QUASICONFORMAL EXTENSIONS AND q-SUBORDINATION CHAINS IN \mathbb{C}^{n}

PAULA CURT and GABRIELA KOHR

Abstract

Let B be the unit ball with respect to Euclidean norm on \mathbb{C}^{n}. In this note we introduce the notion of a q-subordination chain defined on $B \times[0, \infty)$ and we deduce conditions for the first element of a q-subordination chain to be extended to a quasiconformal homeomorphism of $\mathbb{R}^{2 n}$ onto itself.

MSC 2000. 32H, 30C45.
Key words. Biholomorphic mapping, Loewner differential equation, subordination, subordination chain, q-subordination chain, quasiconformal extension.

1. INTRODUCTION AND PRELIMINARIES

Let \mathbb{C}^{n} denote the space of n complex variables $z=\left(z_{1}, \ldots, z_{n}\right)$. The origin $(0,0, \ldots, 0)$ is denoted by 0 and by $\mathcal{L}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$ we denote the space of continuous linear operators from \mathbb{C}^{n} into \mathbb{C}^{m} with the standard operator norm. Let I denote the identity in $\mathcal{L}\left(\mathbb{C}^{n}, \mathbb{C}^{m}\right)$.

We consider \mathbb{C}^{n} with the usual inner product $\langle\cdot, \cdot\rangle$ and the Euclidean norm $\|\cdot\|$. By $\mathcal{H}(B)$ we denote the set of function

$$
f(z)=\left(f_{1}(z), \ldots, f_{n}(z)\right), \quad z=\left(z_{1}, \ldots, z_{n}\right),
$$

that are holomorphic in $B=\left\{z \in \mathbb{C}^{n}:\|z\|<1\right\}$ with values in \mathbb{C}^{n}. If $f \in \mathcal{H}(B)$, we say that f is normalized if $f(0)=0$ and $D f(0)=I$. Here $D f(z)$ means the first Fréchet derivative of f at $z \in B$.

We say that $f \in \mathcal{H}(B)$ is locally biholomorphic on B if f has a local holomorphic inverse at each point in B.

If $f, g \in \mathcal{H}(B)$, we say that f is subordinate to g if there is a Schwarz mapping v such that $f(z)=g(v(z)), z \in B$. We shall write $f \prec g$ to mean that f is subordinate to g.

Definition 1.1. The mapping $L: B \times[0, \infty) \rightarrow \mathbb{C}^{n}$ is called a normalized Loewner chain (normalized subordination chain) if
(i) $L(\cdot, t)$ is holomorphic and univalent on $B, t \geq 0$;
(ii) $L(0, t)=0, D L(0, t)=\mathrm{e}^{t} I, t \geq 0$;
(iii) $L(\cdot, s) \prec L(\cdot, s)$ for $0 \leq s<t<\infty$;

The subordination condition (iii) is equivalent to the fact that

$$
L(z, s)=L(v(z, s, t), t), \quad z \in B, 0 \leq s<t<\infty
$$

where $v=v(z, s, t)$ is a univalent Schwarz mapping, normalized by $v(0, s, t)=$ 0 and $D v(0, s, t)=\mathrm{e}^{s-t} I$.

The mapping v is called the transition mapping associated to the Loewner chain L.

An important role in our discussion is played by the n-dimensional version of the Carathéodory set

$$
\mathcal{M}=\{h \in \mathcal{H}(B): h(0)=0, D h(0)=I, \operatorname{Re}\langle h(z), z\rangle \geq 0, z \in B\}
$$

Recently in [4] (see also [2] and [5]), the authors proved the following result, which will be used in the next.

Theorem 1.2. Let $L: B \times[0, \infty) \rightarrow \mathbb{C}^{n}$ be a normalized Loewner chain. Then $f(z, \cdot)$ is locally absolutely continuous on $[0, \infty)$ locally uniformly with respect to $z \in B$, and there exists a set $E \subset(0, \infty)$ of Lebesgue measure zero such that for all $t \in[0, \infty) \backslash E$, there exists $h=h(z, t)$ such that $h(\cdot, t) \in \mathcal{M}$, $h(z, \cdot)$ is Lebesgue measurable on $[0, \infty)$ for each $z \in B$, and

$$
\begin{equation*}
\frac{\partial L}{\partial t}(z, t)=D L(z, t), \quad t \in[0, \infty) \backslash E, \forall z \in B \tag{1}
\end{equation*}
$$

Definition 1.3. Let G, G^{\prime} be domains in \mathbb{R}^{m}. Let $\|\cdot\|$ be the Euclidean norm on \mathbb{R}^{m}. A homeomorphism $f: \Omega \rightarrow \Omega^{\prime}$ is said to be K-quasiconformal if it is differentiable a.e., ACL (absolutely continuous on lines) and

$$
\|D f(x)\|^{m} \leq K|\operatorname{det} D f(x)| \text { a.e. in } \Omega
$$

where $D f(x)$ denotes the (real) Jacobian matrix of f, K is constant and

$$
\|D f(x)\|=\sup \{\|D f(x)(a)\|:\|a\|=1\}
$$

In this note we deduce conditions for the first element of a q-subordination chain to be extended to a quasiconformal homeomorphism of $\mathbb{R}^{2 n}$ onto itself. Other results related to quasiconformal extension of the first element of a Loewner chain were recently obtained by Hamada and Kohr ([7], [8]) and Curt and Kohr [3].

2. MAIN RESULTS

Definition 2.1. Let $L: B \times[0, \infty) \rightarrow \mathbb{C}^{n}$ be a normalized subordination chain and let $q \in[0,1)$.

We say that L is a q-normalized subordination chain if the mapping h defined by Theorem 1.2 satisfies the following conditions:
(i) The following inequalities hold

$$
\begin{equation*}
\|z\|^{2} \frac{1-q\|z\|}{1+q\|z\|} \leq \operatorname{Re}\langle h(z, t), z\rangle \leq\|z\|^{2} \frac{1+q\|z\|}{1-q\|z\|}, z \in B, \text { a.e. } t \in[0, \infty) \tag{2}
\end{equation*}
$$

(ii) There is $q_{1}>0$ such that

$$
\begin{equation*}
\|h(z, t)\| \leq q_{1}, z \in B, \text { a.e. } t \in[0, \infty) \tag{3}
\end{equation*}
$$

Next, we shall present some classes of mappings which satisfy the conditions (2) and (3).

Remark 2.2. Let $q \in[0,1)$ and $h: B \times[0, \infty) \rightarrow \mathbb{C}^{n}$ be defined by

$$
\begin{equation*}
h(z, t)=[I-E(z, t)]^{-1}[I+E(z, t)](z) \tag{4}
\end{equation*}
$$

where the mapping E satisfies
(i) $E(z, t) \in L\left(\mathbb{C}^{n}\right), z \in B, t \in[0, \infty)$
(ii) $E(\cdot, t): B \rightarrow \mathcal{L}\left(\mathbb{C}^{n}\right)$ is an holomorphic mapping
(iii) $E(0, t)=0,\|E(z, t)\| \leq q<1$.

Then h satisfies (2) and (3).
Proof. By using the Schwarz lemma (see [9]) we easily obtain

$$
\|E(z, t)\| \leq q\|z\|, \quad z \in B .
$$

The previous inequality and Definition 2.1 imply that

$$
\begin{align*}
|\|h(z, t)\|-\|z\|| & \leq\|h(z, t)-z\|=\|E(z, t)(h(z, t)+z)\| \tag{5}\\
& \leq q\|z\|(\|h(z, t)\|+\|z\|)
\end{align*}
$$

and hence

$$
\|h(z, t)\| \leq\|z\| \frac{1+q\|z\|}{1-q\|z\|}<\frac{1+q}{1-q} .
$$

We obtain that (3) holds with $q_{1}=\frac{1+q}{1-q}$.
The right inequality in (2) is an immediate consequence of the following inequality

$$
\|h(z, t)\| \leq\|z\| \frac{1+q\|z\|}{1-q\|z\|}
$$

In order to prove the left part of (2) we shall first prove that

$$
\begin{equation*}
\|z\| \frac{1-q\|z\|}{1+q\|z\|} \leq\|h(z, t)\|, z \in B . \tag{6}
\end{equation*}
$$

From the definition of h we have

$$
\|h(z, t)-z\|^{2} \leq q^{2}\|z\|^{2}\|h(z, t)+z\|^{2}
$$

and hence

$$
\|h(z, t)\|^{2}+\|z\|^{2}-2 \operatorname{Re}\langle h(z, t), z\rangle \leq q^{2}\|z\|^{2}\left(\|h(z, t)\|^{2}+\|z\|^{2}+2 \operatorname{Re}\langle h(z, t), z\rangle\right) .
$$

By using the previous two inequalities we obtain that

$$
\begin{aligned}
\left(1+q^{2}\|z\|^{2}\right) \operatorname{Re}\langle h(z, t), z\rangle & \geq\left(1-q^{2}\|z\|^{2}\right)\left(\|h(z, t)\|^{2}+\|z\|^{2}\right) \\
& \geq \frac{1-q^{2}\|z\|^{2}}{(1+q\|z\|)^{2}}\left(1+q^{2}\|z\|^{2}\right)\|z\|^{2}
\end{aligned}
$$

where from the left part (3) is an easily consequence.
In the next remark we shall present a large class of mappings which satisfy (3).

Remark 2.3. Let $h: B \times[0, \infty) \rightarrow \mathbb{C}^{n}$ such that
(i) $h(\cdot, t) \in \mathcal{H}(B), h(0, t)=0, D h(0, t)=I, t \in[0, \infty)$.
(ii) There exists $q \in[0,1)$ such that

$$
\begin{equation*}
\left|\frac{\langle h(z, t), z\rangle}{\|z\|^{2}}-\frac{1+q^{2}}{1-q^{2}}\right| \leq \frac{2 q}{1-q}, \quad z \in B, t \in[0, \infty) . \tag{7}
\end{equation*}
$$

Then h satisfies the inequality (3).
Proof. Let $z \in B \backslash\{0\}, t \geq 0$ and let $p: U \rightarrow \mathbb{C}$ be defined by

$$
p(\zeta)=\frac{1}{\zeta}\left\langle h\left(\zeta \frac{z}{\|z\|}, t\right), \frac{z}{\|z\|}\right\rangle, \text { if } \zeta \neq 0
$$

and

$$
p(0)=\lim _{\zeta \rightarrow 0} p(\zeta) .
$$

Since $p(0)=1$ and $\left|p(\zeta)-\frac{1+q^{2}}{1-q^{2}}\right| \leq \frac{2 q}{1-q^{2}}$ we have $p(\zeta) \prec \frac{1+q \zeta}{1-q \zeta}$, and hence

$$
\frac{1-q|\zeta|}{1+q|\zeta|} \leq \operatorname{Re} p(\zeta) \leq \frac{1+q|\zeta|}{1-q|\zeta|}, \quad \zeta \in U .
$$

If we take $\zeta=\|z\|$ in the previous inequality we easily obtain that (3) holds.

We now are able to present our main result.
Theorem 2.4. Let $q \in[0,1)$ and $L: B \times[0, \infty) \rightarrow \mathbb{C}^{n}$ be a normalized q-subordination chain. Assume that the following conditions are satisfied:
(i) There exist $M>0$ and $\alpha \in[0,1)$ such that

$$
\begin{equation*}
\|D L(z, t)\| \leq \frac{\mathrm{e}^{t} M}{(1-\|z\|)^{\alpha}}, \quad z \in B, t \in[0, \infty) \tag{8}
\end{equation*}
$$

(ii) There exists $K>0$ such that $L(\cdot, t)$ is K-quasiconformal for each $t \geq 0$.

Further, suppose that there exist a sequence $\left\{t_{m}\right\}_{m \in \mathbb{N}}, t_{m}>0, \lim _{m \rightarrow \infty} t_{m}=$ ∞, and a mapping $F \in \mathcal{H}(B)$ such that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \frac{L\left(z, t_{m}\right)}{\mathrm{e}^{t_{m}}}=F(z) \tag{9}
\end{equation*}
$$

locally uniformly on B. Then $f(z)=L(z, 0)$ extends to a quasiconformal homeomorphism of $\mathbb{R}^{2 n}$ onto itself.

The proof is based on several lemmas which will be first presented.
Lemma 2.5 (see [11]) is the n-dimensional version of Hardy's and Littlewood's Theorem [6]. This result will be applied in order to extend to \bar{B} the mappings $L(\cdot, t)(t \geq 0)$ given in Theorem 2.4.

Lemma 2.5. Suppose that $\alpha \in[0,1]$ and g is a complex valued holomorphic function for $z \in B$ such that

$$
\begin{equation*}
\left|\frac{\partial g(z)}{\partial z_{j}}\right| \leq \frac{M_{j}}{(1-\|z\|)^{\alpha}}, \quad j=1, \ldots, n, z \in B \tag{10}
\end{equation*}
$$

Then g has a continuous extension to \bar{B} and there is $A>0$ such that

$$
\begin{equation*}
|g(z)-g(w)| \leq A\|z-w\|^{1-\alpha}, \quad z, w \in \bar{B} \tag{11}
\end{equation*}
$$

Lemma 2.6. [11] Let $f \in \mathcal{H}(B), M>0$ and $\alpha \in[0,1)$ be such that

$$
\begin{equation*}
\|D f(z)\| \leq \frac{M}{(1-\|z\|)^{\alpha}}, \quad z \in B \tag{12}
\end{equation*}
$$

Then f has a continuous extension to \bar{B} (also denoted by f) and there exists $A>0$ such that

$$
\begin{equation*}
\|f(z)-f(w)\| \leq A\|z-w\|^{1-\alpha}, \quad z, w \in B \tag{13}
\end{equation*}
$$

Lemma 2.7. Let $v: B \times[0, \infty)^{2} \rightarrow \mathbb{C}^{n}$ be the transition mapping associated to a q-normalized subordination chain. Then the following inequalities hold:

$$
\begin{align*}
& \frac{\mathrm{e}^{t}\|v(z, s, t)\|}{(1+q\|v(z, s, t)\|)^{2}} \geq \frac{\mathrm{e}^{s}\|z\|}{(1+q\|z\|)^{2}}, \quad z \in B, t \geq s, \tag{14}\\
& \frac{\mathrm{e}^{t}\|v(z, s, t)\|}{(1-q\|v(z, s, t)\|)^{2}} \leq \frac{\mathrm{e}^{s}\|z\|}{(1-q\|z\|)^{2}}, \quad z \in B, t \geq s . \tag{15}
\end{align*}
$$

Also, for all $t \geq s$ we have

$$
\begin{equation*}
\overline{v(B, s, t)} \subseteq B \tag{16}
\end{equation*}
$$

Proof. For all $s \geq 0$ and a.e. $t \geq s$ we have (see [2])

$$
\frac{\partial v}{\partial t}(z, s, t)=-h(v(z, s, t)), \quad z \in B
$$

and

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|v(t)\|=\frac{1}{\|v(t)\|} \operatorname{Re}\left\langle\frac{\mathrm{d} v}{\mathrm{~d} t}(t), v(t)\right\rangle
$$

By using the previous inequalities and (2) we obtain that

$$
\begin{gather*}
\frac{\mathrm{d}}{\mathrm{~d} t}\|v(t)\|=-\frac{1}{\|v(t)\|} \operatorname{Re}\langle h(v(t), t), v(t)\rangle, \text { a.e. } t \geq s \tag{17}\\
-\|v(t)\| \frac{1+q\|v(t)\|}{1-q\|v(t)\|} \leq \frac{\mathrm{d}}{\mathrm{~d} t}\|v(t)\| \leq-\|v(t)\| \frac{1-q\|v(t)\|}{1+q\|v(t)\|}, \text { a.e. } t \geq s
\end{gather*}
$$

We may integrate the inequality (17) and make a change of variable to obtain (14).

In order to obtain (15) we use the inequality

$$
\frac{\frac{\mathrm{d}}{\mathrm{~d} \tau}\|v(\tau)\|}{\|v(\tau)\|} \leq-\frac{1-q\|v(\tau)\|}{1+q\|v(\tau)\|} \leq-\frac{1-q}{1+q} \text { a.e. } \tau \in[s, t]
$$

We integrate the previous inequality and obtain that

$$
\|v(z, s, t)\| \leq\|z\| \mathrm{e}^{-\frac{1-q}{1+q}(t-s)}
$$

which shows that (16) holds.
Lemma 2.8. Let $L: B \times[0, \infty) \rightarrow \mathbb{C}^{n}$ be a q-normalized subordination chain and let $\left\{t_{m}\right\}_{m \in \mathbb{N}}$ be a sequence with $t_{m}>0, \lim _{m \rightarrow \infty} t_{m}=\infty, F \in \mathcal{H}(B)$, such that

$$
\lim _{m \rightarrow \infty} \frac{L\left(z, t_{m}\right)}{\mathrm{e}^{t_{m}}}=F(z)
$$

locally uniformly on B. Then the following inequalities hold:

$$
\begin{equation*}
\frac{\mathrm{e}^{s}\|z\|}{(1+q\|z\|)^{2}} \leq\|L(z, s)\| \leq \frac{\mathrm{e}^{s}\|z\|}{(1-q\|z\|)^{2}}, \quad z \in B, s \geq 0 \tag{18}
\end{equation*}
$$

Proof. The inequalities (18) are easily consequence of (14), (15) and of the fact that (see [2])

$$
L(z, s)=\lim _{t \rightarrow \infty} \mathrm{e}^{t} v(z, s, t)
$$

locally uniformly on B.
Lemma 2.9. Let $L: B \times[0, \infty) \rightarrow \mathbb{C}^{n}$ be a q-normalized subordination chain and let $M>0$ and $\alpha \in[0,1)$ be such that

$$
\begin{equation*}
\|D L(z, t)\| \leq \frac{\mathrm{e}^{t} M}{(1-\|z\|)^{\alpha}}, \quad z \in B, t \in[0, \infty) \tag{19}
\end{equation*}
$$

Then the following statements hold:
(i) For each $t \geq 0$ the mapping $L(\cdot, t)$ has a continuous and univalent extension to $\bar{B}($ also denoted by $L(\cdot, t))$.
(ii) There exist $K, L>0$ such that

$$
\begin{equation*}
\mathrm{e}^{-t}\|L(z, t)-L(w, t)\| \leq K\|z-w\|^{1-\alpha}, \quad z, w \in \bar{B}, t \geq 0 \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\|L(z, t)-L(z, s)\| \leq L \mathrm{e}^{t}(t-s)^{1-\alpha}, \quad z \in \bar{B}, 0 \leq s<t \tag{21}
\end{equation*}
$$

Proof. By using Lemmas 2.5 and 2.6 and the assumption (19) we deduce that the mapping $\mathrm{e}^{-t} L(\cdot, t)$ has a continuous extension to \bar{B} and

$$
\mathrm{e}^{-t}\|L(z, t)-L(w, t)\| \leq K\|z-w\|^{1-\alpha}, \quad z, w \in \bar{B}, t \geq 0
$$

Hence, the condition (21) is fulfilled.

Since $L(z, s)=L(v(z, s, t), t)$ for $0 \leq s<t$ and $L(\cdot, s)$ is continuous on \bar{B}, by using (16) we have $L(\bar{B}, s) \subset L(B, t)$ for $0 \leq s<t$. Then $v(z, s, t)=$ $L^{-1}(L(z, s), t), z \in \bar{B}$, defines a continuous extension of v to \bar{B}.

For $z \in B, t>s \geq 0$, we have

$$
\begin{align*}
& \|z-v(z, s, t)\|=\left\|\int_{s}^{t} \frac{\partial}{\partial \tau} v(z, s, \tau) \mathrm{d} \tau\right\| \tag{22}\\
& =\left\|\int_{s}^{t} h(v(z, s, \tau), \tau) \mathrm{d} \tau\right\| \leq q_{1}(t-s) .
\end{align*}
$$

Since v is continuous on \bar{B}, the previous relation holds for $z \in \bar{B}$. Next, we shall prove that $L(\cdot, s)$ is univalent on \bar{B}. Suppose that $L\left(z_{1}, s\right)=L\left(z_{2}, s\right)$, for $z_{1}, z_{2} \in \bar{B}$. Then for $t>s$ we have

$$
L\left(v\left(z_{1}, s, t\right), t\right)=L\left(v\left(z_{2}, s, t\right), t\right) .
$$

Since $v\left(z_{1}, s, t\right), v\left(z_{2}, s, t\right) \in B$ for $0 \leq s<t$ and $L(\cdot, t)$ is univalent on B, we obtain $v\left(z_{1}, s, t\right)=v\left(z_{2}, s, t\right)$. If we let $t \rightarrow s, v\left(z_{1}, s, t\right)=v\left(z_{2}, s, t\right)$ we obtain that $z_{1}=z_{2}$. Here we also use (22).

From (22) and (19) we easily obtain that

$$
\begin{aligned}
\|L(z, s)-L(z, t)\| & =\|L(v(z, s, t), t)-L(z, t)\| \leq \mathrm{e}^{t} M\|z-v(z, s, t)\|^{1-\alpha} \\
& \leq \mathrm{e}^{t} M q_{1}^{1-\alpha}(t-s)^{1-\alpha}, \quad z \in \bar{B}, t>s \geq 0,
\end{aligned}
$$

which means that (21) holds with $L=M q_{1}^{1-\alpha}$.
We are now able to prove the main result.
Proof of Theorem 2.4. Let

$$
F(z)= \begin{cases}L(z, 0), & \|z\| \leq 1 \\ L\left(\frac{z}{\|z\|}, \log \|z\|\right), & \|z\|>1 .\end{cases}
$$

First, we will show that F is a homeomorphism of $\mathbb{R}^{2 n}$ onto itself. Since for every $t \geq 0$, the mapping $L(\cdot, t)$ is univalent on \bar{B} and for all $0 \leq s<t$ we have $L(\bar{B}, s) \subseteq L(B, t)$ we obtain that F is univalent on $\mathbb{C}^{n}\left(\mathbb{R}^{2 n}\right)$.

The continuity in $\mathbb{C}^{n}\left(\mathbb{R}^{2 n}\right)$ of the extension F follows since (20) and (21) yield that $L(z, t)$ is continuous in $\bar{B} \times[0, \infty)$. The left-hand inequality (18) shows that $F(z) \rightarrow \infty$ as $z \rightarrow \infty$ and hence that F is a homeomorphism of $\mathbb{R}^{2 n}$. It remains to show that F is quasiconformal in $\mathbb{R}^{2 n}$. We shall do this by using an approximation argument similar to Becker's [1] and Pfaltzgraff [11].

Let $r>1$ and let

$$
\begin{gather*}
L_{r}(z, t)=r L\left(\frac{z}{r}, t\right), \quad h_{r}(z, t)=r h\left(\frac{z}{r}, t\right), \quad t \geq 0, \tag{23}\\
F_{r}(z)= \begin{cases}L_{r}(z, 0), & \|z\| \leq 1 \\
L_{r}\left(\frac{z}{\|z\|}, \log \|z\|\right), & \|z\| \geq 1 .\end{cases} \tag{24}
\end{gather*}
$$

Clearly, $L_{r}(z, t)$ satisfies the differential equation

$$
\begin{equation*}
\frac{\partial}{\partial t} L_{r}(z, t)=D L_{r}(z, t) h_{r}(z, t) \text { a.e. } t \geq 0, \text { for all }\|z\|<r \tag{25}
\end{equation*}
$$

and hence $\|z\| \leq 1$.
On the other hand, since

$$
\begin{aligned}
\left\|L_{r}(z, t)-L(z, t)\right\| & \leq\left\|r L\left(\frac{z}{r}, t\right)-L\left(\frac{z}{r}, t\right)\right\|+\left\|L\left(\frac{z}{r}, t\right)-L(z, t)\right\| \\
& \leq(1-r)\left\|L\left(\frac{z}{r}, t\right)\right\|+M \mathrm{e}^{t}\left\|\frac{z}{r}-z\right\|^{1-\alpha} \\
& \leq \frac{\mathrm{e}^{t \frac{\|z\|}{r}}}{\left(1-\frac{q\|z\|}{r}\right)^{2}}(1-r)+M \mathrm{e}^{t} \frac{\|z\|^{1-\alpha}}{r^{1-\alpha}}(1-r)^{1-\alpha} \\
& \leq \frac{\mathrm{e}^{\frac{T}{r}}}{\left(1-\frac{q}{r}\right)^{2}}(1-r)+M \mathrm{e}^{T} \frac{1}{r^{1-\alpha}}(1-r)^{1-\alpha}
\end{aligned}
$$

for all $\|z\| \leq 1,0<t \leq T$, we deduce that $L_{r}(z, t) \rightarrow L(z, t)$, uniformly in $\|z\| \leq 1,0 \leq t \leq T$, as r decreases to 1 . Hence F_{r} converges to F uniformly in $\mathbb{R}^{2 n}$ as r decreases to 1 .

Next, we shall show that F_{r} (as a mapping from $\mathbb{R}^{2 n}$ to $\mathbb{R}^{2 n}$) is ACL, differentiable a.e., and has outer dilatation bounded a.e. by a bound independent of r. Then it will follow [12] that F is quasiconformal.

We show that $\mathrm{e}^{-t} L_{r}(z, t)$ satisfies a Lipschitz condition on \bar{B} with exponent 1. Indeed, we have

$$
\left\|D L_{r}(z, t)\right\|=\left\lvert\, D L\left(\frac{z}{r}, t\right)\right. \| \leq \frac{\mathrm{e}^{t} M}{\left(1-\frac{\|z\|}{r}\right)^{\alpha}} \leq \frac{\mathrm{e}^{t} M}{\left(1-\frac{1}{r}\right)^{\alpha}}
$$

and hence

$$
\begin{equation*}
\left\|L_{r}(z, t)-L_{r}(w, t)\right\| \leq \frac{\mathrm{e}^{t} M}{\left(1-\frac{1}{r}\right)^{\alpha}}\|z-w\|=\mathrm{e}^{t} M(r)\|z-w\|, \quad z, w \in \bar{B} \tag{26}
\end{equation*}
$$

By using (26) and the fact that L is a Loewner chain we get

$$
\begin{align*}
\left\|L_{r}(z, t)-L_{r}(z, s)\right\| & =r\left\|L\left(\frac{z}{r}, t\right)-L\left(\frac{z}{r}, s\right)\right\| \\
& =r\left\|L\left(\frac{z}{r}, t\right)-L\left(v\left(\frac{z}{r}, s, t\right), t\right)\right\| \\
& \left.\leq \mathrm{e}^{t} M(r) r \left\lvert\, \frac{z}{r}-v\right. \| \frac{z}{r}, s, t\right) \| \tag{27}\\
& \leq \mathrm{e}^{t} M(r) r q_{1}(t-s) \\
& =\mathrm{e}^{t} L(r)(t-s), \quad z \in \bar{B}, 0 \leq s<t
\end{align*}
$$

Next, we will show that F_{r} satisfies a local Lipschitz condition (with exponent one) on \mathbb{C}^{n}. It is sufficient to prove this condition for $z, w \in \mathbb{C}^{n}$ with $\|z-w\|<1$. We prove this condition in the following 3 cases:
i) $z, w \in \bar{B}$;
ii) $z, w \in \mathbb{C}^{n} \backslash B,\|z\| \leq\|w\|$ and $\|w-z\|<1$;
iii) $z \in B, w \in \mathbb{C}^{n} \backslash B$.
i) If $z, w \in \bar{B}$ we obtain by (26) that:

$$
\begin{gather*}
\left\|F_{r}(z)-F_{r}(w)\right\|=\left\|L_{r}(z, 0)-L_{r}(w, 0)\right\| \tag{28}\\
\leq M(r)\|z-w\|
\end{gather*}
$$

ii) If $z, w \in \mathbb{C}^{n},\|z\| \leq\|w\|$ and $\|w-z\|<1$ we obtain by (26) and (27) that

$$
\begin{align*}
\left\|F_{r}(z)-F_{r}(w)\right\| & =\left\|L_{r}\left(\frac{z}{\|z\|}, \log \|z\|\right)-L_{r}\left(\frac{w}{\|w\|}, \log \|w\|\right)\right\| \\
& \leq\left\|L_{r}\left(\frac{z}{\|z\|}, \log \|z\|\right)-L_{r}\left(\frac{z}{\|z\|}, \log \|w\|\right)\right\|+ \\
& +\left\|L_{r}\left(\frac{z}{\|z\|}, \log \|w\|\right)-L_{r}\left(\frac{w}{\|w\|}, \log \|w\|\right)\right\| \tag{29}\\
& \leq M(r)\left\|z-\frac{\|z\|}{\|w\|} w\right\|+\|w\| \log \frac{\|w\|}{\|z\|} L(r) \\
& \leq q M(r)\|z-w\|+\frac{\|w\|}{\|z\|}(\|w\|-\|z\|) L(r) \\
& \leq 2[M(r)+L(r)]\|w-z\| .
\end{align*}
$$

iii) If $z \in B$ and $w \in \mathbb{C}^{n} \backslash \bar{B}$ then there exists a real number β with $0<\beta<1$ such that $u=(1-\beta) z+\beta z \in \partial B$. By using (28) and (29) we obtain that:

$$
\begin{aligned}
& \left\|F_{r}(z)-F_{r}(w)\right\| \leq\left\|F_{r}(z)-F_{r}(u)\right\|+\left\|F_{r}(u)-F_{r}(w)\right\| \\
& =\left\|L_{r}(z, 0)-L_{r}(u, 0)\right\|+\left\|L_{r}(u, 0)-L_{r}\left(\frac{w}{\|w\|}, \log \|w\|\right)\right\| \\
& \leq M(r)\|u-z\|+2[M(r)+L(r)]\|u-w\| \\
& \leq[3 M(r)+2 L(r)]\|z-w\| .
\end{aligned}
$$

Thus, F_{r} satisfies a local Lipschitz condition. Hence F_{r} is ACL in $\mathbb{R}^{2 n}$ and so is (real) differentiable a.e. in $\mathbb{R}^{2 n}$.

It remains to prove that F_{r} has outer dilatation bounded a.e. by a bound independent of r.

Let $r>1$ and let $G(z)=F_{r}(z)$ (in order to simplify notation).
We let $z=(x, y)=\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right),\|z\| \geq 1$, be a point when the mapping $G=(U, V)=\left(U_{1}, V_{1}, U_{2}, V_{2}, \ldots, U_{n}, V_{n}\right)$ defined by

$$
\begin{gathered}
G\left(\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)\right)=\left(U_{1}, V_{1}, \ldots, U_{n}, V_{n}\right) \\
U_{k}=\operatorname{Re} G_{k}(x, y), \quad V_{k}=\operatorname{Im} G_{k}(x, y), \quad k=1, \ldots, n
\end{gathered}
$$

is differentiable.
To compute the (real) derivative of (30) we use the chain rule on the composed mappings.

By denoting $\zeta=\frac{z}{r\|z\|}, t=\log \|z\|, u_{k}=\operatorname{Re} L_{k}(\zeta, t), v_{k}=\operatorname{Im} L_{k}(\zeta, t)$ we obtain:

$$
D(U, V, x, y)=\frac{1}{\|z\|} D(u, v, \xi, \eta)\left\{I+r^{2}\left[\begin{array}{c}
\operatorname{Re}(h(\zeta, t)-\zeta) \tag{30}\\
\operatorname{Im}(h(\zeta, t)-\zeta)
\end{array}\right](\xi, \eta)\right\}
$$

If we denote by $A=r^{2}\left[\begin{array}{c}\operatorname{Re}(h(\zeta, t)-\zeta) \\ \operatorname{Im}(h(\zeta, t)-\zeta)\end{array}\right](\xi, \eta)$ by using a similar argument as in [11] we obtain that

$$
\operatorname{det}(I+A) \geq \frac{1-q}{1+q}
$$

and hence

$$
D(U, V ; x, y)=\frac{1}{\|z\|} D(u, v, \xi, \eta)[I+A]
$$

Also, we have

$$
\|D(U, V ; x, y)\| \leq \frac{1}{\|z\|}\|D L(\zeta, t)\|\|I+A\| .
$$

Since

$$
\begin{aligned}
\|A\| & \leq r^{2}\|h(\zeta, t)-\zeta\|\left\|\frac{z}{r\|z\|}\right\|=t\|h(\zeta, t)-\zeta\| \\
& \leq 1+r\|h(\zeta, t)\| \leq 1+q_{1}
\end{aligned}
$$

and hence $\|I+A\| \leq 2+q_{1}$.
By using the previous inequalities and the fact that $L(z, t)$ is a quasiconformal mapping we get

$$
\begin{aligned}
\|D(U, V ; x, y)\|^{2 n} & \leq\|z\|^{-2 n}\|D L(\zeta, t)\|^{2 n}\left(2+q_{1}\right)^{2 n} \\
& \leq \frac{1+q}{1-q}\left(2+q_{1}\right)^{2 n}|J(U, V ; x, y)| .
\end{aligned}
$$

This inequality completes the proof.

REFERENCES

[1] Becker, J., Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Funktionen, J. Reine Angew. Math., 255 (1972), 23-43.
[2] Curt, P. and Kohr, G., Subordination chains and Loewner differential equations in several complex variables, Ann. Univ. Mariae-Curie Skldowska, 57 (2003), 35-43.
[3] Curt, P. and Kohr, G., The asymptotical case of certain quasiconformal extension results for holomorphic mappings in \mathbb{C}^{n}, Bull. Belgian Math. J., to appear.
[4] Graham, I., Hamada, H. and Kohr, G., Parametric representation of univalent mappings in several complex variables, Canadian J. Math., 54 (2002), 324-351.
[5] Graham, I. and Kohr, G., Geometric Function Theory in One and Higher Dimensions, Marcel Dekker Inc., 2003.
[6] Goluzin, G.M., Geometric Theory of Functions of a Complex Variable, Transl. Math. Monographs, vol. 26, Amer. Math. Soc., Providence, R. I., 1969.
[7] Hamada, H. and Kohr, G., Loewner chains and quasiconformal extension of holomorphic mappings, Ann. Polon. Math., 81 (2003), 85-100.
[8] Hamada, H. and Kohr, G., Quasiconformal extension of biholomorphic mappings in several complex variables, J. Anal. Math., 96 (2005), 269-282.
[9] Hille, E. and Phillips, R.S., Functional analysis and semigroups, Amer. Math. Soc. Colloq. Publ., 31 (1957).
[10] Pfaltzgraff, J.A., Subordination chains and univalence of holomorphic mappings in \mathbb{C}^{n}, Math. Ann., 210 (1974), 55-68.
[11] Pfaltzgraff, J.A., Subordination chains and quasiconformal extension of holomorphic maps in \mathbb{C}^{n}, Ann. Acad. Sci. Fennicae, Ser. A, Mathematica, 1 (1975), 13-25.
[12] VÄISÄlÄ, J., Lectures on n-Dimensional Quasiconformal Mappings, Lectures Notes in Mathematics, vol. 229, Springer Verlag, 1971.

Received January 15, 2007
Faculty of Mathematics and Computer Science Babeş-Bolyai University
Str. M. Kogălniceanu nr. 1
400084 Cluj-Napoca, Romania
E-mail: paula@math.ubbcluj.ro
E-mail: gkohr@math.ubbcluj.ro

