MATHEMATICA, Tome 50 (73), N $^{\circ}$ 1, 2008, pp. 51–58

CHARACTERIZATIONS OF CLOSED SETS IN PRODUCT SPACES

DIMITRIOS N. GEORGIOU, SAEID JAFARI and TAKASHI NOIRI

Abstract. In this paper we characterize different types of closed sets in product spaces using the notion of upper limit.

MSC 2000. 54C05, 54B10.

Key words. Closed sets, product spaces, continuous maps.

1. INTRODUCTION

Let X be a set. A *net* in X is a map $S: \Lambda \to X$ of a directed set Λ into X. The net S is also denoted by $\{s_{\lambda}, \lambda \in \Lambda\}$, where $s_{\lambda} = S(\lambda)$ (see, for example, [3] and [10]).

Let X be a topological space, A be a subset of X, and $x \in X$. By Cl(A) (respectively, Int(A)) we denote the closure (respectively, the interior) of A in X. It is known that:

(i) The point x of X belongs to the closure of A in X if and only if there is a net in A converging to x (see [10]).

(ii) The point x is in the ϑ -closure (respectively, in the δ -closure) of A of X, $x \in Cl_{\vartheta}(A)$ (respectively, $x \in Cl_{\delta}(A)$), if each open subset V containing x satisfies $A \cap Cl(V) \neq \emptyset$ (respectively, $A \cap Int(Cl(V)) \neq \emptyset$). A is ϑ -closed (respectively, δ -closed) if $Cl_{\vartheta}(A) = A$ (respectively, $Cl_{\delta}(A) = A$) (see, for example, [12] and [15]).

(iii) A net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X ϑ -converges (respectively, δ -converges) (see, for example, [2], [5], [6], and [7]) to x if for every neighborhood U of x there is some $\lambda_0 \in \Lambda$ such that $\lambda \geq \lambda_0$ implies $x_{\lambda} \in Cl(U)$ (respectively, $x_{\lambda} \in Int(Cl(U))$).

Let Y, Z be topological spaces and f be a map of Y into Z. The map f is said to be ϑ -continuous (respectively, δ -continuous) at $y \in Y$ if for every open neighborhood V of f(y) there exists an open neighborhood U of y such that $f(Cl(U)) \subseteq Cl(V)$ (respectively, $f(Int(Cl(U))) \subseteq Int(Cl(V)))$). The map f is said to be ϑ -continuous (respectively, δ -continuous) on Y if it is ϑ -continuous (respectively, δ -continuous) at each point of Y (see, for example, [4], [8], and [13]).

Let Y, Z be topological spaces and f be a map of Y into Z. The map f is said to be δ -continuous (respectively, quasi ϑ -continuous) if for every δ closed subset (respectively, ϑ -closed subset) A of Z, $f^{-1}(A)$ is δ -closed set
(respectively, ϑ -closed) in Y (see, for example, [13] and [14]).

Let $\mathcal{P}(X)$ be the family of all subsets of a topological space X. A net in $\mathcal{P}(X)$ is also called a *directed set of subsets of* X. If Λ is a directed set, then

by $\overline{\lim}_{\Lambda}(A_{\lambda})$ (respectively, ϑ - $\overline{\lim}_{\Lambda}(A_{\lambda})$) where $A_{\lambda} \subseteq X$, we denote the *upper limit* (respectively, ϑ -*upper limit*) of the net $\{A_{\lambda}, \lambda \in \Lambda\}$ in $\mathcal{P}(X)$, that is, the set of all points x of X such that for every $\lambda_0 \in \Lambda$ and for every open neighborhood U of x in X there exists an element $\lambda \in \Lambda$ for which $\lambda \geq \lambda_0$ and $A_{\lambda} \cap U \neq \emptyset$ (respectively, $A_{\lambda} \cap Cl(U) \neq \emptyset$) (see, for example, [1], [5], [9] and [11]).

If Λ is a directed set, then by $w \cdot \vartheta \cdot \overline{\lim}_{\Lambda}(A_{\lambda})$, where $A_{\lambda} \subseteq X$, we denote the weakly $\vartheta \cdot upper \ limit$ of the net $\{A_{\lambda}, \lambda \in \Lambda\}$ in $\mathcal{P}(X)$, that is, the set of all points x of X such that for every $\lambda_0 \in \Lambda$ and for every open neighborhood U of x in X there exists an element $\lambda \in \Lambda$ for which $\lambda \geq \lambda_0$ and $A_{\lambda} \cap Int(Cl(U)) \neq \emptyset$ (see [6] and [7]).

In what follows by $X, Y, Z, Y_1, \ldots, Y_n$ we denote topological spaces.

2. CLOSED SETS IN PRODUCT SPACES

DEFINITION 1. Let D be a subset of $X \times Y_1 \times \cdots \times Y_n$. For every $x \in X$ we denote by D_x the subset $D \cap (\{x\} \times Y_1 \times \cdots \times Y_n)$ of D and by D[x] the subset of $Y_1 \times \cdots \times Y_n$ for which $D_x = \{x\} \times D[x]$.

THEOREM 1. A subset D of $X \times Y_1$ is closed if and only if for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X converging to a point x of X we have

$$\overline{\lim}_{\Lambda}(D[x_{\lambda}]) \subseteq D[x].$$

Proof. Let D be a closed subset of $X \times Y_1$ and let $\{x_{\lambda} : \lambda \in \Lambda\}$ be a net in X converging to $x \in X$. Consider

$$y \in \overline{\lim_{\Lambda}}(D[x_{\lambda}]).$$

Then, for every open neighborhood V_y of y in Y_1 and for every $\lambda \in \Lambda$ there exists an element $\lambda' \geq \lambda$ such that $V_y \cap D[x_{\lambda'}] \neq \emptyset$.

Let V_x and V_y be arbitrary open neighborhoods of x and y in X and Y_1 , respectively, and let $U = V_x \times V_y$. Since the net $\{x_\lambda, \lambda \in \Lambda\}$ of X converges to $x \in X$, there exists an element $\lambda \in \Lambda$ such that $\{x_{\lambda_1} : \lambda_1 \geq \lambda\} \subseteq V_x$. Let $\lambda' \geq \lambda$ and $V_y \cap D[x_{\lambda'}] \neq \emptyset$. If $y' \in V_y \cap D[x_{\lambda'}]$, then $(x_{\lambda'}, y') \in U$, that is, $U \cap D \neq \emptyset$, hence, $(x, y) \in Cl(D) = D$. This means that $(x, y) \in D_x$, that is, $y \in D[x]$.

Conversely, let D be a subset of $X \times Y_1$ such that

$$\overline{\lim}_{\Lambda}(D[x_{\lambda}]) \subseteq D[x]$$

for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X converging to $x \in X$. We prove that D is closed. Indeed, suppose that $(x, y) \in Cl(D)$. We prove that $(x, y) \in D$. There exists a net $\{(x_{\lambda}, y_{\lambda}) : \lambda \in \Lambda\}$ in D converging to (x, y). This means that for every open neighborhood V_x and V_y of x and y in X and Y₁, respectively, there exists an element $\lambda \in \Lambda$ such that $x_{\lambda'} \in V_x$ and $y_{\lambda'} \in V_y$ for every $\lambda' \geq \lambda$. In particular from this it follows that the net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X converges to x. Also, $(x_{\lambda}, y_{\lambda}) \in D$ or $y_{\lambda} \in D[x_{\lambda}]$. So the above means that $V_y \cap D[x_{\lambda'}] \neq \emptyset$, for every $\lambda' \geq \lambda$, that is,

$$y \in \overline{\lim_{\Lambda}}(D[x_{\lambda}])$$

and therefore $y \in D[x]$, that is, $(x, y) \in D$.

COROLLARY 1. A subset D of $X \times Y_1 \times Y_2 \times \cdots \times Y_n$ is closed if and only if for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X converging to a point x of X we have

$$\overline{\lim_{\Lambda}}(D[x_{\lambda}]) \subseteq D[x].$$

DEFINITION 2. Let $F: X \times Y \to Z$ be a continuous map. By F_x , where $x \in X$, we denote the continuous map of Y into Z, for which $F_x(y) = F(x, y)$, for every $y \in Y$.

THEOREM 2. A map $F: X \times Y_1 \to Z$ is continuous if and only if for every closed subset K of Z and for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X converging to $x \in X$ we have

$$\overline{\lim_{\Lambda}}(F_{x_{\lambda}}^{-1}(K)) \subseteq F_{x}^{-1}(K).$$

Proof. Let us suppose that the map F is continuous and let K be a closed subset of Z. Then, the subset $D = F^{-1}(K)$ is closed in $X \times Y_1$.

We observe first that for every map $F: X \times Y_1 \to Z$ and for every $K \subseteq Z$ we have $(F^{-1}(K))[x] = F_x^{-1}(K)$. Indeed, $y \in (F^{-1}(K))[x]$ if and only if $(x, y) \in F^{-1}(K)$, that is, if and only if $y \in F_x^{-1}(K)$.

Hence, by Theorem 1, we have

$$\overline{\lim_{\Lambda}}(D[x_{\lambda}]) \subseteq D[x],$$

that is,

$$\overline{\lim_{\Lambda}}(F_{x_{\lambda}}^{-1}(K)) \subseteq F_{x}^{-1}(K).$$

Conversely, suppose that for every closed subset K of Z and for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X converging to $x \in X$ we have

$$\overline{\lim_{\Lambda}}(F_{x_{\lambda}}^{-1}(K)) \subseteq F_{x}^{-1}(K)$$

We prove that F is continuous. Indeed, let K be any closed subset of Z and let $\{x_{\lambda} : \lambda \in \Lambda\}$ be a net in X converging to $x \in X$. Then we have

$$\overline{\lim_{\Lambda}}(F_{x_{\lambda}}^{-1}(K)) \subseteq F_{x}^{-1}(K)$$

or

$$\overline{\lim_{\Lambda}}(F^{-1}(K)[x_{\lambda}]) \subseteq F^{-1}(K)[x]$$

Hence, by Theorem 1, the set $F^{-1}(K)$ is closed in $X \times Y_1$ and therefore the map F is continuous.

COROLLARY 2. A map $F : X \times Y_1 \times \cdots \times Y_n \to Z$ is continuous if and only if for every closed subset K of Z and for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X converging to $x \in X$ we have

$$\overline{\lim_{\Lambda}}(F_{x_{\lambda}}^{-1}(K)) \subseteq F_{x}^{-1}(K).$$

3. δ -closed sets in product spaces

THEOREM 3. Let $x \in X$. The point x belongs to the δ -closure of a subset A of X if and only if there is a net in A which δ -converges to x.

Proof. Let $\{x_{\lambda}, \lambda \in \Lambda\}$ be a net in A which δ -converges to x in X. We consider an open set V of x in X. Since the net $\{x_{\lambda}, \lambda \in \Lambda\}$ δ -converges to x, there exists $\lambda_0 \in \Lambda$ such that $x_{\lambda} \in Int(Cl(V))$, for every $\lambda \in \Lambda$, $\lambda \geq \lambda_0$. Hence $Int(Cl(V)) \cap A \neq \emptyset$ and $x \in Cl_{\delta}(A)$.

Conversely, let $x \in Cl_{\delta}(A)$. Then for every open neighborhood U of x it follows that $Int(Cl(U)) \cap A \neq \emptyset$. Let $\mathcal{N}(x)$ be the set of all open neighborhoods of x in X. The set $\mathcal{N}(x)$ with the relation of inverse inclusion is a directed set. For every $U \in \mathcal{N}(x)$, let $x_U \in Int(Cl(U)) \cap A$. Clearly, the net $\{x_U, U \in \mathcal{N}(x)\}$ δ -converges to x.

THEOREM 4. A subset D of $X \times Y_1$ is δ -closed if and only if for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X which δ -converges to a point x of X we have

$$w \cdot \vartheta \cdot \lim_{\lambda} (D[x_{\lambda}]) \subseteq D[x]$$

Proof. Let D be a δ -closed subset of $X \times Y_1$ and let $\{x_{\lambda} : \lambda \in \Lambda\}$ be a net in X which δ -converges to $x \in X$. Consider

$$y \in w \cdot \vartheta \cdot \overline{\lim_{\Lambda}}(D[x_{\lambda}]).$$

We prove that $y \in D[x]$. Clearly, for every open neighborhood V_y of y in Y_1 and for every $\lambda \in \Lambda$ there exists an element $\lambda' \geq \lambda$ such that

$$Int(Cl(V_y)) \cap D[x_{\lambda'}] \neq \emptyset.$$

Let V_x and V_y be arbitrary open neighborhoods of x and y in X and Y, respectively, and let $U = V_x \times V_y$.

There exists an element $\lambda \in \Lambda$ such that $\{x_{\lambda_1} : \lambda_1 \geq \lambda\} \subseteq Int(Cl(V_x))$. Let $\lambda' \geq \lambda$ and $Int(Cl(V_y)) \cap D[x_{\lambda'}] \neq \emptyset$. If $y' \in Int(Cl(V_y)) \cap D[x_{\lambda'}]$, then $(x_{\lambda'}, y') \in Int(Cl(U))$, that is, $Int(Cl(U)) \cap D \neq \emptyset$ and, hence, $(x, y) \in Cl_{\delta}(D) = D$. This means that $(x, y) \in D_x$, that is, $y \in D[x]$.

Conversely, let D be a subset of $X \times Y_1$ such that

$$w \cdot \vartheta \cdot \overline{\lim_{\Lambda}}(D[x_{\lambda}]) \subseteq D[x]$$

for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X δ -converging to $x \in X$. We prove that D is δ -closed. Indeed, suppose that $(x, y) \in Cl_{\delta}(D)$. Then, there exists a net $\{(x_{\lambda}, y_{\lambda}) : \lambda \in \Lambda\}$ in D δ -converging to (x, y). This means that for every open neighborhood V_x and V_y of x and y in X and Y_1 , respectively, there exists an

element $\lambda \in \Lambda$ such that $x_{\lambda'} \in Int(Cl(V_x))$ and $y_{\lambda'} \in Int(Cl(V_y))$ for every $\lambda' \geq \lambda$. In particular from this it follows that the net $\{x_{\lambda} : \lambda \in \Lambda\}$ δ -converges to x in X.

Also, since $(x_{\lambda}, y_{\lambda}) \in D$ or $y_{\lambda} \in D[x_{\lambda}]$, the above means that

 $Int(Cl(V_y)) \cap D[x_{\lambda'}] \neq \emptyset,$

for every $\lambda' \geq \lambda$, that is,

$$y \in w \cdot \vartheta \cdot \overline{\lim_{\Lambda}}(D[x_{\lambda}]) \subseteq D[x].$$

Hence, $y \in D[x]$ and $(x, y) \in D$.

COROLLARY 3. A subset D of $X \times Y_1 \times Y_2 \times \cdots \times Y_n$ is δ -closed if and only if for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X which δ -converges to a point x of X we have

$$w \cdot \vartheta \cdot \overline{\lim_{\Lambda}}(D[x_{\lambda}]) \subseteq D[x].$$

DEFINITION 3. Let $F: X \times Y \to Z$ be a δ -continuous map. By F_x , where $x \in X$, we denote the δ -continuous map of Y into Z, for which $F_x(y) = F(x, y)$, for every $y \in Y$.

THEOREM 5. A map $F: X \times Y_1 \to Z$ is δ -continuous if and only if for every δ -closed subset K of Z and for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X which δ -converges to $x \in X$ we have

$$w \cdot \vartheta \cdot \overline{\lim_{\Lambda}}(F_{x_{\lambda}}^{-1}(K)) \subseteq F_{x}^{-1}(K).$$

Proof. Let $F : X \times Y_1 \to Z$ be a δ -continuous map and K be a δ -closed subset of Z. Then, the subset $D = F^{-1}(K)$ is δ -closed in $X \times Y_1$. First we observe that for the δ -closed subset K of Z we have $(F^{-1}(K))[x] = F_x^{-1}(K)$. Hence, by Theorem 4, we have

$$w \cdot \vartheta \cdot \overline{\lim_{\Lambda}} (D[x_{\lambda}]) \subseteq D[x],$$

that is,

$$w \cdot \vartheta \cdot \overline{\lim_{\Lambda}}(F_{x_{\lambda}}^{-1}(K)) \subseteq F_{x}^{-1}(K).$$

Conversely, let K be any δ -closed subset of Z. We prove that $F^{-1}(K)$ is δ -closed. Let $\{x_{\lambda} : \lambda \in \Lambda\}$ be a net in X which δ -converges to $x \in X$. Then we have

$$w \cdot \vartheta \cdot \overline{\lim_{\Lambda}}(F_{x_{\lambda}}^{-1}(K)) \subseteq F_{x}^{-1}(K)$$

or

$$w \cdot \vartheta \cdot \overline{\lim_{\Lambda}}(F^{-1}(K)[x_{\lambda}]) \subseteq F^{-1}(K)[x].$$

Hence, by Theorem 4, the set $F^{-1}(K)$ is δ -closed in $X \times Y_1$ and therefore the map $F: X \times Y_1 \to Z$ is δ -continuous.

COROLLARY 4. A map $F: X \times Y_1 \times \cdots \times Y_n \to Z$ is δ -continuous if and only if for every δ -closed subset K of Z and for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X which δ -converges to $x \in X$ we have

$$w \cdot \vartheta \cdot \overline{\lim}_{\Lambda} (F_{x_{\lambda}}^{-1}(K)) \subseteq F_{x}^{-1}(K).$$

4. ϑ -CLOSED SETS IN PRODUCT SPACES

THEOREM 6. Let $x \in X$. The point x belongs to the ϑ -closure of a subset A of X if and only if there is a net in A which ϑ -converges to x.

Proof. Let $\{x_{\lambda}, \lambda \in \Lambda\}$ be a net in A which ϑ -converges to x in X. We consider an open set V of x in X. Since the net $\{x_{\lambda}, \lambda \in \Lambda\}$ is ϑ -converging to x there exists $\lambda_0 \in \Lambda$ such that $x_{\lambda} \in Cl(V)$, for every $\lambda \in \Lambda$, $\lambda \geq \lambda_0$. Thus $Cl(V) \cap A \neq \emptyset$ and therefore $x \in Cl_{\vartheta}(A)$.

Conversely, let $x \in Cl_{\vartheta}(A)$. Then for every open neighborhood U of x it follows that $Cl(U) \cap A \neq \emptyset$. Let $\mathcal{N}(x)$ be the set of all open neighborhoods of x in X. The set $\mathcal{N}(x)$ with the relation of inverse inclusion is a directed set. For every $U \in \mathcal{N}(x)$, let $x_U \in Cl(U) \cap A$. Clearly, the net $\{x_U, U \in \mathcal{N}(x)\}$ ϑ -converges to x.

THEOREM 7. A subset D of $X \times Y_1$ is ϑ -closed if and only if for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X which ϑ -converges to a point x of X we have

$$\vartheta - \lim_{\Lambda} (D[x_{\lambda}]) \subseteq D[x].$$

Proof. Let D be a ϑ -closed subset of $X \times Y_1$ and let $\{x_{\lambda} : \lambda \in \Lambda\}$ be a net in X which ϑ -converges to $x \in X$. Consider

$$y \in \vartheta - \overline{\lim_{\lambda}} (D[x_{\lambda}]).$$

Clearly, for every open neighborhood V_y of y in Y_1 and for every $\lambda \in \Lambda$ there exists an element $\lambda' \geq \lambda$ such that $Cl(V_y) \cap D[x_{\lambda'}] \neq \emptyset$. Let V_x and V_y be arbitrary open neighborhoods of x and y in X and Y_1 , respectively, and let $U = V_x \times V_y$.

There exists an element $\lambda \in \Lambda$ such that $\{x_{\lambda_1} : \lambda_1 \geq \lambda\} \subseteq Cl(V_x)$. Let $\lambda' \geq \lambda$ and $Cl(V_y) \cap D[x_{\lambda'}] \neq \emptyset$. If $y' \in Cl(V_y) \cap D[x_{\lambda'}]$, then $(x_{\lambda'}, y') \in Cl(U)$, that is, $Cl(U) \cap D \neq \emptyset$ and, hence, $(x, y) \in Cl_{\vartheta}(D) = D$. This means that $(x, y) \in D_x$ and therefore $y \in D[x]$.

Conversely, let D be a subset of $X \times Y_1$ such that

$$\vartheta - \overline{\lim_{\Lambda}} (D[x_{\lambda}]) \subseteq D[x]$$

for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X which ϑ -converges to $x \in X$. We prove that D is ϑ -closed. Indeed, suppose that $(x, y) \in Cl_{\vartheta}(D)$. We prove that $(x, y) \in D$. There exists a net $\{(x_{\lambda}, y_{\lambda}) : \lambda \in \Lambda\}$ in D which ϑ -converges to (x, y). This means that for every open neighborhood V_x and V_y of x and y in X and Y_1 , respectively, there exists an element $\lambda \in \Lambda$ such that $x_{\lambda'} \in Cl(V_x)$ Also, since $(x_{\lambda}, y_{\lambda}) \in D$ or $y_{\lambda} \in D[x_{\lambda}]$, the above means that $Cl(V_y) \cap D[x_{\lambda'}] \neq \emptyset$, for every $\lambda' \geq \lambda$, that is,

$$y \in \vartheta - \overline{\lim_{\Lambda}}(D[x_{\lambda}]) \subseteq D[x].$$

Thus $y \in D[x]$, that is, $(x, y) \in D$.

COROLLARY 5. A subset D of $X \times Y_1 \times Y_2 \times \cdots \times Y_n$ is ϑ -closed if and only if for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X which ϑ -converges to a point x of X we have

$$\vartheta \operatorname{-}\overline{\lim}_{\Lambda} (D[x_{\lambda}]) \subseteq D[x].$$

THEOREM 8. A map $F: X \times Y_1 \to Z$ is quasi ϑ -continuous if and only if for every ϑ -closed subset K of Z and for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X which ϑ -converges to $x \in X$ we have

$$\vartheta\operatorname{-}\overline{\lim}_{\Lambda}(F^{-1}_{x_{\lambda}}(K))\subseteq F^{-1}_{x}(K).$$

Proof. Suppose that $F: X \times Y_1 \to Z$ is quasi ϑ -continuous and let K be a ϑ closed subset of Z. Since the map F is quasi ϑ -continuous, the set $D = F^{-1}(K)$ is ϑ -closed in $X \times Y$. Hence, by Theorem 7, we have

$$\vartheta - \overline{\lim_{\Lambda}} (D[x_{\lambda}]) \subseteq D[x],$$

that is,

$$\vartheta\operatorname{-}\overline{\lim}_{\Lambda}(F^{-1}_{x_{\lambda}}(K))\subseteq F^{-1}_{x}(K).$$

Conversely, let K be any ϑ -closed subset of Z. We prove that the subset $F^{-1}(K)$ is ϑ -closed. Let $\{x_{\lambda} : \lambda \in \Lambda\}$ be a net in X which ϑ -converges to $x \in X$. Then, we have

$$\vartheta - \overline{\lim}_{\Lambda} (F_{x_{\lambda}}^{-1}(K)) \subseteq F_{x}^{-1}(K)$$

or

$$\vartheta - \overline{\lim_{\Lambda}} (F^{-1}(K)[x_{\lambda}] \subseteq F^{-1}(K)[x].$$

Hence, by Theorem 7, the set $F^{-1}(K)$ is ϑ -closed in $X \times Y_1$ and therefore the map $F: X \times Y_1 \to Z$ is quasi ϑ -continuous.

COROLLARY 6. A map $F: X \times Y_1 \times Y_2 \times \cdots \times Y_n \to Z$ is quasi ϑ -continuous if and only if for every ϑ -closed K of Z and for every net $\{x_{\lambda} : \lambda \in \Lambda\}$ in X which ϑ -converges to $x \in X$ we have

$$\vartheta \operatorname{-}\overline{\lim}_{\Lambda}(F_{x_{\lambda}}^{-1}(K)) \subseteq F_{x}^{-1}(K).$$

REFERENCES

- ARENS, R. and DUGUNDJI, J., Topologies for function spaces, Pacific J. Math., 1 (1951), 5–31.
- [2] ANNA DI CONCILIO, On θ-continuous convergence in function spaces, Rend. Mat. (7), 4 (1984), 85–94.
- [3] DUGUNDJI, J., Topology, Allyn and Bacon, Inc., Boston, Mass. 1966.
- [4] FOMIN, S., Extensions of topological spaces, Ann. of Math., 44 (1943), 471–480.
- [5] GEORGIOU, D.N., A few remarks concerning θ-continuous functions and topologies on function spaces, J. Math. Comput. Sci. (Math. Ser.), 12, no. 2 (1999), 129–138.
- [6] GEORGIOU, D.N. and PAPADOPOULOS, B.K., Weakly θ-continuous, Weakly continuous, super continuous functions and topologies on function spaces, Scientiae Math. Japon., 53, no. 2 (2001), 233–246.
- [7] GEORGIOU, D.N. and PAPADOPOULOS, B.K., Strongly θ-continuous functions and topologies on function spaces, Papers in honour of Bernhard Banaschewski (Cape Town, 1996), Edited by Guillaunme Brummer and Christopher Gilmour, Kluwer Academic Publishers, (2000), 433–444.
- [8] ILIADIS, S.D. and FOMIN, S., The method of centred systems in theory of topological spaces, Uspekhi Mat. Nauk., 21 (1966), 47–76, English transl. in: Russian Math. Surveys, 21 (1966), 37–62.
- [9] ILIADIS, S.D. and PAPADOPOULOS, B.K., The continuous convergence on function spaces, Panamerican Math. Journal, 4, no. 3 (1994), 33–42.
- [10] KELLEY, J.L., General topology, Springer-Verlag, Berlin, Heidelberg, New York, 1975.
- [11] KURATOWSKI, C., Sur la notion de limite topologique d'ensembles, Ann. Soc. Pol. Math., 21 (1948–49), 219–225.
- [12] MRSEVIC, M. and REILY, I.L., A note on weakly θ-continuous functions, Internat. J. Math. Math. Sci., 12, no. 1 (1989), 9–14.
- [13] NOIRI, T., On δ-continuous functions, J. Korean Math. Soc., 16 (1980), 161–166.
- [14] NOIRI, T. and POPA, V., Weak forms of faint continuity, Bull. Math. Soc. Sci. Math. Roumanie, 34 (82) (1990), 263–270.
- [15] VELIČKO, N.V., *H*-closed topological spaces, Amer. Math. Soc. Transl., **78** (2) (1968), 103–118.

Received March 8, 2007

Department of Mathematics University of Patras 265 04 Patras, Greece E-mail: georgiou@math.upatras.gr

College of Vestsjaelland Herrestraede 11 4200 Slagelse, DENMARK E-mail: jafari@stofanet.dk

Department of Mathematics Yatsushiro College of Technology Yatsushiro, Kumamoto, 866-8501 JAPAN E-mail: noiri@as.yatsushiro-nct.ac.jp