7]) to x if for every neighborhood U of x there is some
λ0 ∈ Λ such that λ ≥ λ0 implies xλ ∈ Cl(U) (respectively, xλ ∈ Int(Cl(U))).

Let Y , Z be topological spaces and f be a map of Y into Z. The map f is
said to be ϑ-continuous (respectively, δ-continuous) at y ∈ Y if for every open
neighborhood V of f(y) there exists an open neighborhood U of y such that
f(Cl(U)) ⊆ Cl(V ) (respectively, f(Int(Cl(U))) ⊆ Int(Cl(V ))). The map f is
said to be ϑ-continuous (respectively, δ-continuous) on Y if it is ϑ-continuous
(respectively, δ-continuous) at each point of Y (see, for example, [4], [8], and
[13]).

Let Y , Z be topological spaces and f be a map of Y into Z. The map
f is said to be δ-continuous (respectively, quasi ϑ-continuous) if for every δ-
closed subset (respectively, ϑ-closed subset) A of Z, f−1(A) is δ-closed set
(respectively, ϑ-closed) in Y (see, for example, [13] and [14]).

Let P(X) be the family of all subsets of a topological space X. A net in
P(X) is also called a directed set of subsets of X. If Λ is a directed set, then
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by lim
Λ

(Aλ) (respectively, ϑ-lim
Λ

(Aλ)) where Aλ ⊆ X, we denote the upper limit

(respectively, ϑ-upper limit) of the net {Aλ, λ ∈ Λ} in P(X), that is, the set of
all points x of X such that for every λ0 ∈ Λ and for every open neighborhood
U of x in X there exists an element λ ∈ Λ for which λ ≥ λ0 and Aλ ∩ U 6= ∅
(respectively, Aλ ∩ Cl(U) 6= ∅) (see, for example, [1], [5], [9] and [11]).

If Λ is a directed set, then by w-ϑ-lim
Λ

(Aλ), where Aλ ⊆ X, we denote the

weakly ϑ-upper limit of the net {Aλ, λ ∈ Λ} in P(X), that is, the set of all
points x of X such that for every λ0 ∈ Λ and for every open neighborhood U of
x in X there exists an element λ ∈ Λ for which λ ≥ λ0 and Aλ∩Int(Cl(U)) 6= ∅
(see [6] and [7]).

In what follows by X, Y , Z, Y1,. . . ,Yn we denote topological spaces.

2. CLOSED SETS IN PRODUCT SPACES

Definition 1. Let D be a subset of X × Y1 × · · · × Yn. For every x ∈ X
we denote by Dx the subset D ∩ ({x} × Y1 × · · · × Yn) of D and by D[x] the
subset of Y1 × · · · × Yn for which Dx = {x} ×D[x].

Theorem 1. A subset D of X × Y1 is closed if and only if for every net
{xλ : λ ∈ Λ} in X converging to a point x of X we have

lim
Λ

(D[xλ]) ⊆ D[x].

Proof. Let D be a closed subset of X × Y1 and let {xλ : λ ∈ Λ} be a net in
X converging to x ∈ X. Consider

y ∈ lim
Λ

(D[xλ]).

Then, for every open neighborhood Vy of y in Y1 and for every λ ∈ Λ there
exists an element λ′ ≥ λ such that Vy ∩D[xλ′ ] 6= ∅.

Let Vx and Vy be arbitrary open neighborhoods of x and y in X and Y1,
respectively, and let U = Vx × Vy. Since the net {xλ, λ ∈ Λ} of X converges
to x ∈ X, there exists an element λ ∈ Λ such that {xλ1 : λ1 ≥ λ} ⊆ Vx. Let
λ′ ≥ λ and Vy ∩ D[xλ′ ] 6= ∅. If y′ ∈ Vy ∩ D[xλ′ ], then (xλ′ , y′) ∈ U , that is,
U ∩D 6= ∅, hence, (x, y) ∈ Cl(D) = D. This means that (x, y) ∈ Dx, that is,
y ∈ D[x].

Conversely, let D be a subset of X × Y1 such that

lim
Λ

(D[xλ]) ⊆ D[x]

for every net {xλ : λ ∈ Λ} in X converging to x ∈ X. We prove that D is
closed. Indeed, suppose that (x, y) ∈ Cl(D). We prove that (x, y) ∈ D. There
exists a net {(xλ, yλ) : λ ∈ Λ} in D converging to (x, y). This means that for
every open neighborhood Vx and Vy of x and y in X and Y1, respectively, there
exists an element λ ∈ Λ such that xλ′ ∈ Vx and yλ′ ∈ Vy for every λ′ ≥ λ. In
particular from this it follows that the net {xλ : λ ∈ Λ} in X converges to x.
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Also, (xλ, yλ) ∈ D or yλ ∈ D[xλ]. So the above means that Vy ∩D[xλ′ ] 6= ∅,
for every λ′ ≥ λ, that is,

y ∈ lim
Λ

(D[xλ])

and therefore y ∈ D[x], that is, (x, y) ∈ D. �

Corollary 1. A subset D of X × Y1 × Y2 × · · · × Yn is closed if and only
if for every net {xλ : λ ∈ Λ} in X converging to a point x of X we have

lim
Λ

(D[xλ]) ⊆ D[x].

Definition 2. Let F : X × Y → Z be a continuous map. By Fx, where
x ∈ X, we denote the continuous map of Y into Z, for which Fx(y) = F (x, y),
for every y ∈ Y .

Theorem 2. A map F : X × Y1 → Z is continuous if and only if for every
closed subset K of Z and for every net {xλ : λ ∈ Λ} in X converging to x ∈ X
we have

lim
Λ

(F−1
xλ

(K)) ⊆ F−1
x (K).

Proof. Let us suppose that the map F is continuous and let K be a closed
subset of Z. Then, the subset D = F−1(K) is closed in X × Y1.

We observe first that for every map F : X × Y1 → Z and for every K ⊆ Z
we have (F−1(K))[x] = F−1

x (K). Indeed, y ∈ (F−1(K))[x] if and only if
(x, y) ∈ F−1(K), that is, if and only if y ∈ F−1

x (K).
Hence, by Theorem 1, we have

lim
Λ

(D[xλ]) ⊆ D[x],

that is,
lim
Λ

(F−1
xλ

(K)) ⊆ F−1
x (K).

Conversely, suppose that for every closed subset K of Z and for every net
{xλ : λ ∈ Λ} in X converging to x ∈ X we have

lim
Λ

(F−1
xλ

(K)) ⊆ F−1
x (K).

We prove that F is continuous. Indeed, let K be any closed subset of Z and
let {xλ : λ ∈ Λ} be a net in X converging to x ∈ X. Then we have

lim
Λ

(F−1
xλ

(K)) ⊆ F−1
x (K)

or
lim
Λ

(F−1(K)[xλ]) ⊆ F−1(K)[x].

Hence, by Theorem 1, the set F−1(K) is closed in X × Y1 and therefore the
map F is continuous. �
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Corollary 2. A map F : X × Y1 × · · · × Yn → Z is continuous if and
only if for every closed subset K of Z and for every net {xλ : λ ∈ Λ} in X
converging to x ∈ X we have

lim
Λ

(F−1
xλ

(K)) ⊆ F−1
x (K).

3. δ-CLOSED SETS IN PRODUCT SPACES

Theorem 3. Let x ∈ X. The point x belongs to the δ-closure of a subset
A of X if and only if there is a net in A which δ-converges to x.

Proof. Let {xλ, λ ∈ Λ} be a net in A which δ-converges to x in X. We
consider an open set V of x in X. Since the net {xλ, λ ∈ Λ} δ-converges to
x, there exists λ0 ∈ Λ such that xλ ∈ Int(Cl(V )), for every λ ∈ Λ, λ ≥ λ0.
Hence Int(Cl(V )) ∩A 6= ∅ and x ∈ Clδ(A).

Conversely, let x ∈ Clδ(A). Then for every open neighborhood U of x it
follows that Int(Cl(U))∩A 6= ∅. LetN (x) be the set of all open neighborhoods
of x in X. The set N (x) with the relation of inverse inclusion is a directed set.
For every U ∈ N (x), let xU ∈ Int(Cl(U))∩A. Clearly, the net {xU , U ∈ N (x)}
δ-converges to x. �

Theorem 4. A subset D of X × Y1 is δ-closed if and only if for every net
{xλ : λ ∈ Λ} in X which δ-converges to a point x of X we have

w-ϑ-lim
Λ

(D[xλ]) ⊆ D[x].

Proof. Let D be a δ-closed subset of X × Y1 and let {xλ : λ ∈ Λ} be a net
in X which δ-converges to x ∈ X. Consider

y ∈ w-ϑ-lim
Λ

(D[xλ]).

We prove that y ∈ D[x]. Clearly, for every open neighborhood Vy of y in Y1

and for every λ ∈ Λ there exists an element λ′ ≥ λ such that

Int(Cl(Vy)) ∩D[xλ′ ] 6= ∅.
Let Vx and Vy be arbitrary open neighborhoods of x and y in X and Y ,
respectively, and let U = Vx × Vy.

There exists an element λ ∈ Λ such that {xλ1 : λ1 ≥ λ} ⊆ Int(Cl(Vx)).
Let λ′ ≥ λ and Int(Cl(Vy)) ∩ D[xλ′ ] 6= ∅. If y′ ∈ Int(Cl(Vy)) ∩ D[xλ′ ],
then (xλ′ , y′) ∈ Int(Cl(U)), that is, Int(Cl(U)) ∩D 6= ∅ and, hence, (x, y) ∈
Clδ(D) = D. This means that (x, y) ∈ Dx, that is, y ∈ D[x].

Conversely, let D be a subset of X × Y1 such that

w-ϑ-lim
Λ

(D[xλ]) ⊆ D[x]

for every net {xλ : λ ∈ Λ} in X δ-converging to x ∈ X. We prove that D
is δ-closed. Indeed, suppose that (x, y) ∈ Clδ(D). Then, there exists a net
{(xλ, yλ) : λ ∈ Λ} in D δ-converging to (x, y). This means that for every open
neighborhood Vx and Vy of x and y in X and Y1, respectively, there exists an
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element λ ∈ Λ such that xλ′ ∈ Int(Cl(Vx)) and yλ′ ∈ Int(Cl(Vy)) for every
λ′ ≥ λ. In particular from this it follows that the net {xλ : λ ∈ Λ} δ-converges
to x in X.

Also, since (xλ, yλ) ∈ D or yλ ∈ D[xλ], the above means that

Int(Cl(Vy)) ∩D[xλ′ ] 6= ∅,

for every λ′ ≥ λ, that is,

y ∈ w-ϑ-lim
Λ

(D[xλ]) ⊆ D[x].

Hence, y ∈ D[x] and (x, y) ∈ D. �

Corollary 3. A subset D of X ×Y1×Y2×· · ·×Yn is δ-closed if and only
if for every net {xλ : λ ∈ Λ} in X which δ-converges to a point x of X we
have

w-ϑ-lim
Λ

(D[xλ]) ⊆ D[x].

Definition 3. Let F : X × Y → Z be a δ-continuous map. By Fx, where
x ∈ X, we denote the δ-continuous map of Y into Z, for which Fx(y) = F (x, y),
for every y ∈ Y .

Theorem 5. A map F : X×Y1 → Z is δ-continuous if and only if for every
δ-closed subset K of Z and for every net {xλ : λ ∈ Λ} in X which δ-converges
to x ∈ X we have

w-ϑ-lim
Λ

(F−1
xλ

(K)) ⊆ F−1
x (K).

Proof. Let F : X × Y1 → Z be a δ-continuous map and K be a δ-closed
subset of Z. Then, the subset D = F−1(K) is δ-closed in X × Y1. First we
observe that for the δ-closed subset K of Z we have (F−1(K))[x] = F−1

x (K).
Hence, by Theorem 4, we have

w-ϑ-lim
Λ

(D[xλ]) ⊆ D[x],

that is,
w-ϑ-lim

Λ
(F−1

xλ
(K)) ⊆ F−1

x (K).

Conversely, let K be any δ-closed subset of Z. We prove that F−1(K) is
δ-closed. Let {xλ : λ ∈ Λ} be a net in X which δ−converges to x ∈ X. Then
we have

w-ϑ-lim
Λ

(F−1
xλ

(K)) ⊆ F−1
x (K)

or
w-ϑ-lim

Λ
(F−1(K)[xλ]) ⊆ F−1(K)[x].

Hence, by Theorem 4, the set F−1(K) is δ-closed in X × Y1 and therefore the
map F : X × Y1 → Z is δ-continuous. �
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Corollary 4. A map F : X × Y1 × · · · × Yn → Z is δ-continuous if and
only if for every δ-closed subset K of Z and for every net {xλ : λ ∈ Λ} in X
which δ-converges to x ∈ X we have

w-ϑ-lim
Λ

(F−1
xλ

(K)) ⊆ F−1
x (K).

4. ϑ-CLOSED SETS IN PRODUCT SPACES

Theorem 6. Let x ∈ X. The point x belongs to the ϑ-closure of a subset
A of X if and only if there is a net in A which ϑ-converges to x.

Proof. Let {xλ, λ ∈ Λ} be a net in A which ϑ-converges to x in X. We
consider an open set V of x in X. Since the net {xλ, λ ∈ Λ} is ϑ-converging
to x there exists λ0 ∈ Λ such that xλ ∈ Cl(V ), for every λ ∈ Λ, λ ≥ λ0. Thus
Cl(V ) ∩A 6= ∅ and therefore x ∈ Clϑ(A).

Conversely, let x ∈ Clϑ(A). Then for every open neighborhood U of x it
follows that Cl(U)∩A 6= ∅. Let N (x) be the set of all open neighborhoods of
x in X. The set N (x) with the relation of inverse inclusion is a directed set.
For every U ∈ N (x), let xU ∈ Cl(U) ∩ A. Clearly, the net {xU , U ∈ N (x)}
ϑ-converges to x. �

Theorem 7. A subset D of X × Y1 is ϑ-closed if and only if for every net
{xλ : λ ∈ Λ} in X which ϑ-converges to a point x of X we have

ϑ-lim
Λ

(D[xλ]) ⊆ D[x].

Proof. Let D be a ϑ-closed subset of X × Y1 and let {xλ : λ ∈ Λ} be a net
in X which ϑ-converges to x ∈ X. Consider

y ∈ ϑ-lim
Λ

(D[xλ]).

Clearly, for every open neighborhood Vy of y in Y1 and for every λ ∈ Λ there
exists an element λ′ ≥ λ such that Cl(Vy) ∩ D[xλ′ ] 6= ∅. Let Vx and Vy be
arbitrary open neighborhoods of x and y in X and Y1, respectively, and let
U = Vx × Vy.

There exists an element λ ∈ Λ such that {xλ1 : λ1 ≥ λ} ⊆ Cl(Vx). Let
λ′ ≥ λ and Cl(Vy)∩D[xλ′ ] 6= ∅. If y′ ∈ Cl(Vy)∩D[xλ′ ], then (xλ′ , y′) ∈ Cl(U),
that is, Cl(U) ∩ D 6= ∅ and, hence, (x, y) ∈ Clϑ(D) = D. This means that
(x, y) ∈ Dx and therefore y ∈ D[x].

Conversely, let D be a subset of X × Y1 such that

ϑ-lim
Λ

(D[xλ]) ⊆ D[x]

for every net {xλ : λ ∈ Λ} in X which ϑ-converges to x ∈ X. We prove
that D is ϑ-closed. Indeed, suppose that (x, y) ∈ Clϑ(D). We prove that
(x, y) ∈ D. There exists a net {(xλ, yλ) : λ ∈ Λ} in D which ϑ-converges to
(x, y). This means that for every open neighborhood Vx and Vy of x and y in
X and Y1, respectively, there exists an element λ ∈ Λ such that xλ′ ∈ Cl(Vx)
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and yλ′ ∈ Cl(Vy) for every λ′ ≥ λ. In particular from this it follows that the
net {xλ : λ ∈ Λ} in X ϑ-converges to x.

Also, since (xλ, yλ) ∈ D or yλ ∈ D[xλ], the above means that Cl(Vy) ∩
D[xλ′ ] 6= ∅, for every λ′ ≥ λ, that is,

y ∈ ϑ-lim
Λ

(D[xλ]) ⊆ D[x].

Thus y ∈ D[x], that is, (x, y) ∈ D. �

Corollary 5. A subset D of X×Y1×Y2×· · ·×Yn is ϑ-closed if and only
if for every net {xλ : λ ∈ Λ} in X which ϑ-converges to a point x of X we
have

ϑ-lim
Λ

(D[xλ]) ⊆ D[x].

Theorem 8. A map F : X × Y1 → Z is quasi ϑ-continuous if and only if
for every ϑ-closed subset K of Z and for every net {xλ : λ ∈ Λ} in X which
ϑ-converges to x ∈ X we have

ϑ-lim
Λ

(F−1
xλ

(K)) ⊆ F−1
x (K).

Proof. Suppose that F : X×Y1 → Z is quasi ϑ-continuous and let K be a ϑ-
closed subset of Z. Since the map F is quasi ϑ-continuous, the set D = F−1(K)
is ϑ-closed in X × Y . Hence, by Theorem 7, we have

ϑ-lim
Λ

(D[xλ]) ⊆ D[x],

that is,
ϑ-lim

Λ
(F−1

xλ
(K)) ⊆ F−1

x (K).

Conversely, let K be any ϑ-closed subset of Z. We prove that the subset
F−1(K) is ϑ-closed. Let {xλ : λ ∈ Λ} be a net in X which ϑ-converges to
x ∈ X. Then, we have

ϑ-lim
Λ

(F−1
xλ

(K)) ⊆ F−1
x (K)

or
ϑ-lim

Λ
(F−1(K)[xλ] ⊆ F−1(K)[x].

Hence, by Theorem 7, the set F−1(K) is ϑ-closed in X × Y1 and therefore the
map F : X × Y1 → Z is quasi ϑ-continuous. �

Corollary 6. A map F : X×Y1×Y2×· · ·×Yn → Z is quasi ϑ-continuous
if and only if for every ϑ-closed K of Z and for every net {xλ : λ ∈ Λ} in X
which ϑ-converges to x ∈ X we have

ϑ-lim
Λ

(F−1
xλ

(K)) ⊆ F−1
x (K).
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