MAXWELL EQUATIONS ON THE SECOND ORDER TANGENT BUNDLE

GHEORGHE ATANASIU and NICOLETA BRÎNZEI

Abstract

We generalize the geometrical theory of electromagnetic fields in [7] to the second order tangent bundle $T^{2} M$ endowed with an arbitrary N-linear connection and, by defining the current density J, we give an analoguous of the charge conservation law in the second order differential geometry. MSC 2000. 53B21, 53C60, 70 G45, 70 H 50. Key words. k-tangent bundle, nonlinear connection, N-linear connection, deflection tensor, Maxwell equations.

1. INTRODUCTION

Starting from the tensorial form of the first Maxwell equations (Gauss' law for magnetism and Faraday's law of induction), in [7], R. Miron and Gh. Atanasiu constructed an electromagnetic field theory on the k-tangent (or k-osculator) bundle endowed with a particular nonlinear connection N and a particular linear connection $C \Gamma(N)$. On the other hand, in [14] there is defined the current density and studied its divergence on the tangent bundle of order $1, T M$, also endowed with a particular linear connection.

In the following, we first aim to generalize the construction in [7] in the case of an arbitrary nonlinear connection N on the second order tangent bundle and an arbitrary metrical linear connection which preserves the distributions generated by N. Then, we define a notion of current density on the second order tangent bundle $T^{2} M$ which generalizes the one in [14], write the second Maxwell equations (the analoguous of Gauss' law for magnetism and of Ampere's law) and the charge conservation law in our geometrical context.

2. THE 2-TANGENT BUNDLE $T^{2} M$

Let M be a real n-dimensional manifold of class $\mathcal{C}^{\infty},\left(T^{2} M, \pi^{2}, M\right)$ its second order jet bundle, called in the subsequent, as in [1], the second order tangent bundle, and let $\widetilde{T^{2} M}$ be the space $T^{2} M$ without its null section. For a point $u \in T^{2} M$, let $\left(x^{i}, y^{(1) i}, y^{(2) i}\right)$ be its coordinates in a local chart.

Let N be a nonlinear connection, [5], [8]-[13], and let $\left(\underset{1}{N_{j}^{i}}, N_{2}^{i}{ }_{j}\right), i, j=$ $1, \ldots, n$ be its coefficients. Then, N determines the direct decomposition

$$
\begin{equation*}
T_{u} T^{2} M=N_{0}(u) \oplus N_{1}(u) \oplus V_{2}(u), \forall u \in T^{2} M \tag{1}
\end{equation*}
$$

We denote the adapted basis to (1) by ($\delta_{i}, \delta_{1 i}, \delta_{2 i}$) and its dual basis with $\left(d x^{i}, \delta y^{(1) i}, \delta y^{(2) i}\right)$. We have

$$
\left\{\begin{array}{l}
\delta_{i}=\frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-N_{1}^{k} \frac{\partial}{\partial y^{(1) k}}-N_{2}^{k} \frac{\partial}{\partial y^{(2) k}} \tag{2}\\
\delta_{1 i}=\frac{\delta}{\delta y^{(1) i}}=\frac{\partial}{\partial y^{(1) i}}-N_{1}^{k} \frac{\partial}{\partial y^{(2) k}} \\
\delta_{2 i}=\frac{\partial}{\partial y^{(2) i}},
\end{array}\right.
$$

respectively,

$$
\left\{\begin{array}{l}
\delta y^{(1) i}=d y^{(1) i}+M_{k}^{i} d x^{k} \tag{3}\\
\delta y^{(2) i}=d y^{(2) i}+M_{1}^{i} d y^{(1) k}+M_{2}^{i} d x^{k},
\end{array}\right.
$$

where ${ }_{1}^{M}{ }_{k}^{i},{ }_{2}{ }_{2}^{i}$ are the dual coefficients of the nonlinear connection N.
Then, a vector field $X \in \mathcal{X}\left(T^{2} M\right)$ is represented in the local adapted basis as

$$
\begin{equation*}
X=X^{(0) i} \delta_{i}+X^{(1) i} \delta_{1 i}+X^{(2) i} \delta_{2 i}, \tag{4}
\end{equation*}
$$

with the three right terms,
(5) $\quad h X=X^{H}=X^{(0) i} \delta_{i}, v_{1} X=X^{V_{1}}=X^{(1) i} \delta_{1 i}, v_{2} X=X^{V_{2}}=X^{(2) i} \delta_{2 i}$,
called d-vector fields, belonging to the distributions N, N_{1} and V_{2} respectively.

A 1-form $\omega \in \mathcal{X}^{*}\left(T^{2} M\right)$ will be decomposed as

$$
\omega=\omega_{i}^{(0)} d x^{i}+\omega_{i}^{(1)} \delta y^{(1) i}+\omega_{i}^{(2)} \delta y^{(2) i} .
$$

The terms

$$
\omega^{H}=\omega_{i}^{(0)} d x^{i}, \omega^{V_{1}}=\omega_{i}^{(1)} \delta y^{(1) i}, \omega^{V_{2}}=\omega_{i}^{(2)} \delta y^{(2) i}
$$

are called d-covector fields.
A d-tensor field is a tensor field of type (r, s) on $T^{2} M$ which acts on r d -covector fields and $s \mathrm{~d}$-vector fields, in the following manner:

$$
T(\underset{1}{\omega}, \ldots, \underset{r}{\omega}, \stackrel{1}{X}, \ldots, \stackrel{s}{X})=T\left(\underset{1}{\omega^{H}}, \ldots, \stackrel{\omega}{r}_{V_{2}}^{V_{2}}, \stackrel{1}{X}, \ldots, \stackrel{s}{X}^{V_{2}}\right) .
$$

Any tensor field $T \in \mathcal{T}_{s}^{r}\left(T^{2} M\right)$ can be split with respect to (1) into a sum of d-tensor fields.

The $\mathcal{F}\left(T^{2} M\right)$-linear mapping $J: \mathcal{X}\left(T^{2} M\right) \rightarrow \mathcal{X}\left(T^{2} M\right)$ given by

$$
\begin{equation*}
J\left(\delta_{i}\right)=\delta_{1 i}, J\left(\delta_{1 i}\right)=\delta_{2 i}, J\left(\delta_{2 i}\right)=0 \tag{6}
\end{equation*}
$$

is called the $\mathbf{2}$-tangent structure on $T^{2} M$, [8]-[13].
The Liouville vector field, [1], [5],

$$
\stackrel{2}{\mathbb{C}}=y^{(1) i} \frac{\partial}{\partial y^{(1) i}}+2 y^{(2) i} \frac{\partial}{\partial y^{(2) i}},
$$

can be written in the adapted basis (2) as

$$
\stackrel{2}{\mathbb{C}}=z^{(1) i} \delta_{1 i}+2 z^{(2) i} \delta_{2 i}
$$

Its components

$$
\begin{equation*}
z^{(1) i}=y^{(1) i}, z^{(2) i}=y^{(2) i}+\frac{1}{2} M_{1}^{i} y^{(1) j} \tag{7}
\end{equation*}
$$

define two d-vector fields, called the Liouville d-vector fields.

3. N-LINEAR CONNECTIONS

An \mathbf{N}-linear connection D, [1], is a linear connection on $T^{2} M$, which preserves by parallelism the distributions N, N_{1} and V_{2}. An N-linear connection which is also compatible to $J(D J=0)$ is called, [1], a JN-linear connection.

An N-linear connection is locally given by its nine coefficients
where

In the particular case when D is J-compatible, we have only three essential coefficients:

$$
\begin{aligned}
& \underset{(00)}{L^{i}{ }_{j k}}=\underset{(10)}{L^{i}}{ }^{j k}=\underset{(20)}{L^{i}}{ }^{i}{ }^{j k}=: L^{i}{ }_{j k}, \\
& \underset{(01)}{C^{i}{ }_{j k}}=\underset{(11)}{C^{i}{ }_{j k}}=\underset{(21)}{C^{i}}{ }_{j k}=: \underset{(1)}{C^{i}}{ }_{j k}, \\
& \underset{(02)}{C^{i}}{ }_{j k}=\underset{(12)}{C^{i}}{ }_{j k}=\underset{(22)}{C^{i}}{ }_{j k}=: \underset{(2)}{C^{i}}{ }_{j k} .
\end{aligned}
$$

Let

$$
T=T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}\left(x, y^{(1)}, y^{(2)}\right) \delta_{i_{1}} \otimes \ldots \otimes \delta_{2 i_{r}} \otimes d x^{j_{1}} \otimes \ldots \otimes \delta y^{(2) j_{s}}
$$

be a d-tensor field of type (r, s) and $X \in \mathcal{X}\left(T^{2} M\right), X=X^{H}+X^{V_{1}}+X^{V_{2}}$ as in (4). Then, the covariant derivative of T writes as

$$
D_{X} T=D_{X}^{H} T+D_{X}^{V_{1}} T+D_{X}^{V_{2}} T
$$

where the h-, v_{1} - and v_{2} - covariant derivatives $D_{X}^{H} T, D_{X}^{V_{1}} T, D_{X}^{V_{2}} T$ are given by:

$$
\begin{aligned}
& \left(D_{X}^{H} T\right)\left(\underset{1}{\omega^{H}}, \ldots, \underset{r}{\omega^{V_{2}}}, \stackrel{1}{X}{ }^{H}, \ldots, \stackrel{s}{X}^{V_{2}}\right)=X^{H}\left(T\left(\underset{1}{\omega^{H}}, \ldots, \underset{r}{\omega_{2}}, \stackrel{1}{X}{ }^{H}, \ldots, \stackrel{s}{X}^{V_{2}}\right)-\right. \\
& -T\left(D_{X}^{H}{\underset{1}{\omega}}^{H}, \ldots,{\underset{r}{\omega_{2}}}_{V_{2}}, \stackrel{1}{X}{ }^{H}, \ldots, \stackrel{s}{X}^{V_{2}}\right)-\ldots-T\left(\underset{1}{\omega^{H}}, \ldots, \underset{r}{\omega^{V_{2}}},{\underset{X}{X}}^{H}, \ldots, D_{X}^{H} \stackrel{S}{X}^{V_{2}}\right), \\
& \left(D_{X}^{V_{\beta}} T\right)\left(\omega_{1}^{H}, \ldots,{\underset{r}{\omega_{2}}}_{V_{2}}^{1}{\underset{X}{ }}^{H}, \ldots, \stackrel{S}{X}^{V_{2}}\right)=X^{V_{\beta}}\left(T\left(\omega_{1}^{H}, \ldots, \omega_{r}^{V_{2}}, X^{H}, \ldots,{\underset{X}{S}}^{V_{2}}\right)-\right. \\
& -T\left(D_{X}^{V_{\beta}}{\underset{1}{\omega}}^{H}, \ldots,{ }_{r}^{\omega_{2}}, \stackrel{1}{X^{H}}, \ldots, \stackrel{s}{X^{V_{2}}}\right)-\ldots-T\left(\underset{1}{\omega^{H}}, \ldots,{\underset{r}{\omega_{2}}}_{V_{2}}^{X^{H}}, \ldots, D_{X}^{V_{\beta}} \stackrel{s}{X}\right) \\
& (\beta=1,2) .
\end{aligned}
$$

By a straightforward calculus, one obtains the local writing:

$$
D_{X}^{H} T=X^{(0) m} T_{j_{1} \ldots j_{s} \mid m}^{i_{1} \ldots i_{r}} \delta_{i_{1}} \otimes \ldots \otimes \delta_{2 i_{r}} \otimes d x^{j_{1}} \otimes \ldots \otimes \delta y^{(2) j_{s}},
$$

where

$$
\begin{aligned}
& T_{j_{1} \ldots j_{s} \mid m}^{i_{1} \ldots i_{r}}=\delta_{m} T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}+\underset{(00)}{L^{i}{ }^{i_{1}} T_{j_{1} \ldots j_{s}}^{h i_{2} \ldots i_{r}}}+\ldots+\underset{(20)}{L}{ }^{i_{r}}{ }^{i_{r}} T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r-1} h}- \\
& -\underset{(00)}{L}{ }^{h}{ }^{h} m T_{h j_{2} \ldots j_{s}}^{i_{1} \ldots i_{r}}-\ldots-\underset{(20)}{L}{ }^{h}{ }_{j}{ }_{s} T_{j_{1} \ldots j_{s-1} h}^{i_{1} \ldots i_{r}} .
\end{aligned}
$$

Similarly,

$$
D_{X}^{V_{\beta}} T=\left.X^{(\beta) m} T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}\right|_{m} ^{(\beta)} \delta_{i_{1}} \otimes \ldots \otimes \delta_{2 i_{r}} \otimes d x^{j_{1}} \otimes \ldots \otimes \delta y^{(2) j_{s}},
$$

where

$$
\begin{aligned}
\left.T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}{ }^{(\beta)}\right|_{m}= & \delta_{\beta m} T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r}}+\underset{(0 \beta)}{C}{ }^{i_{1}} T_{j_{1} \ldots j_{s}}^{h i_{2} \ldots i_{r}}+\ldots+\underset{(2 \beta)}{C}{ }^{i_{r}} T_{j_{1} \ldots j_{s}}^{i_{1} \ldots i_{r-1} h}- \\
& -\underset{(0 \beta)^{j_{1} m} T_{h j_{2} \ldots j_{s}}^{i_{1} \ldots i_{r}}-\ldots-\underset{(2 \beta)}{C}{ }^{h}{ }_{j} m T_{j_{1} \ldots j_{s-1} h}^{i_{1} \ldots r_{r} h}(\beta=1,2) .}{i_{1}}(\beta=
\end{aligned}
$$

4. d-TENSORS OF TORSION AND CURVATURE

The torsion

$$
T(X, Y)=D_{X} Y-D_{Y} X-[X, Y]
$$

of the N-linear connection D is well determined by its components which are d-tensors of (1,2)-type ([1], [7], [8]):

$$
v_{\gamma} T\left(\delta_{\beta k}, \delta_{\alpha j}\right)=\stackrel{(\gamma)}{T}_{(\alpha \beta)}^{i}{ }_{j k} \delta_{\gamma i} \quad(\alpha, \beta, \gamma=1,2)
$$

In the notations in the cited papers, we have

$$
\begin{aligned}
& h T\left(\delta_{\beta k}, \delta_{j}\right)=\stackrel{(0)}{{\underset{T}{0 \beta}}^{(0)}}{ }_{j}{ }_{j k} \delta_{i}=\underset{(\beta 0)}{P^{i}}{ }_{j k} \delta_{i}, \quad v_{\gamma} T\left(\delta_{\beta k}, \delta_{j}\right)=\underset{(0 \beta)}{\left(\mathcal{T}^{(}\right)}{ }_{j}{ }_{j k} \delta_{\gamma i}=\underset{(\beta \gamma)}{P}{ }^{i}{ }_{j k} \delta_{\gamma i}, \\
& v_{\gamma} T\left(\delta_{2 k}, \delta_{1 j}\right)={\underset{(12)}{(\gamma)}}_{i}^{i}{ }_{j} \delta_{\gamma i}=\underset{(2 \gamma)}{Q^{i}}{ }_{j k} \delta_{\gamma i} \\
& v_{\gamma} T\left(\delta_{\beta k}, \delta_{\beta j}\right)=\underset{(\beta \beta)}{{\underset{\beta}{\gamma})}^{(\gamma)}{ }_{j k} \delta_{\gamma i}=\underset{(\beta \gamma)}{S^{i}}{ }^{i} \delta_{\gamma i}, ~}
\end{aligned}
$$

$(\beta, \gamma=1,2)$. The detailed expressions of $\underset{(\alpha \beta)}{\stackrel{(\gamma)}{\underset{~}{i}}}{ }^{j k}(\alpha, \beta, \gamma=0,1,2)$ can be found in [1].

The curvature of the N-linear connection D,

$$
R(X, Y) Z=D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z,
$$

is completely determined by its components (which are d-tensors)

$$
R\left(\delta_{\gamma l}, \delta_{\beta k}\right) \delta_{\alpha j}=\underset{(\alpha \beta \gamma))^{R}}{R}{ }_{k l}^{i} \delta_{\alpha i}(\alpha, \beta, \gamma=0,1,2) .
$$

Namely, the 2-forms of curvature of an N-linear connection are, [1],

$$
\begin{aligned}
& \underset{(\alpha)}{\Omega^{i}}{ }_{j}=\frac{1}{2} \underset{(0 \alpha)}{R}{ }_{j}^{i} k l d x^{k} \wedge d x^{l}+\underset{(1 \alpha)^{j}}{P}{ }^{i} k l d x^{k} \wedge \delta y^{(1) l}+\underset{(2 \alpha)^{j}}{P}{ }^{i} d l^{k} d x^{k} \wedge \delta y^{(2) l}+ \\
& \frac{1}{2} \underset{(1 \alpha)^{j}}{S}{ }^{i} k l \delta y^{(1) k} \wedge \delta y^{(1) l}+\underset{(2 \alpha)}{Q^{j}}{ }^{i} d l d y^{(1) k} \wedge \delta y^{(2) l}+\frac{1}{2} \underset{(2 \alpha)^{j}}{S^{i} k l} \delta y^{(2) k} \wedge \delta y^{(2) l}
\end{aligned}
$$

 $\beta=1,2)$ are d-tensors, named the d-tensors of curvature of the N-linear connection D. For a $J N$-linear connection, there holds

$$
\underset{(0)}{\Omega^{i}{ }_{j}}=\underset{(1)}{\Omega^{i}}{ }_{j}=\underset{(2)}{\Omega^{i}}{ }_{j} .
$$

The detailed expressions of the d-tensors of curvature can be found in [1].

5. METRIC STRUCTURES ON $T^{2} M$

A Riemannian metric on $T^{2} M$ is a tensor field G of type (0,2), which is nondegenerate in each $u \in T^{2} M$ and is positively defined on $T^{2} M$.

In this paper, we shall consider metrics in the form

$$
\begin{equation*}
G=\underset{(0)}{g_{i j}} i d x^{i} \otimes d x^{j}+\underset{(1)}{g_{1 j} \delta y^{(1) i} \otimes \delta y^{(1) j}+\underset{(2)}{g_{i j}} \delta y^{(2) i} \otimes \delta y^{(2) j},, ~} \tag{10}
\end{equation*}
$$

where $\underset{(\alpha)}{g} i j=\underset{(\alpha)}{g} i j\left(x, y^{(1)}, y^{(2)}\right)$; this is, so that the distributions N, N_{1} and V_{2} generated by the nonlinear connection N be orthogonal with respect to G.

An N-linear connection D is called a metrical N-linear connection if $D_{X} G=0, \forall X \in \mathcal{X}\left(T^{2} M\right)$, this is

$$
\underset{(\alpha)}{g_{i j} \mid k}=\left.\underset{(\alpha)}{g_{i j}}\right|_{k} ^{\beta}=0(\alpha=0,1,2 ; \beta=1,2)
$$

The existence of metrical N-linear connections is proved in [1]. Remember that a metrical $J N$-linear connection is the one used by R. Miron and Gh. Atanasiu in [7], namely $C \Gamma(N)=\left(L^{i}{ }_{j k}, C_{(1)}^{i}{ }_{j k}, C_{(2)}^{i}{ }_{j k}\right)$, given by

$$
\begin{aligned}
L^{i}{ }_{j k} & =\frac{1}{2} g^{i h}\left(\frac{\delta g_{j h}}{\delta x^{k}}+\frac{\delta g_{h k}}{\delta x^{j}}-\frac{\delta g_{j k}}{\delta x^{h}}\right) \\
{ }_{(\beta)}{ }^{i}{ }_{j k} & =\frac{1}{2} g^{i h}\left(\frac{\delta g_{j h}}{\delta y^{(\beta) k}}+\frac{\delta g_{h k}}{\delta y^{(\beta) j}}-\frac{\delta g_{j k}}{\delta y^{(\beta) h}}\right) \quad(\beta=1,2),
\end{aligned}
$$

where $g_{i j}=g_{i j}=g_{i j}=g_{i j}\left(g_{i j}\right.$ being a Riemannian metric on $\left.M\right)$ and $g^{i j}$ (0) (1) (2) are the elements of the inverse matrix of $\left(g_{i j}\right)$.

6. MAXWELL EQUATIONS

Let $T^{2} M$ be endowed with a nonlinear connection N, a Riemannian metric G and a metrical N-linear connection D.

Let $z^{(1) i}, z^{(2) i}$ the Liouville vector fields (7). We denote by
the deflection tensor fields of the N-linear connection D. By lowering and raising indices, we obtain the covariant deflection tensors

$$
\stackrel{(\alpha)}{D}_{i j}={\underset{(\alpha)}{g} i h}_{(\alpha)}^{D}{ }_{j}, \quad \stackrel{(\alpha \beta)}{d}_{i j}={\underset{(\alpha)}{g_{i h}} \stackrel{(\alpha \beta)}{d}^{h}}_{j} \quad(\alpha=0,1,2 ; \beta=1,2)
$$

and the contravariant deflection tensors

$$
\stackrel{(\alpha)}{D}^{i j}=\underset{(\alpha)}{g^{h j}}{ }^{(\alpha)}{ }^{i}{ }_{h}, \quad \stackrel{(\alpha \beta)}{d}{ }^{i j}=\underset{(\alpha)}{g^{h j}} \stackrel{(\alpha \beta)}{d}_{i}{ }_{h} \quad(\alpha=0,1,2 ; \beta=1,2)
$$

By means of the deflection tensors constructed above, we can define the electromagnetic tensor fields by

$$
\stackrel{(\alpha)}{F}_{i j}=\frac{1}{2}\left(\stackrel{(\alpha)}{D}_{j i}-\stackrel{(\alpha)}{D}_{i j}\right), \quad \stackrel{(\alpha \beta)}{f}_{i j}=\frac{1}{2}\left(\stackrel{(\alpha \beta)}{d}_{j i}-\stackrel{(\alpha \beta)}{d}_{i j}\right)
$$

$(\alpha=0,1,2, \beta=1,2)$.

In the particular case when the connection D is $C \Gamma(N)$, the electromagnetic tensors look as those in [7], that is,

$$
\stackrel{(\alpha)}{F}_{i j}=\frac{1}{2}\left(\frac{\delta z_{j}^{(\alpha)}}{\delta x^{i}}-\frac{\delta z_{i}^{(\alpha)}}{\delta x^{j}}\right), \stackrel{(\alpha \beta)}{f}_{i j}=\frac{1}{2}\left(\frac{\delta z_{j}^{(\alpha)}}{\delta y^{(\beta) i}}-\frac{\delta z_{i}^{(\alpha)}}{\delta y^{(\beta) j}}\right)
$$

$(\alpha=0,1,2, \beta=1,2)$.
The corresponding contravariant tensors are

$$
\stackrel{(\alpha)}{F^{i j}}=\frac{1}{2}\left(\stackrel{(\alpha)}{D}^{j i}-\stackrel{(\alpha)}{D}^{i j}\right), \quad \stackrel{(\alpha \beta)}{f} i j=\frac{1}{2}\left(\stackrel{(\alpha \beta)}{d}^{j i}-\stackrel{(\alpha \beta)}{d}_{i j}\right)
$$

or,

$$
\begin{align*}
2 \stackrel{(\alpha)}{F^{i j}} & =\underset{(\alpha)}{g^{i h}} z^{(\alpha) j}{ }_{\mid h}-\underset{(\alpha)}{g^{j h}} z^{(\alpha) i}{ }_{\mid h} \tag{11}\\
2 \stackrel{(\alpha \beta)}{f}{ }^{i j} & =\left.\underset{(\alpha)}{g^{i h}} z^{(\alpha) j}{ }^{(\beta)}\right|_{h}-\left.\underset{(\alpha)}{g^{j h}} z^{(\alpha) i}\right|_{h} ^{(\beta)}
\end{align*}
$$

$(\alpha=0,1,2, \beta=1,2)$.
By applying the Ricci identities (see [1]) of the N-linear connection D to the covariant electromagnetic tensor fields, there follows a generalization of the first Maxwell equations in the case of the 2-tangent bundle:

ThEOREM 1. The covariant electromagnetic tensors $\stackrel{(\alpha)}{F}_{i j}, \stackrel{(\alpha \beta)}{f}_{i j}$ satisfy the following identities:

$$
\text { - } 2\left\{\stackrel{(\alpha)}{F}_{j i \mid k}+\stackrel{(\alpha)}{F}_{k j \mid i}+\stackrel{(\alpha)}{F}_{i k \mid j}\right\}=\sum_{(i, j, k)}\left\{{\underset{(\alpha 00)}{R} h i j k} z^{(\alpha) h}-\sum_{\delta=0}^{2} \stackrel{(\delta)}{T}_{\underset{\delta}{0})}^{j}{ }_{j k}^{(\alpha \delta)} \stackrel{(}{d}_{i m}\right\}
$$

- $2\left\{\stackrel{(\alpha)}{F_{j i}} \stackrel{(\beta)}{\mid}_{k}+\left.\stackrel{(\alpha)}{F}_{k j}\right|_{i}+\stackrel{(\alpha)}{F}_{i k} \stackrel{(\beta)}{\mid}_{j}+\stackrel{(\alpha \beta)}{f}_{j i \mid k}+\stackrel{(\alpha \beta)}{f}_{k j \mid i}+\stackrel{(\alpha \beta)}{f}_{i k \mid j}\right\}=$

- $2\left\{{\left.\stackrel{(\alpha \beta)}{f} j i\right|_{k} ^{(\gamma)}}_{j}+\left.\stackrel{(\alpha \beta)}{f}_{k j}\right|_{i} ^{(\gamma)}+\left.\stackrel{(\alpha \beta)}{f}_{i k}\right|_{j} ^{(\gamma)}+\stackrel{(\alpha \gamma)}{f}_{j i}^{(\beta)}{ }_{k}+\left.\stackrel{(\alpha \gamma)}{f}_{k j}\right|_{i} ^{(\beta)}+\left.\stackrel{(\alpha \gamma)}{f}_{i k}\right|_{j} ^{(\beta)}\right\}=$

$(\alpha=0,1,2, \beta=1,2)$, where $\sum_{(i, j, k)}$ means cyclic sum with respect to the indices i, j, k.

In the particular case when D is the canonical $J N$-linear connection $C \Gamma(N)$, the relations above are identical to those given in [7].

In the following, by generalizing to $T^{2} M$ the construction in [14], let us $(\alpha \beta)$
consider the vector fields J given by their v_{γ}-components $\left(v_{0}=h\right)$:

$$
\begin{equation*}
v_{\gamma} \stackrel{(\alpha 0)}{J}=\left(\left.\stackrel{(\alpha)}{F}^{i j}\right|_{j} ^{(\gamma)}{ }_{j}\right) \delta_{\gamma j}, \quad v_{\gamma} \stackrel{(\alpha \beta)}{J}=\left(\left.\stackrel{(\alpha \beta)}{f} i j\right|_{j} ^{(\gamma)}{ }_{j}\right) \delta_{\gamma j}(\alpha, \beta=1,2 ; \gamma=0,1,2), \tag{12}
\end{equation*}
$$

where in the right terms above there is no sum after γ.
The equalities 12 formally generalize the second Maxwell equations. We $(\alpha \beta)$
thus can call $\stackrel{(\alpha \beta)}{J}$, current densities.
We can obtain a generalization to $T^{2} M$ of the charge conservation law by $(\alpha \beta)$
computing the divergence of J. More precisely, we have
Theorem 2. The following equalities hold:
$(\alpha, \beta=1,2)$, where $\stackrel{1}{R}_{(\gamma \gamma)}^{i j}=\sum_{\delta=0}^{2} R_{(\delta \gamma \gamma)}^{R}{ }_{i}^{m}{ }_{j m}(\gamma=0,1,2)$ are the Ricci tensors attached to D, and in the left terms above we mean sum after γ (and i).

In the equations above, for each pair of distributions (α, β), the right terms play the role of the variation of the charge density ρ from the classical theory (up to a multiplication by -2).

REFERENCES

[1] Atanasiu, Gh., New Aspects in the Differential Geometry of Second Order, Sem. de Mecanică, Univ de Vest, Timişoara, 82 (2001), 1-81.
[2] Brădeanu, T. and Ţarină, M., The Divergence Operator for Finsler Tensor Fields, Proc. National Seminar in Finsler and Lagrange Spaces, Univ. Braşov, Romania, 1986, 109-114.
[3] Ikeda S., Some Remark on the Lagrangian Theory of Electromagnetism, Tensor, N.S., 49 (1990), 204-208.
[4] Lichnerowitz, A., Theories relativistes de la gravitation et de l'electromagnetisme, Masson, Paris, 1955.
[5] Miron, R., The Geometry of Higher Order Lagrange Spaces. Applications to Mechanics and Physics, Kluwer Acad. Publ. FTPM no. 82, 1997.
[6] Miron, R. and Anastasiei, M., The Geometry of Lagrange Spaces. Theory and Applications, Kluwer Acad. Publ., no. 59, 1994.
[7] Miron, R. and Atanasiu, Gh., Geometrical Theory of Gravitational and Electromagnetic Fields in Higher Order Lagrange Spaces, Tsukuba J. of Math., 20 (1996), 137-149.
[8] Miron, R. and Atanasiu, Gh., Compendium on the higher-order Lagrange spaces: The geometry of k-osculator bundles. Prolongation of the Riemannian, Finslerian and Lagrangian structures. Lagrange spaces, Tensor N.S., 53 (1993), 39-57.
[9] Miron, R. and Atanasiu, Gh., Compendium sur les espaces Lagrange d'ordre superieur: La geometrie du fibre k-osculateur. Le prolongement des structures Riemanniennes, Finsleriennes et Lagrangiennes. Les espaces $L^{(k) n}$, Univ. Timişoara, Seminarul de Mecanică, 40 (1994), 1-27.
[10] Miron, R. and Atanasiu, Gh., Lagrange Geometry of Second Order, Math. Comput. Modelling, 20 (4) (1994), 41-56.
[11] Miron, R. and Atanasiu, Gh., Differential Geometry of the k-Osculator Bundle, Rev. Roumaine Math. Pures et Appl., 41 (3/4), (1996), 205-236.
[12] Miron, R. and Atanasiu, Gh., Higher-order Lagrange Spaces, Rev. Roumaine Math. Pures et Appl., 41 (3/4), (1996), 251-262.
[13] Miron, R. and Atanasiu, Gh., Prolongations of the Riemannian, Finslerian and Lagrangian Structures, Rev. Roumaine Math. Pures et Appl., 41 (3/4), (1996), 237-249.
[14] Miron, R., Hrimiuc, D., Shimada, H. and Sabau, S., The Geometry of Hamilton and Lagrange Spaces, Hadronic Press, Inc. USA, 1998.
[15] Miron, R. and Tatoiu-Radivoiovici, M., Extended Lagrangian Theory of Electromagnetism, Rep. Math., Phys., 21 (1988), 193-229.
[16] Voicu, N., Deviations of Geodesics in the Geometry of Second Order, Ph.D. Thesis, Babeş-Bolyai Univ., Cluj-Napoca, 2003.

Received January 1, 2007

"Transilvania" University Str. Iuliu Maniu nr. 50 500091 Braşov, Romania
E-mail: gh_atanasiu@yahoo.com
E-mail: nico.brinzei@rdslink.ro

