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EXISTENCE OF INVARIANT APPROXIMATION RESULT

IN LOCALLY CONVEX SPACE

HEMANT KUMAR NASHINE

Abstract. A fixed point theorem of Hadzic [5] is generalized to locally convex
spaces and the new result is applied to extend a recent result on invariant ap-
proximation of Jungck and Sessa [8] and Mukherjee and Som [11] for non-convex
condition of domain and without affineness condition of mappings. Some known
results [1], [6], [13] and [16] are also extended and improved. A property known
as Property Γ is defined to restore the affineness nature of mapping.
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1. INTRODUCTION

Fixed point theorems have been used at many places in approximation
theory. One of the places is, while existence of best approximation is proved.
By now, a number of results have been developed using fixed point theorems
to prove the existence of best approximation. An excellent reference can be
seen in [17].

In 1963, Meinardus [10] was the first who observed the general principle
and employed a fixed point theorem to establish the existence of an invari-
ant approximation. Afterwards in 1969, Brosowski [1] obtained the following
generalization of Meinardus’s result.

Theorem 1.1. Let X be a normed space and T : X → X be a linear and
nonexpansive operator. Let M be a T -invariant subset of X and x0 ∈ F (T ).
If D, the set of best approximations of x0 in M , is nonempty compact and
convex, then there exists a y in D which is also a fixed point of T .

Using a fixed point theorem, Subrahmanyam [18] obtained the following
generalization of the above mentioned theorem of Meinardus [10].

Theorem 1.2. Let X be a normed space. If T : X → X is a nonexpansive
operator with a fixed point x0, leaving a finite dimensional subspace M of X
invariant, then there exists a best approximation of x0 in M which is also a
fixed point of T .
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In 1979, Singh [14] observed that the linearity of mapping T and the con-
vexity of the set D of best approximation of x0 in Theorem 1.1, can be relaxed
and proved the following extension of it.

Theorem 1.3. Let X be a normed space, T : X → X be a nonexpansive
mapping, M be a T -invariant subset of X and x0 ∈ F (T ). If D is nonempty
compact and starshaped, then there exists a best approximation of x0 in M
which is also a fixed point of T .

In a subsequent paper, Singh [15] also observed that only the nonexpan-
siveness of T on D′ = D ∪ {x0} is necessary for the validity of Theorem 1.3.
Further in 1982, Hicks and Humpheries [6] have shown that Theorem 1.3 re-
mains true, if T : M 7→ M is replaced by T : ∂M 7→ M , where ∂M , denotes
the boundary of M . Furthermore, Sahab, Khan and Sessa [13] generalized
the result of Hicks and Humpheries [6] and Theorem 1.3 using two mappings,
one linear and other nonexpansive for commuting mappings and established
the following result of common fixed point for best approximation in setup of
normed linear space. They took this idea from Park [12].

Theorem 1.4. Let I and T be self maps of X with x0 ∈ F (I) ∩ F (T ),
M ⊂ X with T : ∂M 7→ M , and p ∈ F (I). If D, the set of best approximation
is compact and p-starshaped, I(D) = D, I is continuous and linear on D, I
and T are commuting on D and T is I-nonexpansive on D∪{x0}, then I and
T have a common fixed point in D.

In an other paper, Jungck and Sessa [8] further weakened the hypothesis of
Sahab, Khan and Sessa [13] by replacing the condition of linearity by affine-
ness, to prove the existence of best approximation in normed linear space.
However, they used weak continuity of the mapping for such purpose in the
second result.

Here it is important to remark that Dotson [3] proved the existence of
fixed point for nonexpansive mapping. He further extended his result without
starshapedness under non-convex condition [4]. This idea was utilized by
Mukherjee and Som [11] to prove existence of fixed point and then to apply
it for proving existence of best approximation. In this way, they extended the
result of Singh [14] without starshapedness condition.

In this paper, we first derive a common fixed point result in locally con-
vex space which generalizes the result of Hadzic [5]. This new result is used
to prove another fixed point result for invariant approximation. By doing
so, we in fact, extend and improve the results of Jungck and Sessa [8] and
Mukherjee and Som [11] by increasing the number of mappings and more gen-
eral nonexpansive mappings for non-convex condition of domain and without
affineness condition of mappings. Some known results of Brosowski [1], Hicks
and Humpheries [6], Sahab, Khan and Sessa [13] and S.P.Singh [14] are also
generalized and improved by increasing the number of mappings and by con-
sidering generalized nonexpansive mapping on locally convex spaces. For this
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purpose, we use the concept given by Köthe [9] and Tarafdar [19]. In this way,
we have tried to give a new direction to the line of investigation initiated [1].

2. PRELIMINARIES

In the sequel (E, τ) will be a Hausdorff locally convex topological vector
space. A family {pα : α ∈ I} of seminorms defined on E is said to be
an associated family of seminorms for τ if the family {γU : γ > 0}, where
U =

⋂n
i=1 Uαi

, n ∈ N, and Uαi
= {x ∈ E : pαi

(x) ≤ 1}, forms a base of neigh-
bourhoods of zero for τ . A family {pα : α ∈ I} of seminorms defined on E is
called an augmented associated family for τ if {pα : α ∈ I} is an associated
family with the property that the seminorm max{pα, pβ} ∈ {pα : α ∈ I} for
any α, β ∈ I. The associated and augmented families of seminorms will be
denoted by A(τ) and A∗(τ), respectively. It is well known that given a locally
convex space (E, τ), there always exists a family {pα : α ∈ I} of seminorms
defined of E such that {pα : α ∈ I} = A∗(τ) (see page 203 [9]). A subset M
of E is τ -bounded if and only if each pα is bounded on M .

The following construction will be crucial. Suppose that M is a τ -bounded
subset of E. For this set M , we can select a number λα > 0 for each α ∈ I such
that M ⊂ λαUα where Uα = {x ∈ M : pα(x) ≤ 1}. Clearly, B =

⋂
α λαUα

is τ - bounded, τ -closed, absolutely convex and contains M . The linear span
EB of B in E is

⋃
∞

n=1 nB. The Minkowski functional of B is a norm ‖.‖B on
EB. Thus, (EB, ‖.‖B) is a normed space with B as its closed unit ball and
supα pα(x/λα) = ‖x‖B for each x ∈ EB. (for detail, see [9, 19]).

Definition 2.1. Let I and T be selfmaps on M . The map T is called
(i) A∗(τ)-nonexpansive if for all x, y ∈ M

pα(Tx − Ty) ≤ pα(x − y),

for each pα ∈ A∗(τ).
(ii)A∗(τ)-I-nonexpansive if for all x, y ∈ M

pα(Tx − Ty) ≤ pα(Ix − Iy),

for each pα ∈ A∗(τ).

For simplicity, we shall call A∗(τ)-nonexpansive (A∗(τ) − I- nonexpansive)
maps to be nonexpansive (I-nonexpansive).

Definition 2.2. Let M be a subset of (E, τ). Let x0 ∈ E. We denote
by PM (x0) the set of best M -approximant to x0, i.e. if PM (x0) = {y ∈ M :
pα(y − x0) = dpα

(x0, M) for all pα ∈ A∗(τ)}, where

dpα
(x0, M) = inf{pα(x0 − z) : z ∈ M}.

Definition 2.3. The map T : M → E is said to be demiclosed at 0 if for
every net {xn} in M converging weakly to x and {Txn} converging strongly
to 0, we have Tx = 0.
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We give the definition providing the notion of contractive jointly continuous
family introduced by Dotson [4] in locally convex space.

Definition 2.4. [4] Let F = {fx}x∈M be a family of function from [0, 1]
into M such that fx(1) = x for each x ∈ M, where M is a subset of (E, τ).

The family F is said to be contractive, if there exists a function φ : (0, 1) →
(0, 1) such that pα(fx(t)−fy(t)) ≤ φ(t)pα(x−y), for all x, y ∈ M , all t ∈ (0, 1)
and all pα ∈ A∗(τ). The family F is said to be jointly continuous if t → t0
in [0,1] and x → x0 in M , then fx(t) → fx0

(t0). Also, if T is a map from M
into itself, then for any x ∈ X, fTx(t) ⊆ Tx for all t ∈ [0, 1]. The family F is
called jointly weakly continuous in (x, t) provided fx(t) →w fx0

(t0) whenever
x →w x0 in M and t → t0 in [0,1].

Now, we give the definition Property Γ on contractive jointly continuous
family F .

Definition 2.5. A self mapping A of M is said to satisfy the Property Γ, if
for any t ∈ [0, 1], for all x ∈ M and for all fx ∈ F , we have A(fx(t)) = fAx(t),
where {fx(t)} is defined as above.

Throughout, this paper F (T ) denotes the fixed point set of mapping T .
We also use the following result due to Hadzic [5]:

Theorem 2.6. [5] Let (X, d) be a complete metric space. Let S, T : X → X
be two continuous maps and ℜ a family of self-mappings A : X → S(X)∩T (X)
such that

(i) A commutes with S and T , for each A ∈ ℜ;
(ii) d(Ax, By) ≤ qd(Sx, Ty),

for any x, y ∈ X and for A, B ∈ ℜ where 0 ≤ q < 1. Then S,T and A have a
unique common fixed point in X for all A ∈ ℜ.

3. MAIN RESULT

We use a technique of Tarafdar [19] to obtain the following common fixed
point theorem which generalize Theorem 2.6.

Theorem 3.1. Let M be a nonempty τ -bounded, τ -sequentially complete
subset of a Hausdorff locally convex space (E, τ). Let T and S be nonexpansive
self maps of M and ℜ a family of self-mappings A : X → S(X) ∩ T (X) such
that AS = SA, AT = TA and

(3.1) pα(Ax − By) ≤ qpα(Sx − Ty),

for any x, y ∈ M , pα ∈ A∗(τ), for every A, B ∈ ℜ and where 0 ≤ q < 1. Then
S, T and A have a unique common fixed point in M for all A ∈ ℜ.

Proof. Since the norm topology on EB has a base of neighborhoods of zero
consisting of τ -closed sets and M is τ -sequentially complete, therefore, M is
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a ‖.‖B-sequentially complete subset of (EB, ‖.‖B) (Theorem 1.2, [19]). From

(3.1) we obtain for x, y ∈ M , supα pα(Ax−By
λα

) ≤ q supα pα(Sx−Ty
λα

)}. Thus

(3.2) ‖Ax − By‖B ≤ q‖Sx − Ty‖B.

Note that, if S and T are nonexpansive on a τ -bounded, τ - sequentially
complete subset M of E, then S and T are also nonexpansive with respect
to ‖.‖B and hence ‖.‖B-continuous . A comparison of our hypothesis with
that of Theorem 2.6 tells that we can apply Theorem 2.6 to M as a subset of
(EB, ‖.‖B) to conclude that there exists a unique v ∈ M such that v = Tv =
Sv = Av for each A ∈ ℜ. �

Theorem 3.2. Let M be a nonempty τ -bounded, τ -sequentially complete
subset of a Hausdorff locally convex space (E, τ). Let T and S be nonexpansive
self maps of M and ℜ a family of self-mappings A : M → M such that AS =
SA, AT = TA. If M is nonempty and has a contractive jointly continuous
family F = {fx}x∈M such that S and T satisfy the Property Γ for all x ∈ M
and t ∈ [0, 1] and S(M) = M = T (M). If A, B ∈ ℜ, T and S satisfy the
following:

(3.3) pα(Ax − By) ≤ pα(Sx − Ty),

for any x, y ∈ M , pα ∈ A∗(τ). Then A ∈ ℜ, S and T have a unique common
fixed point provided one of the following conditions holds:

(i) M is τ -sequentially compact;
(ii) A is a compact map;
(iii) M is weakly compact in (E, τ), S and T are weakly continuous and

S − A and T − A are demiclosed at 0.

Proof. Choose a sequence {kn} of real numbers such that 0 < kn < 1 and
kn → 1. For each n ∈ N, define An : M → M as follows:

(3.4) An(x) = fAx(kn).

Obviously, for each n, An maps M into itself . As S commutes with A and
satisfies the Property Γ, we have

(3.5) An(Sx) = fA(Sx)(kn) = fS(Ax)(kn) = SfAx(kn) = SAnx.

Thus AnS = SAn, for all n ∈ N and for all x ∈ M , i.e. An and S
commute for each n and An(M) ⊆ M = S(M). Similarly we can show that
An and T commute for each n and An(M) ⊆ M = T (M). Hence An(M) ⊆
S(M) ∩ T (M), i.e. An : M → S(M) ∩ T (M).

Also, from (3.3), (3.4) and contractiveness of F , it follows

pα(Anx − Bny) =pα(fAx(kn) − fBy(kn)) ≤ φ(kn)pα(Ax − By)

≤φ(kn)pα(Sx − Ty), i.e.

(3.6) pα(Anx − Bny) ≤ φ(kn)pα(Sx − Ty)

for all x, y ∈ M .
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Moreover, S and T are nonexpansive on M , implies that S and T are ‖.‖B-
nonexpansive and, hence, ‖.‖B-continuous. Since the norm topology on EB

has a base of neighborhoods of zero consisting of τ -closed sets and M is τ -
sequentially complete, therefore, M is a ‖.‖B-sequentially complete subset of
(EB, ‖.‖B) (see proof of Theorem 1.2 in [19]). Thus from Theorem 3.1, for
every n ∈ N , An, S and T have unique common fixed point xn in M , i.e.

(3.7) xn = Anxn = Sxn = Txn,

for each n ∈ N.
(i) As M is τ -sequentially compact and {xn} is a sequence in M , so {xn}

has a convergent subsequence {xm} such that xm → y ∈ M . As A, S and T
are continuous and

xm = Sxm = Txm = Amxm = fAxm
(km),

Proceeding to the limit as m → ∞, we have from the joint continuity of F

Amxm = fAxm
(km) → fAy(1) = Ay.

Thus,

Ay = y.

so it follows that y = Ay = Ty = Sy.
(ii) As A is compact and {xn} is bounded, so {Axn} has a subsequence

{Axm} such that {Axm} → z ∈ M. Now we have

xm = Amxm = fAxm
(km).

Proceeding to the limit as m → ∞, we have from the joint continuity of F

Amxm = fAxm
(km) → fAz(1) = Az.

Thus,

Az = z.

and using the continuity of S and T , we have Az = z = Tz = Sz.
(iii) The sequence {xn} has a subsequence {xm} converges to u ∈ M. Since

S is weakly continuous and so as in (i), we have Su = u. Now,

(3.8) y = Sxm − Axm = xm − Axm = Amxm − Axm = fAxm
(km) − Axm.

We have from the joint weakly continuity of F , as m → ∞

(3.9) y = Sxm − Axm = fAu(1) − Au = Au − Au = 0.

Now, S −A is demiclosed at 0 and the sequence {xm} converges weakly to u.
Also, from (3.9), y → 0 where y = Sxm − Axm. Thus, 0 = (S − A)u implies
that Su = Au. Hence Au = u = Su. Similarly we show that Tu = u = Au. �

An application of Theorem 3.2, we prove the following more general result
in best approximation theory.
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Theorem 3.3. Let T, S : M → M , ℜ a family of self-mappings A : M → M
and M be a subset of E such that A(∂M) ⊆ M, where ∂M stands for the
boundary of M and x0 ∈ F (T ) ∩ F (S) ∩ F (A) for each A ∈ ℜ. Suppose
that T and S are nonexpansive, commute with A on D = PM (x0) for each
A ∈ ℜ. Further, suppose T , S and A, B ∈ ℜ satisfy (3.3) for each x, y ∈ D ∪
{x0}, pα ∈ A∗(τ). If D is nonempty and has a contractive jointly continuous
family F = {fx}x∈D such that S and T satisfy the Property Γ for all x ∈ D
and t ∈ [0, 1] and S(D) = D = T (D), then T , S and A ∈ ℜ have a common
fixed point in D provided one of the following conditions holds:

(i) D is τ -sequentially compact;
(ii) A is a compact map;
(iii) D is weakly compact in (E, τ), S and T are weakly continuous and

S − A and T − A are demiclosed at 0.

Proof. First, we show that A is a self map on D, i.e. A : D 7→ D. Let y ∈ D,
then Sy, Ty ∈ D, since S(D) = D = T (D). Also, if y ∈ ∂M , then Ay ∈ M ,
since A(∂M) ⊆ M . Now since Bx0 = x0 = Tx0, so for each pα ∈ A∗(τ) and
for each A ∈ ℜ, we have from (3.3)

pα(Ay − Bx0) ≤ pα(Sy − Tx0),

yielding thereby Ay ∈ D; consequently A, S and T are self-maps on D. The
conditions of Theorem 3.2 ((i)–(iii)) are satisfied and, hence, there exists a
w ∈ D such that Aw = w = Sw = Tw. This completes the proof. �

Remark 3.4. Theorem 3.1 and Theorem 3.2 generalize and improve the
Theorem 2.6 due to Hadzic [5] to locally convex space.

Remark 3.5. In the light of the comment given by Dotson [4] that if M ⊆ X
is p-starshaped and fα(t) = (1− t)p+ tx, (x ∈ M, t ∈ [0, 1]) then {fα}α∈M is a
contractive jointly continuous family with φ(t) = t. Thus the class of subsets
of X with the property of contractiveness and jointly continuity contains the
class of convex set.

Remark 3.6. With the remark 3.5, Theorem 3.2 and Theorem 3.3 general-
ize the results of Jungck and Sessa [8] by increasing the number of mappings,
by taking generalized form of nonexpansive mapping for non-starshaped con-
dition of domain and without affineness of mapping to locally convex space.

Remark 3.7. Theorem 3.3 also generalizes and improves the result of
Mukherjee and Som [11] by increasing the number of mappings and gener-
alized form of nonexpansive mapping to locally convex space.

Remark 3.8. With the remark 3.5, Theorem 3.3 also generalizes the re-
sults of Brosowski [1], Hicks and Humpheries [6], Sahab, Khan and Sessa [13]
and Singh [14] by increasing the number of mappings and by considering the
generalized form of nonexpansive mapping to locally convex space.
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[9] Köthe, G., Topological vector spaces I, Springer-Verlag, Berlin, 1969.

[10] Meinardus, G. Invarianze bei Linearen Approximationen, Arch. Rational Mech. Anal.,
14 (1963), 301–303.

[11] Mukherjee, R.N. and Som, T., A note on an application of a fixed point theorem in

approximation theory, Indian J. Pure Appl. Math., 16 (1985), 243–244 .
[12] Park, S., Fixed points of f-contractive maps, Rocky Mountain J. Math., 8 (1978),

743–750.
[13] Sahab, S.A., Khan, M.S. and Sessa, S. A result in best approximation theory, J.

Approx. Theory, 55 (1988), 349–351.
[14] Singh, S.P. An application of a fixed point theorem to approximation theory, J. Approx.

Theory, 25 (1979), 89–90.
[15] Singh, S.P., Application of fixed point theorems to approximation theory, in: V. Lak-

shmikantam (Ed.), Applied Nonlinear Analysis, Academic Press, New York, 1979.
[16] Singh, S.P., Some results on best approximation in locally convex spaces, J. Approx.

Theory, 28 (1980), 329–332.
[17] Singh, S.P., Watson, B. and Srivastava, P., Fixed point theory and best approxima-

tion: The KKM-Map Principle, Vol. 424, Kluwer Academic Publishers, 1997.
[18] Subrahmanyam, P.V., An application of a fixed point theorem to best approximations,

J. Approx. Theory, 20 (1977), 165–172.
[19] Tarafdar, E., Some fixed point theorems on locally convex linear topological spaces,

Bull. Austral. Math. Soc. 13 (1975), 241–254.

Received March 22, 2005 Department of Mathematics,

Raipur Institute of Technology,

Chhatauna, Mandir Hasaud,

Raipur-492101(Chhattisgarh), INDIA.

E-mail: hemantnashine@rediffmail.com


