ON CERTAIN SUBCLASSES OF p-VALENTLY ANALYTIC FUNCTIONS OF ORDER α

M.K. AOUF

Abstract

The object of the present paper is to derive various properties and characteristics of certain subclasses of p-valently analytic functions of order α in the open unit disc by using the techniques involving the Briot-Bouquet differential subordination.

MSC 2000. 30C45.
Key words. Analytic functions, differential subordination, hypergeometric functions, starlike functions, convex functions.

1. INTRODUCTION AND DEFINITIONS

Let $A_{p}(n)$ denote the class of functions of the following form:

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=n}^{\infty} a_{p+k} z^{p+k}(p, n \in \mathbb{N}=\{1,2, \ldots\}) \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disc $U=\{z: z \in \mathbb{C}$ and $|z|<1\}$. We set $A_{p}(1)=A_{p}(p \in \mathbb{N})$. A function $f(z) \in A_{p}(n)$ is said to be in the class $S_{p}(n, \alpha)$ of p-valently starlike functions of order α if it satisfies the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \quad(0 \leq \alpha<p ; z \in U) \tag{1.2}
\end{equation*}
$$

A function $f(z) \in A_{p}(n)$ is said to be in the class $K_{p}(n, \alpha)$ of p-valently convex functions of order α if it satisfies the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \quad(0 \leq \alpha<p ; z \in U) \tag{1.3}
\end{equation*}
$$

It follows from (1.2) and (1.3) that

$$
f(z) \in K_{p}(n, \alpha) \Leftrightarrow \frac{z f^{\prime}(z)}{p} \in S_{p}^{*}(n, \alpha)
$$

The classes $S_{p}(n, \alpha)$ and $K_{p}(n, \alpha)$ were studied by Aouf et al. [1], see [9] as well for more details. In particular, the class $S_{p}(1, \alpha)=S_{p}^{*}(\alpha)(0 \leq \alpha<p ; p \in \mathbb{N})$ was considered by Patil and Thakare [10]. We also set $K_{p}(1, \alpha)=K_{p}(\alpha)(0 \leq$ $\alpha<p ; p \in N)$.

We now introduce an interesting subclasses of $A_{p}(n)$ as follows:

Definition 1. A function $f(z)$ from the class $A_{p}(n)$ is said to be in the class $R_{p, j}(n, A, B, \alpha)$ if it satisfies the following subordination condition:

$$
\begin{gather*}
\frac{(p-j)!}{p!} \frac{f^{(j)}(z)}{z^{p-j}} \prec \frac{1+\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right] z}{1+B z} \tag{1.4}\\
\left(z \in U ; 0 \leq j \leq p,-1 \leq B<A \leq 1,0 \leq \alpha<\frac{p!}{(p-j)!}\right)
\end{gather*}
$$

We note that:
(i) $R_{p, j}(n, A, B, 0)=R_{p, j}(n, A, B)$ (Srivastava et al. [12]);
(ii) $R_{p, j}(n, 1,-1, \alpha)=R_{p, j}(n, \alpha)$, where $R_{p, j}(n, \alpha)$ denotes the class of functions $f(z) \in A_{p}(n)$ satisfying the following inequality:

$$
\operatorname{Re}\left\{\frac{f^{(j)}(z)}{z^{p-j}}\right\}>\alpha\left(0 \leq \alpha<\frac{p!}{(p-j)!} ; z \in U ; 0 \leq j \leq p\right)
$$

Definition 2. A function $f(z) \in A_{p}$ is said to be in the class $H_{p, j}^{\lambda}(A, B, \alpha)$ if it satisfies the following subordination condition:

$$
\begin{align*}
& (1-\lambda) \frac{z f^{(j)}(z)}{f^{(j-1)}(z)}+\lambda\left(1+\frac{z f^{(j+1)}(z)}{f^{(j)}(z)}\right) \tag{1.5}\\
& \prec(p-j+1) \frac{1+\left[B+(A-B)\left(1-\frac{\alpha}{p-j+1}\right)\right] z}{B z}
\end{align*}
$$

for some real number $\lambda, z \in U ; 1 \leq j \leq p ;-1 \leq B<A \leq 1,0 \leq \alpha<p-j+1)$.
We note that:
(i) $H_{p, j}^{\lambda}(A, B, 0)=H_{p, j}^{\lambda}(A, B)$ (Srivastava et al. [12]);
(ii) $H_{p, j}^{\lambda}(1,-1, \alpha)=H_{p, j}^{\lambda}(\alpha)$, where $H_{p, j}^{\lambda}(\alpha)$ is the class of functions $f(z) \in A_{p}$ satisfying the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{(1-\lambda) \frac{z f^{(j)}(z)}{f^{(j-1)}(z)}+\lambda\left(1+\frac{z f^{(j+1)}(z)}{f^{(j)}(z)}\right)\right\}>\alpha(z \in U) \tag{1.6}
\end{equation*}
$$

for some real number $\lambda, 1 \leq j \leq p ; 0 \leq \alpha<p-j+1$.
We also note that:
(1) $H_{p, p}^{\lambda}(\alpha)=H_{p}(\lambda, \alpha)$, where $H_{p}(\lambda, \alpha)$ is the class of functions $f(z) \in A_{p}$ satisfying the following inequality:

$$
\operatorname{Re}\left\{(1-\lambda) \frac{z f^{(p)}(z)}{f^{(p-1)}(z)}+\lambda\left(1+\frac{z f^{(p+1)}(z)}{f^{(p)}(z)}\right)\right\}>\alpha(z \in U)
$$

for some real number $\lambda(\lambda \geq 0), 0 \leq \alpha<1$.
(2) $H_{p, 1}^{\lambda}(\alpha)=M_{p}(\lambda, \alpha)$, where $M_{p}(\lambda, \alpha)$ is the class of functions $f(z) \in A_{p}$ satisfying the following inequality:

$$
\operatorname{Re}\left\{(1-\lambda) \frac{z f^{\prime}(z)}{f(z)}+\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)\right\}>\alpha
$$

for some real number $\lambda(\lambda \geq 0), 0 \leq \alpha<p$. The class $M_{p}(\lambda, \alpha)$ of p-valently λ-convex of order α was studied by Owa [9].

We further set: $H_{p, j}^{0}(A, B, \alpha)=H_{p, j}(A, B, \alpha), H_{p, j}^{0}(\alpha)=H_{p, j}(\alpha), H_{p, j}^{\lambda}(0)=$ $H_{p, j}^{\lambda}, H_{p, 1}^{\lambda}(0)=M_{p}(\lambda)$ and $H_{p, p}^{\lambda}(0)=H_{p}(\lambda)$.

The class $H_{p}(\lambda)$ of p-valently λ-convex functions was introduced by Nunokawa [5] and was studied subsequently by Saitoh et al. [11] and Owa [9]. The class $M_{p}(\lambda)$ of p-valently Mocanu functions was investigated recently by Dziok and Stankiewicz [2] and Owa [8].

In the present paper, we derive various properties and characteristics of functions belonging to the classes $R_{p, j}(n, A, B, \alpha)$ and $H_{p, j}^{\lambda}(A, B, \alpha)$ by using the techniques involving the Briot-Bouquet differential subordinations.

2. PRELIMINARIES

In our present investigation of the classes $R_{p, j}(n, A, B, \alpha)$ and $H_{p, j}(A, B, \alpha)$, we require each of the following lemmas.

Lemma 1. ([3]) Let $h(z)$ be a convex (univalent) function in U such that $h(0)=1$. Also let

$$
\begin{equation*}
\varphi(z)=1+c_{1} z^{n}+c_{2} z^{n+1}+\ldots \tag{2.1}
\end{equation*}
$$

be analytic in U. If

$$
\varphi(z)+\frac{z \varphi^{\prime}(z)}{\gamma} \prec h(z) \quad(z \in U)
$$

for some complex number $\gamma \neq 0$ with $\operatorname{Re}(\gamma) \geq 0$, then

$$
\varphi(z) \prec \Psi(z)=\frac{\gamma}{n} z^{\frac{-\gamma}{n}} \int_{0}^{z} t^{\frac{\gamma}{n}-1} h(t) \mathrm{d} t \prec h(z) \quad(z \in U)
$$

and $\Psi(z)$ is the best dominant.
Lemma 2. ([4]) If $-1 \leq B<A \leq 1, \beta \geq 0$, and $\operatorname{Re}(\gamma) \geq-\frac{\beta(1-A)}{1-B}$, then the following differential equation

$$
q(z)+\frac{z q^{\prime}(z)}{\beta q(z)+\gamma}=\frac{1+A z}{1+B z}
$$

has a univalent solution in U given by

$$
q(z)= \begin{cases}\frac{z^{\beta+\gamma}(1+B z)^{\frac{\beta(A-B)}{B}}}{\beta \int_{0}^{z} t^{\beta+\gamma-1}(1+B t)^{\frac{\beta(A-B)}{B}} \mathrm{~d} t}-\frac{\gamma}{\beta} & (B \neq 0) \tag{2.2}\\ \frac{z^{\beta+\gamma} \mathrm{e}^{\beta A z}}{\beta \int_{0}^{z} t^{\beta+\gamma-1} \exp (\beta A t) \mathrm{d} t}-\frac{\gamma}{\beta} & (B=0)\end{cases}
$$

Furthermore, if φ is analytic in U and satisfies the following subordination condition:

$$
\varphi(z)+\frac{z \varphi^{\prime}(z)}{\beta \varphi(z)+\gamma} \prec \frac{1+A z}{1+B z} \quad(z \in U)
$$

then

$$
\varphi(z) \prec q(z) \prec \frac{1+A z}{1+B z} \quad(z \in U)
$$

and $q(z)$ is the best dominant.
Lemma 3. ([14]) Let μ be a positive measure on the unit interval $I=[0,1]$. Let $g(t, z)$ be a function analytic in U, for each $t \in I$, and integrable in t, for each $z \in U$ and for almost all $t \in I$. Suppose also that

$$
\operatorname{Re}\{g(t, z)\}>0 \quad(z \in U ; \quad t \in I)
$$

$g(t,-r)$ is real for real r, and

$$
\operatorname{Re}\left(\frac{1}{g(t, z)}\right) \geq \frac{1}{g(t,-r)} \quad(|z| \leq r<1 ; t \in I)
$$

If

$$
g(z)=\int_{I} g(t, z) \mathrm{d} \mu(t)
$$

then

$$
\operatorname{Re}\left(\frac{1}{g(z)}\right) \geq \frac{1}{g(-r)}(|z| \leq r<1)
$$

For real or complex numbers a, b, and $c(c \neq 0,-1,-2, \ldots)$, the hypergeometric function is defined by

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=1+\frac{a \cdot b}{c} \frac{z}{1!}+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{z^{2}}{2!}+\ldots . \tag{2.3}
\end{equation*}
$$

We note that the series in (2.3) converges absolutely for $z \in U$ and hence represents an analytic function in U.

Each of the identities (asserted by Lemma 4 below) is well known (cf. e.g., [13, Ch. 14]).

Lemma 4. For real or complex numbers a, b and $c(c \neq 0,-1,-2, \ldots)$,

$$
\begin{equation*}
\int_{0}^{1} t^{b}(1-t)^{c-b-1}(1-t z)^{-a} \mathrm{~d} t=\frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)}{ }_{2} F_{1}(a, b ; c ; z) \tag{2.4}
\end{equation*}
$$

$$
\begin{gather*}
{ }_{2} F_{1}(a, b ; c ; z)=(1-z)^{-a}{ }_{2} F_{1}\left(a, c-b ; c ; \frac{z}{z-1}\right) ; \tag{2.5}\\
{ }_{2} F_{1}(a, b ; c ; z)={ }_{2} F_{1}(b, a ; c ; z) ; \\
(b+1){ }_{2} F_{1}(1, b ; b+1 ; z)=(b+1)+b z{ }_{2} F_{1}(1, b+1 ; b+2 ; z) \tag{2.7}
\end{gather*}
$$

$$
{ }_{2} F_{1}\left(a, b ; \frac{a+b+1}{2} ; \frac{1}{2}\right)=\frac{\sqrt{\pi} \Gamma\left(\frac{a+b+1}{2}\right)}{\Gamma\left(\frac{a+1}{2}\right) \Gamma\left(\frac{b+1}{2}\right)} .
$$

Lemma 5. ([7]) Let $\varphi(z)$ be analytic in U with $\varphi(0)=1$ and $\varphi(z) \neq 0(0<$ $|z|<1$). Also let

$$
\left|\frac{\nu(A-B)}{B}-1\right| \leq 1(-1 \leq B<A \leq 1 ; B \neq 0 ; \nu \in C \backslash\{0\})
$$

or

$$
\left|\frac{\nu(A-B)}{B}+1\right| \leq 1(-1 \leq B<A \leq 1 ; B \neq 0 ; \nu \in C \backslash\{0\}) .
$$

If $\varphi(z)$ satisfies the following subordination condition

$$
\begin{gather*}
1+\frac{z \varphi^{\prime}(z)}{\nu \varphi(z)} \prec \frac{1+A z}{1+B z}(z \in U), \tag{2.9}\\
\varphi(z) \prec \Psi(z)=(1+B z)^{\frac{\nu(A-B)}{B}}(z \in U)
\end{gather*}
$$

and $\Psi(z)$ is the best dominant.

3. MAIN RESULTS

Theorem 1. Let $-1 \leq B<A \leq 1,0 \leq j \leq p$, and $0 \leq \alpha<\frac{p!}{(p-j)!}$. If $f(z) \in R_{p, j}(n, A, B, \alpha)$, then

$$
\begin{align*}
& \frac{(p-j)!}{p!} \frac{\mu+p}{z^{\mu+p}} \int_{0}^{z} t^{\mu+j-1} f^{(j)}(t) \mathrm{d} t \prec \widetilde{q}(z) \tag{3.1}\\
& \prec \frac{1+\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right] z}{1+B z}(z \in U ; 0<\mu+p),
\end{align*}
$$

where $\widetilde{q}(z)$, given by

$$
\widetilde{q}(z)= \begin{cases}\frac{\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right]}{B}+\frac{(B-A)\left(1-\frac{(p-j)!}{p!} \alpha\right)}{B}(1+B z)^{-1} \tag{3.2}\\ \cdot{ }_{2} F_{1}\left(1,1 ; \frac{\mu+p}{n}+1 ; \frac{B z}{B z+1}\right) & (B \neq 0), \\ 1+\frac{(\mu+p)\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right] z}{\mu+p+n} & (B=0),\end{cases}
$$

is the best dominant of (3.1).
Furthermore,

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{\mu+p}{z^{\mu+p}} \int_{0}^{z} t^{\mu+j-1} f^{(j)}(t) \mathrm{d} t\right\}>\frac{p!}{(p-j)!} \rho(n, p, \mu, A, B, \alpha)(z \in U) \tag{3.3}
\end{equation*}
$$

where

$$
\rho(n, p, \mu, A, B, \alpha)= \begin{cases}\frac{\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right]}{B}+\frac{(B-A)\left(1-\frac{(p-j)!}{p!} \alpha\right)}{B} \\ \cdot(1-B)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{\mu+p}{n}+1 ; \frac{B}{B-1}\right) & (B \neq 0) \\ 1-\frac{(\mu+p)\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right]}{\mu+p+n} \quad & (B=0)\end{cases}
$$

The result is the best possible.

Proof. By setting

$$
\begin{equation*}
\varphi(z)=\frac{(p-j)!}{p!} \frac{\mu+p}{z^{\mu+p}} \int_{0}^{z} t^{\mu+j-1} f^{(j)}(t) \mathrm{d} t(z \in U) \tag{3.4}
\end{equation*}
$$

we note that $\varphi(z)$ is of the form (2.1) and analytic in U. On differentiating (3.4) with respect to z and simplifying, we get

$$
\begin{gathered}
\varphi(z)+\frac{z \varphi^{\prime}(z)}{\mu+p}=\frac{(p-j)!}{p!} \frac{f^{(j)}(z)}{z^{p-j}} \\
\prec \frac{1+\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right] z}{1+B z}(z \in U) .
\end{gathered}
$$

Thus, by using Lemma 1 for $\nu=\mu+p$, we have

$$
\begin{aligned}
& \frac{(p-j)!}{p!} \frac{\mu+p}{z^{\mu+p}} \int_{0}^{z} t^{\mu+j-1} f^{(j)}(t) \mathrm{d} t \prec \widetilde{q}(z) \\
= & \frac{\mu+p}{n} z^{-\left(\frac{\mu+p}{n}\right)} \int_{0}^{z} t^{\frac{\mu+p-n}{n}} \frac{1+\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right] t}{1+B t} \mathrm{~d} t \\
= & \left\{\begin{array}{c}
\frac{\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right]}{B}+\frac{(B-A)\left(1-\frac{(p-j)!}{p!} \alpha\right)}{B}(1+B z)^{-1} \\
\cdot{ }_{2} F_{1}\left(1,1 ; \frac{\mu+p}{n}+1 ; \frac{B z}{B z+1}\right) \quad(B \neq 0), \\
1+\frac{(\mu+p)\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right] z}{\mu+p+n}(B=0),
\end{array}\right.
\end{aligned}
$$

by changing of variables followed by the use of the identities (2.4), (2.5), (2.6) and (2.7), successively. This proves assertion (3.1) of Theorem 1. Next, we show that

$$
\begin{equation*}
\inf _{|z|<1}\{\operatorname{Re}(\widetilde{q}(z))\}=\widetilde{q}(-1) . \tag{3.5}
\end{equation*}
$$

Indeed, for $|z| \leq r<1$, we have

$$
\begin{aligned}
& \operatorname{Re}\left(\frac{1+\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right] z}{1+B z}\right) \\
= & \operatorname{Re}\left\{\left(1-\frac{(p-j)!}{p!} \alpha\right) \frac{1+A z}{1+B z}+\frac{(p-j)!}{p!} \alpha\right\} \\
\geq & \left(1-\frac{(p-j)!}{p!} \alpha\right) \frac{1-A r}{1-B r}+\frac{(p-j)!}{p!} \alpha \\
= & \frac{1-\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right] r}{1-B r} \quad(|z| \leq r<1) .
\end{aligned}
$$

Putting

$$
\begin{aligned}
G(s, z)= & \frac{1+\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right] s z}{1+B s z} \\
& \left(0 \leq s \leq 1 ; 0 \leq \alpha<\frac{(p-j)!}{p!} ; z \in U\right)
\end{aligned}
$$

and letting

$$
\mathrm{d} \mu(s)=\frac{\Gamma(c)}{\Gamma(a) \Gamma(c-a)} s^{a-1}(1-s)^{c-a-1} \mathrm{~d} s
$$

which is a positive measure on the closed interval $[0,1], \widetilde{q}(z)$ can be rewritten as follows:

$$
\widetilde{q}(z)=\int_{0}^{1} G(s, z) \mathrm{d} \mu(s),
$$

so that

$$
\begin{aligned}
\operatorname{Re}\{\widetilde{q}(z)\} & \geq \int_{0}^{1} \frac{1-\left[B+(A-B)\left(1-\frac{(p-j)!}{p!} \alpha\right)\right] s r}{1-B s r} \mathrm{~d} \mu(s) \\
& =\widetilde{q}(-r)(|z| \leq r<1),
\end{aligned}
$$

which, on letting $r \rightarrow 1^{-}$, yields (3.5). This proves (3.3). The estimate in (3.3) is the best possible as the function $\widetilde{q}(z)$ is the best dominant of (3.1).

Putting $A=1$ and $B=-1$ in Theorem 1, we obtain the following corollary:
Corollary 1. Let $0 \leq j \leq p$ and $0 \leq \alpha<\frac{(p-j)!}{p!}$. If $f(z) \in R_{p, j}(n, \alpha)$, then

$$
\operatorname{Re}\left\{\frac{\mu+p}{z^{\mu+p}} \int_{0}^{!} z t^{\mu+j-1} f^{(j)}(t) \mathrm{d} t\right\}>\xi(n, p, \mu, \alpha)(z \in U),
$$

where
$\xi(n, p, \mu, \alpha)=\frac{(p-j)!\alpha}{p!}+\left(1-\frac{(p-j)!}{p!} \alpha\right)\left[{ }_{2} F_{1}\left(1,1 ; 1+\frac{\mu+p}{n} ; \frac{1}{2}\right)-1\right]$.
The result is the best possible.
Remark 1. (i) Corollary 1 improves the corresponding results of Aouf et al. [1], for $j=0$ and $j=1$, respectively.
(ii) Corollary 1 improves the corresponding result of Srivastava et al. [12].
(iii) For $A=1, B=-1, n=p=1$ and $j=0$, Corollary 1 improves a result due to Obradovic [6].

Theorem 2. Let $-1 \leq B<A \leq 1,1 \leq j \leq p, 0 \leq \alpha<p-j+1$, and $\lambda>0$. If $f(z) \in H_{p, j}^{\lambda}(A, B, \alpha)$, then

$$
\begin{gather*}
\frac{z f^{(j)}(z)}{(p-j+1) f^{(j-1)}(z)} \prec \widetilde{q}_{1}(z)=\frac{\lambda}{(p-j+1) Q(z)} \prec \\
\frac{1+\left[B+(A-B)\left(1-\frac{\alpha}{p-j+1} \alpha\right)\right] z}{1+B z}(z \in U), \tag{3.6}
\end{gather*}
$$

where

$$
Q(z)= \begin{cases}\int_{0}^{z} t^{\frac{(p-j-\lambda+1)}{\lambda}}\left(\frac{1+B t z}{1+B z}\right) \frac{(p-j+1)(A-B)\left(1-\frac{\alpha}{p-j+1}\right)}{\lambda B} \mathrm{~d} t & (B \neq 0), \tag{3.7}\\ \int_{0}^{z} t^{\frac{(p-j-\lambda+1)}{\lambda}} \exp \left(\frac{(p-j+1)(t-1) A\left(1-\frac{\alpha}{p-j+1}\right) z}{\lambda}\right) \mathrm{d} t & (B=0),\end{cases}
$$

and $\widetilde{q}_{1}(z)$ is the best dominant of (3.6). Furthermore, if $-1 \leq B<0$ and $A \leq \frac{-\lambda B}{(p-j+1)\left(1-\frac{\alpha}{p-j+1}\right)}$, then $f(z) \in H_{p, j}(\Im(p, j, A, B, \lambda, \alpha))$, where

$$
\Im(p, j, A, B, \lambda, \alpha)=
$$

$(p-j+1)\left[{ }_{2} F_{1}\left(1, \frac{(p-j+1)(B-A)\left(1-\frac{\alpha}{p-j+1}\right)}{\lambda B} ; \frac{p-j+1}{\lambda}+1 ; \frac{B}{B-1}\right)\right]^{-1}$.
The result is the best possible.
Proof. Defining the function $\phi(z)$ by

$$
\begin{equation*}
\phi(z)=\frac{z f^{(j)}(z)}{(p-j+1) f^{(j-1)}(z)}(1 \leq j \leq p ; z \in U) . \tag{3.8}
\end{equation*}
$$

We note that

$$
\begin{equation*}
\varphi(z)=1+w_{1} z+w_{2} z^{2}+\ldots \tag{3.9}
\end{equation*}
$$

is analytic in U. Making use of the logarithmic differentiation in (3.8) and using (1.5), we find that

$$
\begin{gather*}
\varphi(z)+\frac{\lambda z \varphi^{\prime}(z)}{(p-j+1) \varphi(z)} \prec \\
\frac{1+\left[B+(A-B)\left(1-\frac{\alpha}{p-j+1}\right)\right] z}{1+B z}(z \in U) . \tag{3.10}
\end{gather*}
$$

Now, by using Lemma 2 for $\beta=\frac{p-j+1}{\lambda}$ and $\gamma=0$, we obtain

$$
\begin{aligned}
& \frac{z f^{(j)}(z)}{(p-j+1) f^{(j-1)}(z)} \prec \widetilde{q}_{1}(z)=\frac{\lambda}{(p-j+1) Q(z)} \\
\prec & \frac{1+\left[B+(A-B)\left(1-\frac{\alpha}{p-j+1}\right)\right] z}{1+B z}(z \in U),
\end{aligned}
$$

where $\widetilde{q}_{1}(z)$ is the best dominant of (3.10) and $Q(z)$ is given by (3.7). Next, we show that

$$
\begin{equation*}
\inf _{|z|<1}\{\operatorname{Re}(\widetilde{q}(z))\}=\widetilde{q}(-1) . \tag{3.11}
\end{equation*}
$$

If we set

$$
a=\frac{(p-j+1)(B-A)\left(1-\frac{\alpha}{p-j+1}\right)}{\lambda B}, b=\frac{(p-j+1)}{\lambda}, \text { and } c=b+1,
$$

so that $c>b>0$, then by using (2.4), (2.5), and (2.6), we find from (3.7) that

$$
Q(z)=(1+B z)^{a} \int_{0}^{1} s^{b-1}(1+B s z)^{-a} \mathrm{~d} s
$$

$$
\begin{equation*}
=\frac{\Gamma(b)}{\Gamma(c)}{ }_{2} F_{1}\left(1, a ; c ; \frac{B z}{1+B z}\right) . \tag{3.12}
\end{equation*}
$$

Since $B<0$ and $A \leq \frac{-\lambda B}{(p-j+1)\left(1-\frac{\alpha}{p-j+1}\right)}$, together, imply that $c>a>0$, by using (2.4), (3.12) yields

$$
Q(z)=\int_{0}^{1} g(s, z) \mathrm{d} \mu(s)
$$

where

$$
g(s, z)=\frac{1+B z}{1+(1-s) B z} \text { and } \mathrm{d} \mu(s)=\frac{\Gamma(c)}{\Gamma(c) \Gamma(c-a)} s^{a-1}(1-s)^{c-a-1} \mathrm{~d} s
$$

is a positive measure on the closed interval $[0,1]$.
For $-1 \leq B<1$, we note that $\operatorname{Re}\{g(s, z)\}>0(z \in U ; s \in[0,1]), g(s,-r)$ is real, for $0 \leq r<1$ and $s \in[0,1]$, and

$$
\begin{gathered}
\operatorname{Re}\left\{\frac{1}{g(s, z)}\right\} \geq \frac{1-(1-s) B r}{1-B r}=\frac{1}{g(s,-r)} \\
(|z| \leq r<1 ; s \in[0,1])
\end{gathered}
$$

Therefore, by using Lemma 3, we have

$$
\operatorname{Re}\left\{\frac{1}{Q(z)}\right\} \geq \frac{1}{Q(-r)} \quad(|z| \leq r<1)
$$

which, upon letting $r \rightarrow 1^{-}$, yields

$$
\operatorname{Re}\left\{\frac{1}{Q(z)}\right\} \geq \frac{1}{Q(-1)} .
$$

In the case $A=-\frac{\lambda B}{(p-j+1)\left(1-\frac{\alpha}{p-j+1}\right)}$, we obtain the required result by letting $A \rightarrow\left(-\frac{\lambda B}{(p-j+1)\left(1-\frac{\alpha}{p-j+1}\right)}\right)^{+}$in $\widetilde{q}_{1}(z)=\frac{\lambda}{(p-j+1) Q(z)}$, where $Q(z)$ is given as above. The result is sharp because of the best dominant property of $\widetilde{q}_{1}(z)$.

Remark 2. Putting (i) $\alpha=0$, (ii) $A=1$ and $B=-1$, (iii) $A=1, B=-1$ and $\alpha=0$, we obtain the results obtained by Srivastava et al. [12].

Theorem 3. Let $1 \leq j \leq p, \lambda \geq 0, \mu+p-j+1 \geq 0,-1 \leq B<A \leq 1$, and $0 \leq \alpha<p-j+1$, such that

$$
B<A \leq 1+\frac{\mu(1-B)}{p-j+1} .
$$

(i) If $f(z) \in H_{p, j}^{\lambda}(A, B, \alpha)$, then

$$
\begin{equation*}
\frac{z^{\mu} f^{(j-1)}(z)}{(\mu+p-j+1) \int_{0}^{z} t^{\mu-1} f^{(j-1)}(t) \mathrm{d} t} \prec \frac{1+A^{*} z}{1+B z} \quad(z \in U), \tag{3.13}
\end{equation*}
$$

where

$$
A^{*}=1-\frac{(p-j+1)\left(1-\left[B+(A-B)\left(1-\frac{\alpha}{p-j+1}\right)\right]+\mu(1-B)\right.}{\mu+p-j+1} .
$$

Furthermore, if $f(z) \in H_{p, j}(A, B, \alpha)$, then

$$
\frac{z^{\mu} f^{(j-1)}(z)}{(\mu+p-j+1) \int_{0}^{z} t^{\mu-1} f^{(j-1)}(t) \mathrm{d} t} \prec \widetilde{q}_{2}(z)=\frac{1}{(\mu+p-j+1) Q(z)}
$$

$$
\begin{equation*}
\prec \frac{1+\left[B+(A-B)\left(1-\frac{\alpha}{p-j+1}\right)\right] z}{1+B z}(z \in U), \tag{3.14}
\end{equation*}
$$

where

$$
Q(z)= \begin{cases}\int_{0}^{1} s^{\mu+p-j}\left(\frac{1+B s z}{1+B z}\right)^{\frac{(p-j+1)(A-B)\left(1-\frac{\alpha}{p-j+1}\right)}{B}} \mathrm{~d} s & (B \neq 0), \\ \int_{0}^{1} s^{\mu+p-j} \exp \left((p-j+1)(s-1) A\left(1-\frac{\alpha}{p-j+1}\right) z\right) \mathrm{d} s & (B=0),\end{cases}
$$

and $\widetilde{q}_{2}(z)$ is the best dominant.
(ii) If $-1 \leq B<0, \quad B<A \leq \min \left(1, \frac{\mu(1-B)}{p-j+1},-\frac{(\mu+1) B}{p-j+1}\right)$ and $f(z) \in$ $H_{p, j}(A, B, \alpha)$, then

$$
\operatorname{Re}\left(\frac{z^{\mu} f^{(j-1)}(z)}{\int_{0}^{z} t^{\mu-1} f^{(j-1)}(t) \mathrm{d} t}\right)>\theta(p, j, \mu, A, B, \alpha)(z \in U)
$$

where

$$
\begin{aligned}
& \theta(p, j, \mu, A, B, \alpha)=(\mu+p-j+1) \\
& {\left[{ }_{2} F_{1}\left(1, \frac{(p-j+1)(B-A)\left(1-\frac{\alpha}{p-j+1}\right)}{B} ; \mu+p-j+2 ; \frac{B}{B-1}\right)\right]^{-1}}
\end{aligned}
$$

The result is the best possible.
Proof. By setting

$$
\begin{equation*}
\phi(z)=\frac{z^{\mu} f^{(j-1)}(z)}{(\mu+p-j+1) \int_{0}^{z} t^{\mu-1} f^{(j-1)}(t) \mathrm{d} t} \quad(z \in U) \tag{3.14}
\end{equation*}
$$

we see that $\phi(z)$ is of the form (3.9) and is analytic in U. On differentiating both sides of (3.14) followed by some obvious simplifications, we get

$$
\frac{z f^{(j)}(z)}{(p-j+1) f^{(j-1)}(z)}=P(z)+\frac{z P^{\prime}(z)}{(p-j+1) P(z)+\mu}(z \in U),
$$

where

$$
\begin{equation*}
P(z)=\frac{1}{p-j+1}[(\mu+p-j+1) \phi(z)-\mu] . \tag{3.15}
\end{equation*}
$$

By using Lemma 2, we get

$$
\begin{equation*}
P(z) \prec q(z) \prec \frac{1+\left[B+(A-B)\left(1-\frac{\alpha}{p-j+1}\right)\right] z}{1+B z}(z \in U), \tag{3.16}
\end{equation*}
$$

where $q(z)$ is given by (2.2) with $\beta=p-j+1$ and $\gamma=\mu$. Again, by using (3.15) in (3.16), we get (3.13) and (3.14), respectively. The remaining part of the proof of Theorem 3 is similar to that of Theorem 2, and so we omit the details.

Remark 3. Putting (i) $\alpha=0$, (ii) $A=1, B=-1$ and $j=1$, (iii) $A=1$, $B=-1, j=1$ and $\mu=0$, we obtain the results obtained by Srivastava et al. [12].

Finally, we prove the following result:
Theorem 4. Let $1 \leq j \leq p,-1 \leq B<0, \lambda>0, B<A \leq-\frac{\lambda B}{(p-j+1)\left(1-\frac{\alpha}{p-j+1}\right)}$. If $f(z) \in H_{p, j}^{\lambda}(A, B, \alpha)$, then, for $z \in U$, we have

$$
\begin{equation*}
\left(\frac{f^{(j-1)}(z)}{z^{p-j+1}}\right)^{\nu} \prec\left(\frac{p!}{(p-j+1)!}\right)^{\nu}(1-z)^{-2 \nu[p-j-\Im(p, j, A, B, \lambda, \alpha)+1]} \tag{3.17}
\end{equation*}
$$

where $\nu(p, j, A, B, \lambda, \alpha)$ is defined as in Theorem 2 and $\nu \neq 0$ satisfies either

$$
|2 \nu[(p-j+1)-\Im(p, j, A, B, \lambda, \alpha)]-1| \leq 1
$$

or

$$
|2 \nu[(p-j+1)-\Im(p, j, A, B, \lambda, \alpha)]+1| \leq 1 .
$$

The result is the best possible.
Proof. Considering the function $\varphi(z)$ given by

$$
\begin{equation*}
\varphi(z)=\left(\frac{(p-j+1)!}{p!} \cdot \frac{f^{(j-1)}(z)}{z^{p-j+1}}\right)^{\nu} \quad(z \in U) \tag{3.18}
\end{equation*}
$$

and choosing the principle branch in (3.18), we note that $\varphi(z)$ is of the form (3.9) and is analytic in U. On differentiating (3.18) logarithmically followed by the use of Theorem 2 in the resulting equation, we get

$$
\begin{aligned}
\frac{z f^{(j)}(z)}{(p-j+1) f^{(j-1)}(z)} & =1+\frac{z \varphi^{\prime}(z)}{\nu(p-j+1) \varphi(z)} \\
& \prec \frac{1+\left[1-\frac{2 \Im(p, j,, A, B, \lambda, \alpha)}{p-j+1}\right] z}{1-z} \quad(z \in U),
\end{aligned}
$$

where $\Im(p, j, A, B, \lambda, \alpha)$ is defined us in Theorem 2. Now, the assertion of Theorem 4 follows by using Lemma 5 .

Putting $A=1, B=-1$ and $j=1$ in Theorem 4, we have the following corollary:

Corollary 2. If $f(z) \in M_{p}(\lambda, \alpha)$, for $\lambda \geq p-\alpha>0$ and $0 \leq \alpha<p$, then

$$
\begin{equation*}
\left(\frac{f(z)}{z^{p}}\right)^{\nu} \prec(1-z)^{-2 \nu[p-\Im(p, \lambda, \alpha)]}(z \in U), \tag{3.19}
\end{equation*}
$$

where

$$
\Im(p, \lambda, \alpha)=\frac{p \Gamma\left(\frac{p}{\lambda}+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{p-\alpha}{\lambda}+1\right)}
$$

and $\nu \neq 0$ satisfies either

$$
\mid 2 \nu[(p-\Im(p, \lambda, \alpha)]+1 \mid \leq 1
$$

or

$$
\mid 2 \nu[(p-\Im(p, \lambda, \alpha)]-1 \mid \leq 1
$$

The result is the best possible.
Putting $A=1, B=-1$, and $j=p$ in Theorem 4 yields the following corollary:

Corollary 3. If $f(z) \in H_{p}(\lambda, \alpha), \lambda \geq 1-\alpha$, then

$$
\begin{equation*}
\left(\frac{f^{(p-1)}(z)}{p!z}\right)^{\nu} \prec(1-z)^{-2 \nu[1-\Im(\lambda, \alpha)]}(z \in U), \tag{3.20}
\end{equation*}
$$

where

$$
\Im(\lambda, \alpha)=\frac{\Gamma\left(\frac{1-\alpha}{\lambda}+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{1-\alpha}{\lambda}+1\right)} \quad \text { and } \quad \nu \neq 0
$$

satisfies either

$$
\mid 2 \nu[(1-\Im(\lambda, \alpha)]+1 \mid \leq 1
$$

or

$$
\mid 2 \nu[(1-\Im(\lambda, \alpha)]-1 \mid \leq 1 .
$$

The result is the best possible.

REFERENCES

[1] Aouf, M.A., Hossen, H.M. and Srivastava, H.M., Some families of multivalent functions, Computers Math. Applic., 39 (2000), 39-48.
[2] Dziok, J. and Stankiewicz, J., The order of starlikeness of p-valent α-convex functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 19 (1996), 5-12.
[3] Miller, S.S. and Mocanu, P.T., Differential subordination and univalent functions, Michigan Math. J., 28 (1981), 157-171.
[4] Miller, S.S. and Mocanu, P.T., Univalent solutions of Briot-Bouquet differential subordinations, J. Differential Equation, 56 (1985), 297-309.
[5] Nunokawa, M., On the theory of multivalent functions, Tsukuba Math. J., 11 (1987), 273-286.
[6] Obradovic, M., On certain inequalities of some regular functions in $|z|<1$, Internat. J. Math. Math. Sci., 8 (1985), 277-281.
[7] Obradovic, M. and Owa, S., On certain properties for some classes of starlike functions, J. Math. Anal. Appl., 145 (1990), 357-364.
[8] Owa, S., Notes on p-valently α-convex functions, Indian J. Math., 32 (1990), 235-240.
[9] Owa, S., Some properties of certain multivalent functions, Appl. Math. Lett., 4 (5) (1991), 79-83.
[10] Patil, D.A. and Thakare, N.K., On convex hulls and extreme points of p-valent starlike and convex classes with applications, Bull. Math. Soc. Sci. Math. R. S. Roum., 27 (75) (1983), 145-160.
[11] Saitoh, H., Nunokawa, M., Owa, S., Sekine, T. and Fukui, S., A remark on multivalent functions, Bull. Soc. Roy. Sci. Liege, 56 (1987), 137-141.
[12] Srivastava, H.M., Patel, J. and Mohapatra, G.P., A certain class of p-valently analytic functions, Math. Computer Modeling, 41 (2005), 321-334.
[13] Whittaker, E.T. and Watson, G.N., A course of Modern Analysis: An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principle Transcendental Functions, Fourth Edition, Combridge Univ. Press, Combridge, 1927.
[14] Wilken, D.R. and Feng, J., A remark on convex and starlike functions, J. London Math. Soc. (Ser. 2), 21 (1980), 287-290.

Received November 25, 2005
Department of Mathematics
Faculty of Science
Mansoura University
Mansoura, Egypt
E-mail: mkaouf 127@yahoo.com

