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ON SOME CLASSES OF SETS VIA θ-GENERALIZED OPEN
SETS

M. CALDAS, S. JAFARI and T. NOIRI

Abstract. In this paper, we introduce and study the notions of θ-g-derived,
θ-g-border, θ-g-frontier and θ-g-exterior of a set via the notion of θ-g-open sets.
Nakaoka and Oda ([9] and [10]) introduced the notion of maximal open sets
and minimal closed sets. By the same token, we introduce new classes of sets
called maximal θ-g-open sets, minimal θ-g-closed sets, θ-g-semi maximal open
sets and θ-g-semi minimal closed sets and investigate some of their fundamental
properties.
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1. INTRODUCTION

Generalized open sets play a very important role in General Topology and
they are now the research topics of many topologists worldwide. Indeed a sig-
nificant theme in General Topology and Real Analysis concerns the variously
modified forms of continuity, separation axioms etc by utilizing generalized
open sets. One of the most well-known notions and also an inspiration source
is the notion of θ-open sets introduced by N. V. Velic̆ko [12] in 1968. In 1943,
Fomin [6] (see, also [7]) introduced the notion of θ-continuity. The notions
of θ-closed subsets and the θ-closure were also introduced by Veličko [12] for
the purpose of studying the important class of H-closed spaces in terms of
arbitrary filterbases. Dickman and Porter [3], [4] and Joseph [8] continued
the work of Veličko. Recently Noiri and Jafari [11] have also obtained several
new and interesting results related to these sets. Quite recently, Caldas et al.
[[1], [2]] introduced and studied the notions of Λθ-sets, (Λ, θ)-closed sets and
(Λ, θ)-open sets by utilizing θ-open sets and θ-closed sets.

In what follows (X, τ) and (Y, σ) (or X and Y ) denote topological spaces.
Let A be a subset of X. We denote the interior and the closure of a set A by
Int(A) and Cl(A), respectively. A point x ∈ X is called a θ-cluster point of A
if A∩Cl(U) 6= ∅ for every open set U of X containing x. The set of all θ-cluster
points of A is called the θ-closure of A and is denoted by Clθ(A). A subset A
is called θ-closed if A = Clθ(A). The complement of a θ-closed set is called
θ-open. We denote the collection of all θ-open (respectively, θ-closed) sets by
θ(X, τ) (respectively, clθ(X, τ)). A subset A of a topological space (X, τ) is
called θ-generalized closed (= θ-g-closed) [5] if Clθ(A) ⊆ U , whenever A ⊆ U
and U is open in (X, τ). Hence the union of two θ-g-closed sets is a θ-g-closed
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set and the intersection of two θ-g-closed sets is generally not a θ-g-closed
set. By ([5], Theorem 3.12(iii)), the finite intersection of θ-g-closed sets is not
always θ-g-closed. In a T1-space θ-g-closed are θ-closed and in a T 1

2
-space any

θ-g-closed set is a closed set. The complement of a θ-g-closed set is called
θ-g-open equivalently A is θ-g-open if F ⊂ Intθ(A) whenever F is closed and
F ⊂ A. If A is θ-g-open in X and B is θ-g-open in Y , then A×B is θ-g-open
in X × Y [5]. The union of any θ-g-open sets is not always θ-g-open.

A proper nonempty open set (resp. closed set) U of X (resp. V of X) is
said to be a maximal open set [9] (resp. minimal closed set [10]) if any open
(resp. closed) set which contains U is either X or U (resp.contained in V is
either ∅ or V ). The purpose of the present paper is to offer and study some
new notions such as θ-g-derived, θ-g-border, θ-g-frontier and θ-g-exterior of
a set via the notion of θ-g-open sets. We also introduce and investigate new
classes of sets called maximal θ-g-open sets, minimal θ-g-closed sets, θ-g-semi
maximal open sets and θ-g-semi minimal closed sets vis θ-g-open sets and
θ-g-closed sets.

2. PROPERTIES OF θ-G-OPEN SETS

Definition 1. The intersection of all θ-g-closed sets containing a set A is
called the θ-g-closure of A and is denoted by θClg(A). This is, for any A ⊂ X,
θClg(A) =

⋂
{F ∈ Γ : A ⊂ F} where Γ = {F : F ⊂ X and F is θ-g-closed}.

The collection of all θ-g-closed (resp. θ-g-open) subsets of X will be denoted
by θGC(X) (resp. θGO(X)). We set θGC(X, x) = {V ∈ θGC(X) : x ∈ V }
for x ∈ X. We define similarly θGO(X, x).

Theorem 2.1. For any subset A of a space X, the following statements
hold:
(1) A ⊂ θClg(A) ⊂ Clθ(A).
(2) θClg(A) is not always θ-g-closed.
(3) x ∈ θClg(A) if and only if for any θ-g-open set U containing x, A

⋂
U 6= ∅.

Proof. (1) It suffices to observe that every θ-closed is θ-g-closed.
(3) Necessity. Suppose that x ∈ θClg(A). Let U be a θ-g-open set containing
x such that A

⋂
U = ∅. And so, A ⊂ X\U . But X\U is θ-g-closed and hence

θClg(A) ⊂ X\U . Since x /∈ X\U , we obtain x /∈ θClg(A) which is contrary to
the hypothesis.

Sufficiency. Suppose that every θ-g-open set of X containing x meets A. If
x /∈ θClg(A) , then there exists a θ-g-closed set F of X such that A ⊂ F and
x /∈ F . Therefore x ∈ X\F ∈ θGO(X). Hence X\F is a θ-g-open set of X
containing x, but (X\F )

⋂
A = ∅. This is contrary to the hypothesis. �

In general the converse of Theorem 2.1(1) may not be true.

Example 2.2. Let X = {a, b, c, d} with the topology

τ = {∅, {a}, {a, b}, {a, c, d}, X}.
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Then {∅, X} is the set of all θ-closed sets in (X, τ) and
θGC(X, τ) = {∅, {b, c}, {b, d}, {b, c, d}, {a, b, d}, {a, b, c}, X}. Hence:
(i) Clθ({b}) = X, θClg({b}) = {a, c} and Clθ({b}) 6⊆ θClg({b}).
(ii) θClg({c, d}) = {b, c, d}, Cl({c, d}) = {c, d} and θClg({c, d}) 6⊆ Cl({c, d}).
θClg({b, d}) = {b, d}, Cl({b, d}) = {b, c, d} and Cl({b, d}) 6⊆ θClg({b, d}).

Example 2.3. Let (X, τ) be the space in the example above. Then the set
θClg({b}) = {b} is not θ-g-closed.

Definition 2. Let A be a subset of a space X. A point x ∈ A is said to be
a θ-g-limit point of A if for each θ-g-open set U containing x , U∩(A\{x}) 6= ∅.
The set of all θ-g-limit points of A is called the θ-g-derived set of A and is
denoted by θDg(A).

Theorem 2.4. For subsets A,B of a space X, the following statements
hold:
(1) θDg(A) ⊂ Dθ(A), where Dθ(A) is the θ-derived set of A.
(2) If A ⊂ B, then θDg(A) ⊂ θDg(B).
(3) θDg(A) ∪ θDg(B) ⊂ θDg(A ∪B) and θDg(A ∩B) ⊂ θDg(A) ∩ θDg(B).
(4) θDg(θDg(A))\A ⊂ θDg(A).
(5) θDg(A ∪ θDg(A)) ⊂ A ∪ θDg(A).

Proof. (1) It suffices to observe that every θ-open set is θ-g-open.
(3) Follows by (2).
(4) If x ∈ θDg(θDg(A))\A and U is an θ-g-open set containing x, then U ∩
(θDg(A)\{x}) 6= ∅. Let y ∈ U ∩ (θDg(A)\{x}). Then since y ∈ θDg(A) and
y ∈ U , U ∩ (A\{y}) 6= ∅. Let z ∈ U ∩ (A\{y}). Then z 6= x for z ∈ A and
x /∈ A. Hence U ∩ (A\{x}) 6= ∅. Therefore x ∈ θDg(A).
(5) Let x ∈ θDg(A ∪ θDg(A)). If x ∈ A, the result is obvious. So let x ∈
θDg(A ∪ θDg(A))\A, then for any θ-g-open set U containing x, U ∩ (A ∪
θDg(A)\{x}) 6= ∅. Thus U ∩ (A\{x}) 6= ∅ or U ∩ (θDg(A)\{x}) 6= ∅. Now it
follows similarly from (4) that U∩(A\{x}) 6= ∅. Hence x ∈ θDg(A). Therefore,
in any case θDg(A ∪ θDg(A)) ⊂ A ∪ θDg(A). �

In general the converse of Theorem 2.4(1) may not be true and the equality
does not hold in (3) of Theorem 2.4.

Example 2.5. A counterexample illustrating that θDg(A∩B) 6= θDg(A)∩
θDg(B) in general can be easily found in regular T1-spaces (e.g. in R), for
which open, θ-open and θ-g-open sets (and hence D, Dθ and θDg) coincide.

Theorem 2.6. For any subset A of a space X, θClg(A) = A ∪ θDg(A).

Proof. Since θDg(A) ⊂ θClg(A), A ∪ θDg(A) ⊂ θClg(A). On the other
hand, let x ∈ θClg(A). If x ∈ A, then the proof is complete. If x /∈ A,
each θ-g-open set U containing x intersects A at a point distinct from x, so
x ∈ θDg(A). Thus θClg(A) ⊂ A ∪ θDg(A), which completes the proof. �
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Definition 3. An point x ∈ X is said to be a θ-g-interior point of A if
there exists an θ-g-open set U containing x such that U ⊂ A. The set of all
θ-g-interior points of A is called the θ-g-interior of A and denoted by θIntg(A).

Theorem 2.7. For subsets A,B of a space X, the following statements are
true:
(1) θIntg(A) =

⋃
{U | U ⊂ A,U ∈ θGO(X)}.

(2) If A is θ-g-open then A = θIntg(A).
(3) If A is θ-g-open then θIntg(θIntg(A)) = θIntg(A).
(4) A\θDg(X\A) ⊂ θIntg(A).
(5) X\θIntg(A) = θClg(X\A).
(6) X\θClg(A) = θIntg(X\A).
(7) A ⊂ B, then θIntg(A) ⊂ θIntg(B).
(8) θIntg(A) ∪ θIntg(B) ⊂ θIntg(A ∪B).
(9) θIntg(A) ∩ θIntg(B) ⊃ θIntg(A ∩B).

Proof. (4) If x ∈ A\θDg(X\A), then x /∈ θDg(X\A) and so there exists a
θ-g-open set U containing x such that U ∩ (X\A) = ∅. Then x ∈ U ⊂ A and
hence x ∈ θIntg(A), i.e., A\θDg(X\A) ⊂ θIntg(A).
(5) X\θIntg(A) = ∩{F ∈ X | A ⊂ F, (F = θ-g-closed)} = θClg(X\A). �

Definition 4. θbg(A) = A\θIntg(A) is called the θ-g-border of A.

Theorem 2.8. For a subset A of a space X, the following statements hold:
(1) θbg(A) ⊂ bθ(A), where bθ(A) denotes the θ-border of A.
(2) A = θIntg(A) ∪ θbg(A).
(3) θIntg(A) ∩ θbg(A) = ∅.
(4) If A is θ-g-open, then θbg(θIntg(A)) = ∅.
(5) θIntg(θbg(A)) = ∅.
(6) θbg(θbg(A)) = θbg(A).
(7) θbg(A) = A ∩ θClg(X\A).

Proof. (5) If x ∈ θIntg(θbg(A)), then x ∈ θbg(A). On the other hand, since
θbg(A) ⊂ A, x ∈ θIntg(θbg(A)) ⊂ θIntg(A). Hence x ∈ θIntg(A) ∩ θbg(A)
which contradicts (3). Thus θIntg(θbg(A)) = ∅.
(7) θbg(A) = A\θIntg(A) = A\(X\θClg(X\A)) = A ∩ θClg(X\A). �

Example 2.9. Consider the topological space (X, τ) given in Example 2.2,
where θGC(X, τ) = {∅, {b, c}, {b, d}, {b, c, d}, {a, b, d}, {a, b, c}, X}. If A =
{b, c}. Then θbg(A) = {b} and bθ(A) = {b, c}. Hence bθ(A) 6⊆ θbg(A) , i.e., in
general the opposite implication of Theorem 2.8 (1) may not be true.

Definition 5. θFrg(A) = θClg(A)\θIntg(A) is called the θ-g-frontier of
A.

Theorem 2.10. For a subset A of a space X, the following statements hold:
(1) θFrg(A) ⊂ Frθ(A), where Frθ(A) denotes the θ-frontier of A.
(2) θClg(A) = θIntg(A) ∪ θFrg(A).
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(3) θIntg(A) ∩ θFrg(A) = ∅.
(4) θbg(A) ⊂ θFrg(A).
(5) If A is a θ-g-open set, then θFrg(A) = θDg(A).
(6) θFrg(A) = θClg(A) ∩ θClg(X\A).
(7) θFrg(A) = θFrg(X\A).
(8) θFrg(θIntg(A)) ⊂ θFrg(A).
(9) θFrg(θClg(A)) ⊂ θFrg(A).
(10) θIntg(A) = A\θFrg(A).

Proof. (2) θIntg(A)∪θFrg(A) = θIntg(A)∪(θClg(A)\θIntg(A)) = θClg(A).
(3) θIntg(A) ∩ θFrg(A) = θIntg(A) ∩ (θClg(A)\θIntg(A)) = ∅.
(6) θFrg(A) = θClg(A)\θIntg(A) = θClg(A) ∩ θClg(X\A).
(9) We have that

θFrg(θClg(A)) = θClg(θClg(A))\θIntg(θClg(A))
= θClg((A))\θIntg(θClg(A)) ⊂ θClg(A)\θIntg(A) = θFrg(A).

(10) A\θFrg(A) = A\(θClg(A)\θIntg(A)) = θIntg(A). �

The converses of (1) and (4) of Theorem 2.10 are not true in general, as
shown by Example 2.11.

Example 2.11. Consider the topological space (X, τ) given in Example
2.2. If A = {d}, then Frθ(A) = X, θFrg(A) = {b}, θbg(A) = ∅. Therefore
Frθ(A) 6⊆ θFrg(A) and θFrg(A) 6⊆ θbg(A).

Recall, that a mapping f : X → Y from a topological space X into a
topological space Y is called θ-g-continuous, [5] if the inverse image of every
closed set in Y is θ-g-closed in X.

Theorem 2.12. Assume that θGO(X) is closed by unions. Then the fol-
lowing are equivalent for a function f : X → Y :
(1) f is θ-g-continuous;
(2) for every open subset V of Y , f−1(V ) ∈ θGO(X);
(3) for each x ∈ X and each V ∈ O(Y, f(x)), there exists U ∈ θGO(X, x) such
that f(U) ⊂ V .

Proof. (1) ↔ (2) : This follows for f−1(Y \V ) = X\f−1(V ).
(2) → (3) : Let V ∈ O(Y ) and f(x) ∈ V . Since f is θ-g-continuous, f−1(V ) ∈
θGO(X) and x ∈ f−1(V ). Put U = f−1(V ). Then x ∈ U and f(U) ⊂ V .
(3) → (2) : Let V be an open set of Y and x ∈ f−1(V ). Then f(x) ∈ V .
Therefore by (3) there exists a Ux ∈ θGO(X) such that x ∈ Ux and f(Ux) ⊂ V .
Therefore x ∈ Ux ⊂ f−1(V ). This implies that f−1(V ) is a union of θ-g-open
sets of X. Consequently f−1(V ) ∈ θGO(X). Hence f is θ-g-continuous. �

In the following theorem Nθ-g.c. denotes the set of points x of X for which
a function f : (X, τ) → (Y, σ) is not θ-g-continuous.
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Theorem 2.13. Assume that θGO(X) is closed by unions. Then Nθ-g.c. is
identical with the union of the θ-g-frontiers of the inverse images of θ-g-open
sets containing f(x).

Proof. Suppose that f is not θ-g-continuous at a point x of X. Then there
exists an open set V ⊂ Y containing f(x) such that f(U) is not a subset of
V for every U ∈ θGO(X, x). Hence we have U ∩ (X \ f−1(V )) 6= ∅ for every
U ∈ θGO(X) containing x. It follows that x ∈ θClg(X \ f−1(V )). We also
have x ∈ f−1(V ) ⊂ θClg(f−1(V )). This means that x ∈ θFrg(f−1(V )).

Now, let f be θ-g-continuous at x ∈ X and V ⊂ Y be any open set contain-
ing f(x). Then x ∈ f−1(V ) is a θ-g-open set of X. Thus x ∈ θIntg(f−1(V ))
and therefore x /∈ θFrg(f−1(V )) for every open set V containing f(x). �

Definition 6. θExtg(A) = θIntg(X\A) is called the θ-g-exterior of A.

Theorem 2.14. For a subset A of a space X, the following statements hold:
(1) θExt(A) ⊂ θExtg(A), where θExt(A) denotes the θ-exterior of A.
(2) θExtg(A) = θIntg(X\A) = X\θClg(A).
(3) θExtg(θExtg(A)) = θIntg(θClg(A)).
(4) If A ⊂ B, then θExtg(A) ⊃ θExtg(B).
(5) θExtg(A ∪B) ⊂ θExtg(A) ∪ θExtg(B).
(6) θExtg(A ∩B) ⊃ θExtg(A) ∩ θExtg(B).
(7) θExtg(X) = ∅.
(8) θExtg(∅) = X.
(9) θIntg(A) ⊂ θExtg(θExtg(A)).
(10) X = θIntg(A) ∪ θExtg(A) ∪ θFrg(A).

Proof. (3) Note that

θExtg(θExtg(A)) = θExtg(X\θClg(A)) = θIntg(X\(X\θClg(A)))
= θIntg(θClg(A))

(9) The following relations hold

θIntg(A) ⊂ θIntg(θClg(A)) = θIntg(X\θIntg(X\A))
= θIntg(X\θExtg(A)) = θExtg(θExtg(A)). �

3. NEW CLASSES OF SETS VIA θ-G-CLOSED AND θ-G-OPEN SETS

Definition 7. A proper nonempty θ-g-open set A of X is said to be a
maximal θ-g-open set if any θ-g-open set which contains A is either X or A.

Definition 8. A proper nonempty θ-g-closed set B of X is said to be a
minimal θ-g-closed set if any θ-g-closed set which is contained in B is either ∅
or B.

Theorem 3.1. A proper nonempty subset A of X is maximal θ-g-open if
and only if X\A is a minimal θ-g-closed set.
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Proof. Necessity. Let A be a maximal θ-g-open set. Suppose that B is a
θ-g-closed set such that B ⊂ X\A. Then A ⊂ X\B and X\B is θ-g-open.
Since A is maximal θ-g-open, we have A = X\B or X = X\B and hence
B = X\A or B = ∅. This shows that X\A is minimal θ-g-closed.

Sufficiency. The proof is similar to that of Necessity.

Definition 9. A set A in a topological space X is said to be a θ-g-semi-
maximal open if there exists a maximal θ-g-open set U such that U ⊂ A ⊂
Cl(U). The complement of a θ-g-semi-maximal open set is called a θ-g-semi-
minimal closed set.

Remark 3.2. Every maximal θ-g-open (resp. minimal θ-g-closed) set is
θ-g-semi-maximal open (resp. θ-g-semi-minimal closed).

Theorem 3.3. If A is a θ-g-semi-maximal open set of X and A ⊂ B ⊂
Cl(A). Then B is a θ-g-semi-maximal open set of X.

Proof. Since A is θ-g-semi-maximal open, there exists a maximal θ-g-open
set U such that U ⊂ A ⊂ Cl(U). Then U ⊂ A ⊂ B ⊂ Cl(A) ⊂ Cl(U). Hence
U ⊂ B ⊂ Cl(U). Thus B is θ-g-semi-maximal open. �

Theorem 3.4. A subset F of X is θ-g-semi-minimal closed if and only if
there exists a minimal θ-g-closed set G in X such that Int(G) ⊂ F ⊂ G.

Proof. Suppose F is θ-g-semi-minimal closed in X. By Definition 9, X\F
is θ-g-semi-maximal open in X. Therefore, there exists a maximal θ-g-open
set U such that U ⊂ X\F ⊂ Cl(U), which implies Int(X\U) = X\Cl(U) ⊂
F ⊂ X\U. Take G = X\U , so that G is a minimal θ-g-closed set, such that
Int(G) ⊂ F ⊂ G.

Conversely, Suppose that there exists a minimal θ-g-closed set G in X,
such that Int(G) ⊂ F ⊂ G. Hence X\G ⊂ X\F ⊂ X\Int(G) = Cl(X\G).
Therefore there exists a maximal θ-g-open set U = X\G such that U ⊂
X\F ⊂ Cl(U), i.e., X\F is θ-g-semi-maximal open in X. It follows that F is
θ-g-semi-minimal closed. �

Theorem 3.5. If G is θ-g-semi-minimal closed in X and if Int(G) ⊂ F ⊂
G, then F is also θ-g-semi-minimal closed in X.

Proof. Let G be a θ-g-semi-minimal closed set of X . Then there exists a
minimal θ-g-closed set H in X, such that Int(H) ⊂ G ⊂ H. Hence Int(H) ⊂
Int(G) ⊂ F ⊂ G ⊂ H. It follows Int(H) ⊂ F ⊂ H. Therefore F is a θ-g-semi-
minimal closed set of X. �

We close with the following questions:

Question 3.6. Is it true that θFrg(A) = θbg(A) ∪ θDg(A)?

Question 3.7. Let Y be an open subspace of X and A ⊂ Y. Is it true that
if A is a θ-g-semi-maximal open set of Y , then A is a θ-g-semi-maximal open
set of Y ?
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Question 3.8. Is it true that if Ai is a θ-g-semi-maximal open set of Xi

(i = 1, 2), then A1 ×A2 is a θ-g-semi-maximal open set of X1 ×X2 ?
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Universidade Federal Fluminense

Rua Mário Santos Braga, s/n
24020-140 Niterói, Rj, Brasil
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