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VARYING FUNCTIONS
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Abstract. In this paper we introduce three new classes of functions under names
translational slowly varying, translational regularly varying and translational
rapidly varying functions. All classes have important applications in the study
of asymptotic processes. In this sense, Uniform Convergence Theorem, Char-
acterization Theorem and Representation Theorem are the main results of this
paper.
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1. INTRODUCTION AND HISTORY

We shall say that a positive, finite and measurable function R, defined on
Ia := [a,∞) for some a > 0, is a regularly varying function at infinity (denoted
by RV ) in the sense of Karamata if the limit

lim
x→∞

R(λx)

R(x)
= r(λ)(1)

is positive and finite for each λ > 0. It follows immediately that r(λ) = λρ for
some ρ ∈ R. The number ρ is the index of R.

The RV functions of index ρ = 0 are called slowly varying (denoted by SV )
functions and are denoted by L. Their interest lies in the fact that R is a RV
function of index ρ if and only if R(x) = xρL(x) on some Ia.

Classes SV and RV of slowly and regularly varying functions were intro-
duced by Jovan Karamata in 1930. In this respect we refer to the books of
E. Seneta [10] and Bingham-Goldie-Teugels [2]. Both classes have important
consequences in the study of asymptotic processes.

In connection with the preceding, the most important properties of RV
functions may be stated as follows:

Dedicated to adventure in year 1930 when Jovan Karamata published in Mathe-
matica (Cluj) a survey on regularly varying functions.
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(a) (Characterization Theorem). If R is a regularly varying function, then
the limit r(λ) in (1) is necessarily of the form λρ for some −∞ < ρ <∞ and
for each λ > 0.

(b) (Uniform Convergence Theorem). The relation (1) holds uniformly for
λ in any compact interval I ⊂ (0,∞).

(c) (Representation Theorem). There exists a number b ≥ a such that for
x ≥ b we have

R(x) = exp

(

α(x) +

∫ x

b

β(t)

t
dt

)

,

where α and β are bounded measurable functions on Ib such that α(x) converges
to a real number and β(x) → ρ as x→ ∞.

We noticee that RV functions have been introduced by J. Karamata [6]. He
proved for continuous function R the crucial of the here mentioned results.

The Uniform Convergence Theorem for measurable SV functions was
proved by T. van Aardennee-Ehrenfest, N.G. de Bruijn and J. Korevaar [11],
H. Delange [5], W. Matuszewska [8], and Bojanić-Seneta [3].

The Representation Theorem for SV funictions L such that logL is inte-
grable on every compact subinterval of (a,∞) was proved in [11]. Finally, the
Representation Theorem in the present form, for arbitrary measurable SV
functions, was established by N. G. de Bruijn [4]; also and Bojanić-Seneta [3].

In this paper, we shall introduce some new classes of functions which have
further applications in the study of asymptotic processes. This facts are closely
connected with the Karamata’s theory of regularly varying functions.

2. TRANSLATIONAL SLOWLY VARYING FUNCTIONS

A positive, finite and measurable function A, defined on Ia for some a > 0,
is said to be translational slowly varying at infinity (denoted this class by
Tr(SV )) if the limit

lim
x→∞

A(x+ λ)

A(x)
= 1(2)

for each λ ≥ 0. The most important properties of Tr(SV ) functions may be
stated as follows:

Theorem 1. (Uniform Convergence Theorem). If A is a Tr(SV ) function,
then for every [a, b], 0 < a < b < ∞, the relation (2) holds uniformly with
respect to λ ∈ [a, b].

Proof. Let A be a Tr(SV ) function and let f be defined by

f(x) =

{

0 if x < a,
logA(x) if x ≥ a.

Then, as is easy to see, f is a measurable function on R and

f(x+ λ) − f(x) → 0 (x→ ∞)(3)
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for every λ ∈ R. If we show that the following fact holds that

sup
0≤λ≤1

|f(x+ λ) − f(x)| → 0 (x→ ∞)(4)

the statement will clearly be proved. Suppose that (3) holds and that (4) is
not true. Then we can find δ > 0 and sequences (λn) and (xn) such that
λn ∈ [0, 1], xn ≥ n, and

∣

∣f(xn + λn) − f(xn)
∣

∣ ≥ δ for n ∈ N.

Let m∗ be the outer measure of subsets of R and for 0 < ε < δ/4 let

Mn :=
{

t : sup
x≥n

|f(x+ t) − f(x)| ≤ ε
}

.

Since (Mn ∩ [0, 3]) is an increasing sequence of subsets of R converging to
[0, 3] we obtain

lim
n→∞

m∗(Mn ∩ [0, 3]) = 3,

and hence we can find s ∈ N such that m∗(Ms ∩ [0, 3]) ≥ 5/2. Let

B =
{

t : |f(t) − f(xs)| ≤ ε
}

∩ [xs, xs + 4]

C =
{

t : |f(t) − f(xs + λs)| ≤ ε
}

∩ [xs, xs + 4],

then B and C are disjoint measurable subsets of [xs, xs+4] andm(B)+m(C) ≤
4.

If we denote by X and Y the set Ms ∩ [0, 3] translated by xs and xs +
λs, respectively, then it is easy to see that X ⊂ B and Y ⊂ C. Hence,
consequently,

5

2
≤ m∗

(

Ms ∩ [0, 3]
)

= m∗(X) ≤ m∗(B),

5

2
≤ m∗

(

Ms ∩ [0, 3]
)

= m∗(Y ) ≤ m∗(C),

and thus som(B)+m(C) ≥ 5, which is impossible in view ofm(B)+m(C) ≤ 4.

For the case of an arbitrary interval [a, b] define f̃(x) = f((b− a)x). Then

f(x+ λ) − f(x) = f̃(y + µ) − f̃(y) + f(x− a) − f(x)

where y = (x− a)/(b− a), µ = (λ− a)/(b− a), so that y → ∞ if and only if
x→ ∞; i.e., λ ∈ [a, b] if and only if µ ∈ [0, 1]. The proof is complete. �

We notice that proof of Theorem 1 follows from the same ideas as in the
proof of Lemma 1 in Bojanić-Seneta [3]. For a proof of Theorem 1 see:
Tasković [12].

The following statement gives an integral representation theorem for func-
tions from the class Tr(SV ).



210 M. R. Tasković 4

Theorem 2. (Representation Theorem). If A is a Tr(SV ) function, then
there exists a positive number b ≥ a such that for all x ≥ b we have

A(x) = µ(x) exp

(
∫ x

b

ε(t)dt

)

,(5)

where µ(x) is a positive and measurable function on Ib such that µ(x) → c ∈
(0,∞) as x→ ∞, and ε(x) is a continuous function on Ib such that ε(x) → 0
(as x→ ∞). Conversely, if a function A of the form (5), then A is a Tr(SV )
function.

Proof. Let A be a Tr(SV ) function and let f be defined by f(t) = logA(t).
Then, as is easy to see, f is a measurable function for t ≥ b, where Ib is the
domain of A, and f satisfies the following condition that

f(t+ λ) − f(t) → 0 (t→ ∞)

uniformly with respect to λ ∈ [0, 1]. Define the function f1(t) by

f1(t) = f(n) + 6
[

f(n+ 1) − f(n)
]

∫ t−n

0
y(1 − y)dy

for n ≤ t ≤ n+ 1, and all n ∈ N ∪ {0}. Since

f ′1(t) = 6
[

f(n+ 1) − f(n)
]

(t− n)(n+ 1 − t)

for n ≤ t ≤ n+ 1, it follows that, for all n ∈ N ∪ {0}, f ′1(n) = 0. Hence, f ′1(t)
is continuous and

∣

∣f ′1(t)
∣

∣ ≤
3

2

∣

∣f(n+ 1) − f(n)
∣

∣

for n ≤ t ≤ n+ 1. Also we obtain that

∣

∣f1(t) − f(t)
∣

∣ ≤
∣

∣f(n) − f(t)
∣

∣ + 6
∣

∣f(n+ 1) − f(n)
∣

∣

∣

∣

∣

∫ t−n

0
y(1 − y)dy

∣

∣

∣

=
∣

∣f(n) − f(t)
∣

∣ +
∣

∣f(n+ 1) − f(n)
∣

∣(t− n)2(2n+ 3 − 2t)

≤
∣

∣f(t) − f(n)
∣

∣ + 3
∣

∣f(n+ 1) − f(n)
∣

∣,

and thus, as t→ ∞, we have

f ′1(t) → 0 and f1(t) − f(t) → 0.

Hence, since the function x 7→ f1(x) it has continuous derivative for x ≥ b,
we obtain

f1(x) =

∫ x

b

ϕ(t)dt+ constant,(6)

where x 7→ ϕ(x) is a contunuous function for x ≥ b. If to differentiate (6) we
have

f ′1(x) = ϕ(x) for x ≥ b,

i.e., from the preceding facts, we obtain

ϕ(x) = ε(x) for x ≥ b,(7)
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with the function x 7→ ε(x) which is a continuous function on Ib such that
ε(x) → 0 as x→ ∞. From (6) and (7) we obtain

A1(x) = exp(f1(x)) = C exp

(
∫ x

b

ε(t)dt

)

,

where C is a constant. Also, from the preceding facts, we have

µ(x) =
A1(x)

A(x)
=
C exp

(

f1(x)
)

exp
(

f(x)
)

= C exp
(

f1(x) − f(x)
)

→ C (x→ ∞).

Hence

A(x) = µ(x) exp

(
∫ x

b

ε(t)dt

)

,

where µ(x) and ε(t) are as required the Representation Theorem.
Conversely, according to these conditions, every the function A(x), with the

representation (5), is a measurable function on Ib and for every λ ≥ 0 holds
∣

∣

∣

∣

A(x+ λ)

A(x)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

exp

(
∫ x+λ

x

ε(t)dt

)

− 1

∣

∣

∣

∣

≤ exp

(

λmax
t≥x

ε(t)

)

− 1 → 0 (x→ ∞);(8)

and with this the proof is complete. �

Remark 1. We notice that from the preceding proof of part (8) we have a
directly and a simple proof, in the proper manner, of the Theorem 1.

A brief proof of this statement may be found in: Tasković [12].
A subclass of Tr(SV ). A positive measurable function f belongs to the

class Tr(Z) if for every δ > 0, x 7→ eδxf(x) is an increasing, and x 7→ e−δxf(x)
is a decreasing function for x large enough. We notice that is Tr(Z) ⊂ Tr(SV ).
Indeed, let f ∈ Tr(Z) and let λ ≥ 0, then for every δ > 0 and for sufficiently
large x we obtain

e−δλ ≤ e−δλ eδ(x+λ)f(x+ λ)

eδxf(x)
=
f(x+ λ)

f(x)
= eδλ e−δ(x+λ)f(x+ λ)

e−δxf(x)
≤ eδλ,

and thus

e−δλ ≤ lim inf
x→∞

f(x+ λ)

f(x)
≤ lim sup

x→∞

f(x+ λ)

f(x)
≤ eδλ,

i.e., as δ → 0 we have

lim
x→∞

f(x+ λ)

f(x)
= 1,

i.e., we have f ∈ Tr(SV ). This means that functions of the class Tr(Z) are a
subclass of the class of all translational slowly varying functions.
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Remark 2. Here the role of the preceding class of functions Tr(Z) is sim-
ilar with the role Zygmund’s class of functions in the Karamata’s theory of
regularly varying functions, see: Seneta [10].

3. TRANSLATIONAL SLOWLY VARYING FUNCTIONS WITH REMAINDER TERM

We notice that a typical result of the Abelian nature can be stated as follows.
Let k be a measurable function such that

∫ 1

0
t−δ

∣

∣k(t)
∣

∣dt <∞ and

∫ ∞

1
eδt

∣

∣k(t)
∣

∣dt <∞

for some 0 < δ < ∞, then for every translational slowly varying function A
we have

lim
x→∞

∫ ∞

0
k(t)

A(x+ t)

A(x)
dt =

∫ ∞

0
k(t)dt.(9)

If more precise result than (9) is desired, then the class of Tr(SV ) func-
tions must be suitably restricted. Namely, if one considers a specific Tr(SV )
function then a more precise asymptotic relation than (2) is usually available,
in most cases.

In this sense, let ψ be a positive decreasing function on [0,∞) such that
ψ(x) → 0 (as x → ∞) and e−δx/ψ(x) is eventually decreasing (i.e., there
exists x0 ≥ 0 such that x2 ≥ x1 ≥ x0 implies f(x2) ≤ f(x1), where f(x) =
e−δx/ψ(x)) for some 0 < δ <∞.

A positive measurable function A on [0,∞) is called a Tr(SV ) function
with remainder ψ (denoted this class by Tr(SVr)) if

A(x+ λ)

A(x)
= 1 +O

(

ψ(x)
)

, as x→ ∞,(10)

for every λ ≥ 0.
The basic result, the totally analog of Uniform Convergence Theorem, can

be stated as follows.

Theorem 3. Let A ∈ Tr(SVr), then the relation (10) holds uniformly in λ
on every compact subinterval of (0,∞), i.e.,

sup
a≤λ≤b

∣

∣

∣

∣

A(x+ λ)

A(x)
− 1

∣

∣

∣

∣

= O
(

ψ(x)
)

, as x→ ∞,

where 0 < a < b <∞.

The proof of this result is a totally analogous with the proof of Theorem 1.
For a brief proof of this statement see: Tasković [12].

Another basic property of Tr(SVr) functions with remainder term is the
following Representation Theorem.
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Theorem 4. A positive measurable function A on [0,∞) is in the class
Tr(SVr) if and only if there exists a number b > 0 such that for x ≥ b holds

A(x) = µ(x) exp

(
∫ x

b

ε(t)dt

)

,

where µ(x) is a positive and measurable function on Ib such that µ(x) → c ∈
(0,∞) as x→ ∞, and ε(x) is a continuous function on Ib such that ε(x) → 0
as x→ ∞, and satisfying as x→ ∞ the following asymptotic relations

µ(x) = c+O
(

ψ(x)
)

and ε(x) = O
(

ψ(x)
)

.

The proof of this statements is a totally analogous with the preceding proof
of Theorem 2.

4. TRANSLATIONAL REGULARLY VARYING FUNCTIONS

A positive, finite and measurable function f , defined on Ia for some a > 0,
is said to be translational regularly varying at infinity (denoted this class by
Tr(RV )) if the limit

lim
x→∞

f(x+ λ)

f(x)
= h(λ)(11)

is positive and finite for each λ ≥ 0.
A function f is said to be translational regularly varying at zero if f(1/x)

is translational regularly varying at infinity.
Translational regular variation can now be defined at any finite point a by

shifting the origin of the function to this point.
It is thus apparent that it suffices to develop the theory of translation reg-

ularly variation at infinity, which we shall do, frequently omitting the words
”at infinity” in the sequel.

The fundamental statement of this section is the following, since it shows
that h(λ) must have the form eσλ, and so the f considered must be transla-
tional regularly varying in the previously defined sense.

Theorem 5. (Characterization Theorem). If f is a translational regularly
varying function (i.e., f ∈ Tr(RV )), then the limit h(λ) in (11) is necessarily
of the form eσλ for some −∞ < σ <∞ and for each λ ≥ 0.

The number σ is the index of f . The Tr(RV ) functions of index σ = 0 are
called translational slowly varying (Tr(SV )) functions and are denoted by A.
Their interest lies in the fact that f is a Tr(RV ) function of index σ if and
only if f(x) = eσxA(x) on some Ib.

We shall proceed by proving Theorem 5 via a well-know variant statement
of Cauchy in the following form.

Theorem 6. Let r(y) be a real measurable function defined on Ib for some
b > 0. If

r(y + µ) − r(y) → ρ(µ) as y → ∞,
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with finite ρ(µ) and for each µ ∈ R, then

r(y)

y
→

ρ(µ)

µ
= σ as y → ∞

for each µ 6= 0. Consequently, then ρ(µ) = σµ for µ ∈ R.

A brief variant proof of this statement based on Césaro limit of a sequence
may be found in E. Seneta [10].

As an immediate application of Theorem 6, as a directly consequence,
putting r(y) = log f(y), λ = µ and ρ(µ) = log h(µ), we obtain the follow-
ing essential result.

Theorem 7. If f ∈ Tr(RV ), then there exists a real number σ such that
for every λ ≥ 0 we have that

f(x+ λ)

f(x)
→ eσλ as x→ ∞

and such that
log f(x)

x
→ σ as x→ ∞.

In connection with preceding facts, in further, from Theorem 7 we have that
every translational regularly varying function f has the representation in the
form

f(x) = eσxA(x) for x ≥ b,

where b ≥ a, where σ ∈ R and A(x) is a translational slowly varying function.
In connection with this, from the preceding section and this facts, we have

the following fundamental statement.

Theorem 8. (Representation Theorem). A function f ∈ Tr(RV ) if and
only if there exist σ ∈ R and a positive number b ≥ a such that for all x ≥ b
we have

f(x) = µ(x) exp

(

σx+

∫ x

b

ε(t)dt

)

,

where µ(x) is a positive and measurable function on Ib such that µ(x) → c ∈
(0,∞) as x→ ∞, and ε(x) is a continuous function on Ib such that ε(x) → 0
(as x→ ∞).

Now, from Theorem 8, as an immediate consequence, we obtain the follow-
ing statement on uniformity of convergence in the following sense.

The following statement, the analogue of Theorem 1, ensures, under mea-
surability of f , uniformity of convergence of finite intervals in (11).

Theorem 9. (Uniform Convergence Theorem). If f is a Tr(RV ) function,
then the relation (11) holds uniformly for λ in any compact interval I ⊂ (0,∞).

The proof of this statement is analogous to the proof of Theorem 1.
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Annotation 1. In connection with the Characterization Theorem we no-
tice that from

f(x+ λ+ γ)

f(x)
=
f(x+ λ+ γ)

f(x+ λ)

f(x+ λ)

f(x)

there follows, as x→ ∞,

h(λ+ γ) = h(γ)h(λ)

for all nonnegative λ and γ.
This is a form of the Cauchy (or Hamel) functional equation on the non-

negative real numbers, for a function h > 0, which, being a pointwise limit of
measurable functions, is measurable.

It is known (see: J. Aczél [1]) that under these conditions the only solutions
are of the form eσλ for −∞ < σ <∞.

Based on the above facts the proof of the preceding statement , as and
Theorem 5, we can give also serve as an illustration of the use of Lusin’s
Theorem in the present setting, which with Egorov’s Theorem and Steinhaus’s
Theorem, appear to be in the natural tools for the present theory.

Example 1. The function A(x) = log(x+ 3) for x ≥ 0 belongs to the class
Tr(SV ); also, the function

A(x) =
1

x

∫ x

1

dt

1 + log t
for x ≥ 1

belongs to the class of Tr(SV ). On the other hand, the function f(x) = ex for
x ∈ R belongs to the class Tr(RV ), but limx→∞

(

f(λx)/f(x)
)

does not exist,
for example, for λ = 3. Hence f /∈ RV .

Annotation 2. We notice, if f is a Tr(RV ) function of index σ, then, from
the preceding facts and results, the following statements hold:

(a) lim
x→∞

log f(x)

x
= σ.

(b) The function log f(x) is locally bounded on Ib for some b ≥ a.
(c) limx→∞ e−τxf(x) = ∞ for τ < σ.
(d) limx→∞ e−τxf(x) = 0 for τ > σ.
(e) For each pair of real numbers τ and ρ with the property τ < σ < ρ, the

following facts hold:1

inf
t≥x

{

e−τtf(t)
}

∼ e−τxf(x) as x→ ∞,

sup
t≥x

{

e−ρtf(t)
}

∼ e−ρxf(x) as x→ ∞.

(f) For each τ < σ the following fact holds that is

lim
x→∞

1

e−τxf(x)

∫ x

b

e−τtf(t)dt =
1

σ − τ
.

1g(x) ∼ r(x) means g(x)/r(x) → 1 as x→ ∞.
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(g) For each τ > σ the following fact holds that is

lim
x→∞

1

e−τxf(x)

∫ ∞

x

e−τtf(t)dt =
1

τ − σ
.

5. TRANSLATIONAL RAPIDLY VARYING FUNCTIONS

We say that a measurable function f : [0,∞) → (0,∞), is translational
rapidly varying of index ∞ (denoted this class by Tr(R∞)) if

lim
x→∞

f(x+ λ)

f(x)
= ∞(12)

for every λ > 0, and is translational rapidly varying of index −∞ (denoted
this class by Tr(R−∞)) if

lim
x→∞

f(x+ λ)

f(x)
= 0

for every λ > 0. The most important properties of translational rapidly vary-
ing functions may be stated as follows:

Theorem 10. (Uniform Convergence Theorem for Tr(R∞)). Let f be mea-
surable and positive, and assume that for some a > 0 is

lim
x→∞

f(x+ λ)

f(x)
= ∞(13)

for every λ ≥ a. Then (13) holds uniformly in λ over every interval [b,∞) for
b > a.

The proof of this statement is a totally analogous to the proofs of Theorems
1, 3 and 9.

In connection with the preceding, likewise we denote the class of measurable
f whose indices

r(f) := inf
{

r ∈ R : e−rxf(x) ∼ φ(x) for some nonincreasing φ
}

and

d(f) := sup
{

d ∈ R : e−dxf(x) ∼ φ(x) for some nondecreasing φ
}

are both ∞ by Tr(KR∞). We notice that Tr(KR∞) ⊂ Tr(R∞).

Theorem 11. (Representation Theorem for Tr(KR∞)). A function f ∈
Tr(KR∞) if and only if there exist σ ∈ R such that for all x ≥ 0 we have

f(x) = exp

(

σx+ µ(x) + η(x) +

∫ x

0
ξ(t)dt

)

(14)

where the measurable functions µ(x), η(x) and ξ(x) are such that µ(x) is
nondecreasing, η(x) → 0 as x→ ∞, and ξ(x) → ∞ as x→ ∞.
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Proof. If f is given by (14), then (12) holds and for λ = 0 is ψ(0) = 1,
where

ψ(λ) := lim sup
x→∞

sup
µ∈[0,λ]

f(x)

f(x+ µ)
,

i.e., f ∈ Tr(KR∞).2 Conversely, assume in further, that d(f) = ∞, i.e., that
is

∞ = sup
{

d ∈ R : e−dxf(x) ∼ φ(x) for some nondecreasing φ
}

,

then for every real d we have e−dxf(x) ∼ φd(x), where φd(x) :=
infy≥x e−dyf(y) is increasing. Write h(x) := log f(x) as usual, and set
kd(x) := log φd(x). Then

h(x) = kd(x) + bd(x) + dx (for x ≥ 0),(15)

where kd(x) is nondecreasing and bd(x) → 0 as x→ ∞. Let x0 := 0. For each
n ∈ N find xn > xn−1 + 1 such that |bn(x)| ≤ 2−n for every x ≥ xn. Thus we
have that C := b0(x) +

∑∞
n=0(bn(xn+1)− bn(xn)) is finite. For k ∈ N∪ {0} we

define

µ(x) := k0(0) +
k−1
∑

j=0

(

kj(xj+1) − kj(xj)
)

+ kk(x) − kk(xk) + C

for xk ≤ x ≤ xk+1 and

η(x) := b0(0) +
k−1
∑

j=0

(

bj(xj+1) − bj(xj)
)

+ bk(x) − bk(xk) − C

for xk ≤ x ≤ xk+1 and ζ(x) := ζk(x) for xk ≤ x < xk+1. Then µ(x) is a
nondecreasing function, η(x) → 0 (as x → ∞), and ζ(x) → ∞ (as x → ∞).
Thus for k ∈ N ∪ {0}, for σ ∈ R, and xk ≤ x < xk+1, by (15) we obtain

h(x) = h(0) +
k−1
∑

j=0

(

h(xj+1) − h(xj)
)

+ h(x) − h(xk) =

= µ(x) + η(x) +

∫ x

0
ζ(t)dt =

= σx+ µ(x) + η(x) +

∫ x

0

(

ζ(t) − σ
)

dt =

= σx+ µ(x) + η(x) +

∫ x

0
ξ(t)dt,

where ξ(t) := ζ(t) − σ → ∞ (as x → ∞). Since h(x) = log f(x), thus from
the preceding facts we have that the representation for f follows. The proof
is complete. �

A brief similar proof of this statement may be found in: Tasković [12].

2We notice that f ∈ Tr(KR∞) if and only if ψ(0) = 1 and f ∈ Tr(R∞).
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