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QUASICONFORMAL EXTENSIONS AND q-SUBORDINATION
CHAINS IN Cn

PAULA CURT and GABRIELA KOHR

Abstract. Let B be the unit ball with respect to Euclidean norm on Cn. In this
note we introduce the notion of a q-subordination chain defined on B × [0,∞)
and we deduce conditions for the first element of a q-subordination chain to be
extended to a quasiconformal homeomorphism of R2n onto itself.
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1. INTRODUCTION AND PRELIMINARIES

Let Cn denote the space of n complex variables z = (z1, . . . , zn). The
origin (0, 0, . . . , 0) is denoted by 0 and by L(Cn, Cm) we denote the space of
continuous linear operators from Cn into Cm with the standard operator norm.
Let I denote the identity in L(Cn, Cm).

We consider Cn with the usual inner product 〈·, ·〉 and the Euclidean norm
‖ · ‖. By H(B) we denote the set of function

f(z) = (f1(z), . . . , fn(z)), z = (z1, . . . , zn),

that are holomorphic in B = {z ∈ Cn : ‖z‖ < 1} with values in Cn. If
f ∈ H(B), we say that f is normalized if f(0) = 0 and Df(0) = I. Here
Df(z) means the first Fréchet derivative of f at z ∈ B.

We say that f ∈ H(B) is locally biholomorphic on B if f has a local
holomorphic inverse at each point in B.

If f, g ∈ H(B), we say that f is subordinate to g if there is a Schwarz
mapping v such that f(z) = g(v(z)), z ∈ B. We shall write f ≺ g to mean
that f is subordinate to g.

Definition 1.1. The mapping L : B × [0,∞) → Cn is called a normalized
Loewner chain (normalized subordination chain) if

(i) L(·, t) is holomorphic and univalent on B, t ≥ 0;
(ii) L(0, t) = 0, DL(0, t) = etI, t ≥ 0;
(iii) L(·, s) ≺ L(·, s) for 0 ≤ s < t < ∞;

The subordination condition (iii) is equivalent to the fact that

L(z, s) = L(v(z, s, t), t), z ∈ B, 0 ≤ s < t < ∞
where v = v(z, s, t) is a univalent Schwarz mapping, normalized by v(0, s, t) =
0 and Dv(0, s, t) = es−tI.
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The mapping v is called the transition mapping associated to the Loewner
chain L.

An important role in our discussion is played by the n-dimensional version
of the Carathéodory set

M = {h ∈ H(B) : h(0) = 0, Dh(0) = I, Re 〈h(z), z〉 ≥ 0, z ∈ B}.
Recently in [4] (see also [2] and [5]), the authors proved the following result,

which will be used in the next.

Theorem 1.2. Let L : B × [0,∞) → Cn be a normalized Loewner chain.
Then f(z, ·) is locally absolutely continuous on [0,∞) locally uniformly with
respect to z ∈ B, and there exists a set E ⊂ (0,∞) of Lebesgue measure zero
such that for all t ∈ [0,∞) \ E, there exists h = h(z, t) such that h(·, t) ∈ M,
h(z, ·) is Lebesgue measurable on [0,∞) for each z ∈ B, and

(1)
∂L

∂t
(z, t) = DL(z, t), t ∈ [0,∞) \ E, ∀ z ∈ B.

Definition 1.3. Let G, G′ be domains in Rm. Let ‖ · ‖ be the Euclidean
norm on Rm. A homeomorphism f : Ω → Ω′ is said to be K-quasiconformal
if it is differentiable a.e., ACL (absolutely continuous on lines) and

‖Df(x)‖m ≤ K|det Df(x)| a.e. in Ω,

where Df(x) denotes the (real) Jacobian matrix of f , K is constant and

‖Df(x)‖ = sup{‖Df(x)(a)‖ : ‖a‖ = 1}.
In this note we deduce conditions for the first element of a q-subordination

chain to be extended to a quasiconformal homeomorphism of R2n onto itself.
Other results related to quasiconformal extension of the first element of a
Loewner chain were recently obtained by Hamada and Kohr ([7], [8]) and
Curt and Kohr [3].

2. MAIN RESULTS

Definition 2.1. Let L : B × [0,∞) → Cn be a normalized subordination
chain and let q ∈ [0, 1).

We say that L is a q-normalized subordination chain if the mapping h
defined by Theorem 1.2 satisfies the following conditions:

(i) The following inequalities hold

(2) ‖z‖2 1− q‖z‖
1 + q‖z‖

≤ Re 〈h(z, t), z〉 ≤ ‖z‖2 1 + q‖z‖
1− q‖z‖

, z ∈ B, a.e. t ∈ [0,∞).

(ii) There is q1 > 0 such that

(3) ‖h(z, t)‖ ≤ q1, z ∈ B, a.e. t ∈ [0,∞).

Next, we shall present some classes of mappings which satisfy the conditions
(2) and (3).
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Remark 2.2. Let q ∈ [0, 1) and h : B × [0,∞) → Cn be defined by

(4) h(z, t) = [I − E(z, t)]−1[I + E(z, t)](z)

where the mapping E satisfies
(i) E(z, t) ∈ L(Cn), z ∈ B, t ∈ [0,∞)
(ii) E(·, t) : B → L(Cn) is an holomorphic mapping
(iii) E(0, t) = 0, ‖E(z, t)‖ ≤ q < 1.

Then h satisfies (2) and (3).

Proof. By using the Schwarz lemma (see [9]) we easily obtain

‖E(z, t)‖ ≤ q‖z‖, z ∈ B.

The previous inequality and Definition 2.1 imply that

(5)
∣∣∣‖h(z, t)‖ − ‖z‖

∣∣∣ ≤ ‖h(z, t)− z‖ = ‖E(z, t)(h(z, t) + z)‖

≤ q‖z‖(‖h(z, t)‖+ ‖z‖)
and hence

‖h(z, t)‖ ≤ ‖z‖1 + q‖z‖
1− q‖z‖

<
1 + q

1− q
.

We obtain that (3) holds with q1 = 1+q
1−q .

The right inequality in (2) is an immediate consequence of the following
inequality

‖h(z, t)‖ ≤ ‖z‖1 + q‖z‖
1− q‖z‖

.

In order to prove the left part of (2) we shall first prove that

(6) ‖z‖1− q‖z‖
1 + q‖z‖

≤ ‖h(z, t)‖, z ∈ B.

From the definition of h we have

‖h(z, t)− z‖2 ≤ q2‖z‖2‖h(z, t) + z‖2

and hence

‖h(z, t)‖2+‖z‖2−2Re 〈h(z, t), z〉 ≤ q2‖z‖2(‖h(z, t)‖2+‖z‖2+2Re 〈h(z, t), z〉).

By using the previous two inequalities we obtain that

(1 + q2‖z‖2)Re 〈h(z, t), z〉 ≥ (1− q2‖z‖2)(‖h(z, t)‖2 + ‖z‖2)

≥ 1− q2‖z‖2

(1 + q‖z‖)2
(1 + q2‖z‖2)‖z‖2

where from the left part (3) is an easily consequence. �

In the next remark we shall present a large class of mappings which satisfy
(3).
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Remark 2.3. Let h : B × [0,∞) → Cn such that
(i) h(·, t) ∈ H(B), h(0, t) = 0, Dh(0, t) = I, t ∈ [0,∞).
(ii) There exists q ∈ [0, 1) such that

(7)
∣∣∣∣〈h(z, t), z〉

‖z‖2
− 1 + q2

1− q2

∣∣∣∣ ≤ 2q

1− q
, z ∈ B, t ∈ [0,∞).

Then h satisfies the inequality (3).

Proof. Let z ∈ B \ {0}, t ≥ 0 and let p : U → C be defined by

p(ζ) =
1
ζ

〈
h

(
ζ

z

‖z‖
, t

)
,

z

‖z‖

〉
, if ζ 6= 0

and
p(0) = lim

ζ→0
p(ζ).

Since p(0) = 1 and
∣∣∣∣p(ζ)− 1 + q2

1− q2

∣∣∣∣ ≤ 2q

1− q2
we have p(ζ) ≺ 1 + qζ

1− qζ
, and

hence
1− q|ζ|
1 + q|ζ|

≤ Re p(ζ) ≤ 1 + q|ζ|
1− q|ζ|

, ζ ∈ U.

If we take ζ = ‖z‖ in the previous inequality we easily obtain that (3)
holds. �

We now are able to present our main result.

Theorem 2.4. Let q ∈ [0, 1) and L : B × [0,∞) → Cn be a normalized
q-subordination chain. Assume that the following conditions are satisfied:
(i) There exist M > 0 and α ∈ [0, 1) such that

(8) ‖DL(z, t)‖ ≤ etM

(1− ‖z‖)α
, z ∈ B, t ∈ [0,∞)

(ii) There exists K > 0 such that L(·, t) is K-quasiconformal for each t ≥ 0.
Further, suppose that there exist a sequence {tm}m∈N, tm > 0, lim

m→∞
tm =

∞, and a mapping F ∈ H(B) such that

(9) lim
m→∞

L(z, tm)
etm

= F (z),

locally uniformly on B. Then f(z) = L(z, 0) extends to a quasiconformal
homeomorphism of R2n onto itself.

The proof is based on several lemmas which will be first presented.
Lemma 2.5 (see [11]) is the n-dimensional version of Hardy’s and Little-

wood’s Theorem [6]. This result will be applied in order to extend to B the
mappings L(·, t) (t ≥ 0) given in Theorem 2.4.
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Lemma 2.5. Suppose that α ∈ [0, 1] and g is a complex valued holomorphic
function for z ∈ B such that

(10)
∣∣∣∣∂g(z)

∂zj

∣∣∣∣ ≤ Mj

(1− ‖z‖)α
, j = 1, . . . , n, z ∈ B.

Then g has a continuous extension to B and there is A > 0 such that

(11) |g(z)− g(w)| ≤ A‖z − w‖1−α, z, w ∈ B.

Lemma 2.6. [11] Let f ∈ H(B), M > 0 and α ∈ [0, 1) be such that

(12) ‖Df(z)‖ ≤ M

(1− ‖z‖)α
, z ∈ B.

Then f has a continuous extension to B (also denoted by f) and there exists
A > 0 such that

(13) ‖f(z)− f(w)‖ ≤ A‖z − w‖1−α, z, w ∈ B.

Lemma 2.7. Let v : B × [0,∞)2 → Cn be the transition mapping associated
to a q-normalized subordination chain. Then the following inequalities hold:

(14)
et‖v(z, s, t)‖

(1 + q‖v(z, s, t)‖)2
≥ es‖z‖

(1 + q‖z‖)2
, z ∈ B, t ≥ s,

(15)
et‖v(z, s, t)‖

(1− q‖v(z, s, t)‖)2
≤ es‖z‖

(1− q‖z‖)2
, z ∈ B, t ≥ s.

Also, for all t ≥ s we have

(16) v(B, s, t) ⊆ B.

Proof. For all s ≥ 0 and a.e. t ≥ s we have (see [2])

∂v

∂t
(z, s, t) = −h(v(z, s, t)), z ∈ B

and
d
dt
‖v(t)‖ =

1
‖v(t)‖

Re
〈

dv

dt
(t), v(t)

〉
.

By using the previous inequalities and (2) we obtain that

(17)
d
dt
‖v(t)‖ = − 1

‖v(t)‖
Re 〈h(v(t), t), v(t)〉, a.e. t ≥ s.

−‖v(t)‖1 + q‖v(t)‖
1− q‖v(t)‖

≤ d
dt
‖v(t)‖ ≤ −‖v(t)‖1− q‖v(t)‖

1 + q‖v(t)‖
, a.e. t ≥ s.

We may integrate the inequality (17) and make a change of variable to
obtain (14).
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In order to obtain (15) we use the inequality

d
dτ
‖v(τ)‖

‖v(τ)‖
≤ −1− q‖v(τ)‖

1 + q‖v(τ)‖
≤ −1− q

1 + q
a.e. τ ∈ [s, t].

We integrate the previous inequality and obtain that

‖v(z, s, t)‖ ≤ ‖z‖e−
1−q
1+q

(t−s)

which shows that (16) holds. �

Lemma 2.8. Let L : B× [0,∞) → Cn be a q-normalized subordination chain
and let {tm}m∈N be a sequence with tm > 0, lim

m→∞
tm = ∞, F ∈ H(B), such

that

lim
m→∞

L(z, tm)
etm

= F (z)

locally uniformly on B. Then the following inequalities hold:

(18)
es‖z‖

(1 + q‖z‖)2
≤ ‖L(z, s)‖ ≤ es‖z‖

(1− q‖z‖)2
, z ∈ B, s ≥ 0.

Proof. The inequalities (18) are easily consequence of (14), (15) and of the
fact that (see [2])

L(z, s) = lim
t→∞

etv(z, s, t)

locally uniformly on B. �

Lemma 2.9. Let L : B× [0,∞) → Cn be a q-normalized subordination chain
and let M > 0 and α ∈ [0, 1) be such that

(19) ‖DL(z, t)‖ ≤ etM

(1− ‖z‖)α
, z ∈ B, t ∈ [0,∞).

Then the following statements hold:

(i) For each t ≥ 0 the mapping L(·, t) has a continuous and univalent extension
to B (also denoted by L(·, t)).

(ii) There exist K, L > 0 such that

(20) e−t‖L(z, t)− L(w, t)‖ ≤ K‖z − w‖1−α, z, w ∈ B, t ≥ 0

and

(21) ‖L(z, t)− L(z, s)‖ ≤ Let(t− s)1−α, z ∈ B, 0 ≤ s < t.

Proof. By using Lemmas 2.5 and 2.6 and the assumption (19) we deduce
that the mapping e−tL(·, t) has a continuous extension to B and

e−t‖L(z, t)− L(w, t)‖ ≤ K‖z − w‖1−α, z, w ∈ B, t ≥ 0.

Hence, the condition (21) is fulfilled.
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Since L(z, s) = L(v(z, s, t), t) for 0 ≤ s < t and L(·, s) is continuous on
B, by using (16) we have L(B, s) ⊂ L(B, t) for 0 ≤ s < t. Then v(z, s, t) =
L−1(L(z, s), t), z ∈ B, defines a continuous extension of v to B.

For z ∈ B, t > s ≥ 0, we have

(22) ‖z − v(z, s, t)‖ =
∥∥∥∥∫ t

s

∂

∂τ
v(z, s, τ)dτ

∥∥∥∥
=

∥∥∥∥∫ t

s
h(v(z, s, τ), τ)dτ

∥∥∥∥ ≤ q1(t− s).

Since v is continuous on B, the previous relation holds for z ∈ B. Next, we
shall prove that L(·, s) is univalent on B. Suppose that L(z1, s) = L(z2, s), for
z1, z2 ∈ B. Then for t > s we have

L(v(z1, s, t), t) = L(v(z2, s, t), t).

Since v(z1, s, t), v(z2, s, t) ∈ B for 0 ≤ s < t and L(·, t) is univalent on B, we
obtain v(z1, s, t) = v(z2, s, t). If we let t → s, v(z1, s, t) = v(z2, s, t) we obtain
that z1 = z2. Here we also use (22).

From (22) and (19) we easily obtain that

‖L(z, s)− L(z, t)‖ = ‖L(v(z, s, t), t)− L(z, t)‖ ≤ etM‖z − v(z, s, t)‖1−α

≤ etMq1−α
1 (t− s)1−α, z ∈ B, t > s ≥ 0,

which means that (21) holds with L = Mq1−α
1 . �

We are now able to prove the main result.

Proof of Theorem 2.4. Let

F (z) =

 L(z, 0), ‖z‖ ≤ 1

L

(
z

‖z‖
, log ‖z‖

)
, ‖z‖ > 1.

First, we will show that F is a homeomorphism of R2n onto itself. Since
for every t ≥ 0, the mapping L(·, t) is univalent on B and for all 0 ≤ s < t we
have L(B, s) ⊆ L(B, t) we obtain that F is univalent on Cn (R2n).

The continuity in Cn (R2n) of the extension F follows since (20) and (21)
yield that L(z, t) is continuous in B × [0,∞). The left-hand inequality (18)
shows that F (z) → ∞ as z → ∞ and hence that F is a homeomorphism of
R2n. It remains to show that F is quasiconformal in R2n. We shall do this by
using an approximation argument similar to Becker’s [1] and Pfaltzgraff [11].

Let r > 1 and let

(23) Lr(z, t) = rL
(z

r
, t

)
, hr(z, t) = rh

(z

r
, t

)
, t ≥ 0,

(24) Fr(z) =

 Lr(z, 0), ‖z‖ ≤ 1

Lr

(
z

‖z‖
, log ‖z‖

)
, ‖z‖ ≥ 1.
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Clearly, Lr(z, t) satisfies the differential equation

(25)
∂

∂t
Lr(z, t) = DLr(z, t)hr(z, t) a.e. t ≥ 0, for all ‖z‖ < r

and hence ‖z‖ ≤ 1.
On the other hand, since

‖Lr(z, t)− L(z, t)‖ ≤
∥∥∥rL

(z

r
, t

)
− L

(z

r
, t

)∥∥∥ +
∥∥∥L

(z

r
, t

)
− L(z, t)

∥∥∥
≤ (1− r)

∥∥∥L
(z

r
, t

)∥∥∥ + Met
∥∥∥z

r
− z

∥∥∥1−α

≤ et
‖z‖
r(

1− q‖z‖
r

)2 (1− r) + Met ‖z‖1−α

r1−α
(1− r)1−α

≤ e
T
r(

1− q

r

)2 (1− r) + MeT 1
r1−α

(1− r)1−α,

for all ‖z‖ ≤ 1, 0 < t ≤ T , we deduce that Lr(z, t) → L(z, t), uniformly in
‖z‖ ≤ 1, 0 ≤ t ≤ T , as r decreases to 1. Hence Fr converges to F uniformly
in R2n as r decreases to 1.

Next, we shall show that Fr (as a mapping from R2n to R2n) is ACL, differ-
entiable a.e., and has outer dilatation bounded a.e. by a bound independent
of r. Then it will follow [12] that F is quasiconformal.

We show that e−tLr(z, t) satisfies a Lipschitz condition on B with exponent
1. Indeed, we have

‖DLr(z, t)‖ =
∣∣∣DL

(z

r
, t

)∥∥∥ ≤ etM(
1− ‖z‖

r

)α ≤ etM(
1− 1

r

)α

and hence

(26) ‖Lr(z, t)−Lr(w, t)‖ ≤ etM(
1− 1

r

)α ‖z−w‖ = etM(r)‖z−w‖, z, w ∈ B.

By using (26) and the fact that L is a Loewner chain we get

‖Lr(z, t)− Lr(z, s)‖ = r
∥∥∥L

(z

r
, t

)
− L

(z

r
, s

)∥∥∥
= r

∥∥∥L
(z

r
, t

)
− L

(
v

(z

r
, s, t

)
, t

)∥∥∥
≤ etM(r)r

∣∣∣z
r
− v

∥∥∥z

r
, s, t

)∥∥∥
≤ etM(r)rq1(t− s)

= etL(r)(t− s), z ∈ B, 0 ≤ s < t.

(27)
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Next, we will show that Fr satisfies a local Lipschitz condition (with expo-
nent one) on Cn. It is sufficient to prove this condition for z, w ∈ Cn with
‖z − w‖ < 1. We prove this condition in the following 3 cases:

i) z, w ∈ B;
ii) z, w ∈ Cn \B, ‖z‖ ≤ ‖w‖ and ‖w − z‖ < 1;
iii) z ∈ B, w ∈ Cn \B.
i) If z, w ∈ B we obtain by (26) that:

(28) ‖Fr(z)− Fr(w)‖ = ‖Lr(z, 0)− Lr(w, 0)‖
≤ M(r)‖z − w‖.

ii) If z, w ∈ Cn, ‖z‖ ≤ ‖w‖ and ‖w − z‖ < 1 we obtain by (26) and (27)
that

‖Fr(z)− Fr(w)‖ =
∥∥∥∥Lr

(
z

‖z‖
, log ‖z‖

)
− Lr

(
w

‖w‖
, log ‖w‖

)∥∥∥∥
≤

∥∥∥∥Lr

(
z

‖z‖
, log ‖z‖

)
− Lr

(
z

‖z‖
, log ‖w‖

)∥∥∥∥+

+
∥∥∥∥Lr

(
z

‖z‖
, log ‖w‖

)
− Lr

(
w

‖w‖
, log ‖w‖

)∥∥∥∥
≤ M(r)

∥∥∥∥z − ‖z‖
‖w‖

w

∥∥∥∥ + ‖w‖ log
‖w‖
‖z‖

L(r)

≤ qM(r)‖z − w‖+
‖w‖
‖z‖

(‖w‖ − ‖z‖)L(r)

≤ 2[M(r) + L(r)]‖w − z‖.

(29)

iii) If z ∈ B and w ∈ Cn\B then there exists a real number β with 0 < β < 1
such that u = (1− β)z + βz ∈ ∂B. By using (28) and (29) we obtain that:

‖Fr(z)− Fr(w)‖ ≤ ‖Fr(z)− Fr(u)‖+ ‖Fr(u)− Fr(w)‖

= ‖Lr(z, 0)− Lr(u, 0)‖+
∥∥∥∥Lr(u, 0)− Lr

(
w

‖w‖
, log ‖w‖

)∥∥∥∥
≤ M(r)‖u− z‖+ 2[M(r) + L(r)]‖u− w‖
≤ [3M(r) + 2L(r)]‖z − w‖.

Thus, Fr satisfies a local Lipschitz condition. Hence Fr is ACL in R2n and
so is (real) differentiable a.e. in R2n.

It remains to prove that Fr has outer dilatation bounded a.e. by a bound
independent of r.

Let r > 1 and let G(z) = Fr(z) (in order to simplify notation).
We let z = (x, y) = (x1, y1, . . . , xn, yn), ‖z‖ ≥ 1, be a point when the

mapping G = (U, V ) = (U1, V1, U2, V2, . . . , Un, Vn) defined by

G((x1, y1, . . . , xn, yn)) = (U1, V1, . . . , Un, Vn)

Uk = Re Gk(x, y), Vk = Im Gk(x, y), k = 1, . . . , n,
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is differentiable.
To compute the (real) derivative of (30) we use the chain rule on the com-

posed mappings.
By denoting ζ =

z

r‖z‖
, t = log ‖z‖, uk = Re Lk(ζ, t), vk = Im Lk(ζ, t) we

obtain:

(30) D(U, V, x, y) =
1
‖z‖

D(u, v, ξ, η)
{

I + r2

[
Re (h(ζ, t)− ζ)
Im (h(ζ, t)− ζ)

]
(ξ, η)

}
If we denote by A = r2

[
Re (h(ζ, t)− ζ)
Im (h(ζ, t)− ζ)

]
(ξ, η) by using a similar argu-

ment as in [11] we obtain that

det(I + A) ≥ 1− q

1 + q

and hence
D(U, V ;x, y) =

1
‖z‖

D(u, v, ξ, η)[I + A]

Also, we have

‖D(U, V ;x, y)‖ ≤ 1
‖z‖

‖DL(ζ, t)‖‖I + A‖.

Since

‖A‖ ≤ r2‖h(ζ, t)− ζ‖
∥∥∥∥ z

r‖z‖

∥∥∥∥ = t‖h(ζ, t)− ζ‖

≤ 1 + r ‖h(ζ, t)‖ ≤ 1 + q1

and hence ‖I + A‖ ≤ 2 + q1.
By using the previous inequalities and the fact that L(z, t) is a quasicon-

formal mapping we get

‖D(U, V ;x, y)‖2n ≤ ‖z‖−2n‖DL(ζ, t)‖2n(2 + q1)2n

≤ 1 + q

1− q
(2 + q1)2n|J(U, V ;x, y)|.

This inequality completes the proof. �
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[12] Väisälä, J., Lectures on n-Dimensional Quasiconformal Mappings, Lectures Notes in
Mathematics, vol. 229, Springer Verlag, 1971.

Received January 15, 2007 Faculty of Mathematics and Computer Science
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