ON δ -PRE-CONVERGENT SEQUENCES

ERDAL EKICI

Abstract. In this paper, we define the concept of δ -pre-convergent sequence. By using this concept we study sequences and separation axioms. MSC 2000. 54A05. Key words. δ -pre-convergence, sequentially δ -pre-continuity, δ -preopen set.

1. INTRODUCTION

In 1967, Wilansky [12] offered a new separation axiom in general topology called US topological spaces which lay between T_1 and T_2 . Recently, Ekici [2, 4] has studied some separation axioms by using δ -preopen sets. The aim of this paper is to investigate and study δ -pre-convergent sequence and δ -preseparation axioms.

Throughout the present paper, spaces X and Y mean topological spaces. Let X be a topological space and A a subset of X. The closure of A and the interior of A are denoted by cl(A) and int(A), respectively.

A subset A is said to be α -open [9] (resp. preopen [8]) if $A \subset int(cl(int(A)))$ (resp. $A \subset int(cl(A))$).

A subset A of a space X is said to be regular open (respectively regular closed) if A = int(cl(A)) (respectively A = cl(int(A))) [11].

The δ -interior [13] of a subset A of X is the union of all regular open sets of X contained in A is denoted by δ -int(A). A subset A is called δ -open [13] if $A = \delta$ -int(A), i. e., a set is δ -open if it is the union of regular open sets.

The complement of δ -open set is called δ -closed. Alternatively, a set A of (X, τ) is called δ -closed [13] if $A = \delta$ -cl(A), where δ -cl $(A) = \{x \in X : A \cap int(cl(U)) \neq \emptyset, U \in \tau \text{ and } x \in U\}.$

A subset S of a topological space X is said to be δ -preopen [10] iff $S \subset int(\delta - cl(S))$. The complement of a δ -preopen set is called a δ -preclosed set [10].

Arbitrary union (resp. intersection) of δ -preopen (resp. δ -preclosed) sets in X is δ -preopen (resp. δ -preclosed) [10].

The union (resp. intersection) of all δ -preopen (resp. δ -preclosed) sets, each contained in (resp. containing) a set S in a topological space X is called the δ -preinterior (resp. δ -preclosure) of S and it is denoted by δ -pint(S) (resp. δ -pcl(S)) [10].

The family of all δ -preopen sets containing a point $x \in X$ is denoted by $\delta PO(X, x)$. The family of all δ -preopen (resp. δ -preclosed, δ -open) sets of X is denoted by $\delta PO(X)$ (resp. $\delta PC(X)$, $\delta O(X)$).

DEFINITION 1. A topological space X is called α -T₀ [7] (resp. pre-T₀ [1, 5]) if for any distinct pair of points in X, there exists an α -open (resp. preopen) set containing one of the points but not the other.

DEFINITION 2. A topological space X is called α -T₁ [7] (resp. pre-T₁ [1, 5]) if for any distinct pair of points x and y in X, there exist an α -open (resp. preopen) U in X containing x but not y and an α -open (resp. preopen) set V in X containing y but not x.

DEFINITION 3. A topological space X is called α -T₂ [6] (resp. pre-T₂ [5]) if for any distinct pair of points x and y in X, there exist α -open (resp. preopen) sets U and V in X containing x and y, respectively, such that $U \cap V = \emptyset$.

PROPOSITION 1. [10] Let X be a topological space and $S \subset X$. The following properties hold:

(1) S is δ -preclosed if and only if $S = \delta$ -pcl(S),

(2) If $M \subset N$, then δ -pcl $(M) \subset \delta$ -pcl(N),

(3) δ -pcl(S) is δ -preclosed,

(4) δ -pcl(δ -pcl(S)) = δ -pcl(S),

(5) $x \in \delta$ -pcl(S) if and only if $S \cap V \neq \emptyset$ for every δ -preopen set V containing x.

2. δ -PRE-CONVERGENCE

In this section, we introduce sequentially δ -precontinuity and δ -pre-US spaces.

DEFINITION 4. [2] A topological space X is called δ -pre- T_0 if for any distinct pair of points in X, there exists a δ -preopen set containing one of the points but not the other.

DEFINITION 5. [3] A space X is said to be δ -pre- T_1 if for each pair of distinct points x and y of X, there exists δ -preopen sets U and V such that $x \in U$, $y \notin U$ and $x \notin V$, $y \in V$.

DEFINITION 6. [3] A space X is said to be δ -pre- T_2 if for each pair of distinct points x and y of X, there exists δ -preopen sets U and V such that $x \in U$, $y \in V$ and $U \cap V = \emptyset$.

REMARK 1. [2] The following hold for a topological space X:

$$\begin{array}{l} \alpha\text{-}\mathrm{T}_{2} \Rightarrow \mathrm{pre-}\mathrm{T}_{2} \Rightarrow \delta\text{-}\mathrm{pre-}\mathrm{T}_{2}, \\ \alpha\text{-}\mathrm{T}_{1} \Rightarrow \mathrm{pre-}\mathrm{T}_{1} \Rightarrow \delta\text{-}\mathrm{pre-}\mathrm{T}_{1}, \\ \alpha\text{-}\mathrm{T}_{0} \Rightarrow \mathrm{pre-}\mathrm{T}_{0} \Rightarrow \delta\text{-}\mathrm{pre-}\mathrm{T}_{0}. \end{array}$$

DEFINITION 7. [4] A space X is said to be δ -pre- R_1 if and only if for $x, y \in X$ with δ -pcl($\{x\}$) $\neq \delta$ -pcl($\{y\}$), there exist disjoint δ -preopen sets U and V such that δ -pcl($\{x\}$) $\subset U$ and δ -pcl($\{y\}$) $\subset V$.

THEOREM 1. [4] Let X be a topological space. Then X is δ -pre- T_2 if and only if it is δ -pre- R_1 and δ -pre- T_0 .

LEMMA 1. [10] Let A and Y be subsets of a space X. If $A \in \delta PO(X)$ and Y is δ -open in X, then $A \cap Y \in \delta PO(Y)$.

DEFINITION 8. A sequence (x_n) is said to be δ -pre-converges to a point x of X, denoted by $(x_n) \xrightarrow{\delta p} x$, if (x_n) is eventually in every δ -preopen set containing x.

DEFINITION 9. A space X is said to be δ -pre-US if every δ -pre-convergent sequence (x_n) in X δ -pre-converges to a unique point.

DEFINITION 10. A set F is said to be sequentially δ -preclosed if every sequence in F δ -pre-converging in X δ -pre-converges to a point in F.

DEFINITION 11. A subset G of a space X is said to be sequentially δ -precompact if every sequence in G has a subsequence which δ -pre-converges to a point in G.

THEOREM 2. A space X is δ -pre-US if and only if the set $A = \{(x, x) : x \in X\}$ is a sequentially δ -preclosed subset of $X \times X$.

Proof. Let X be δ -pre-US. Let (x_n, x_n) be a sequence in A. Then (x_n) is a sequence in X. As X is δ -pre-US, $(x_n) \xrightarrow{\delta p} x$ for a unique $x \in X$. i.e., $(x_n) \delta$ -pre-converge to x and y. Thus, x = y. Hence, A is sequentially δ -preclosed set.

Conversely, let A be sequentially δ -preclosed. Let a sequence (x_n) δ -preconverge to x and y. Hence, sequence (x_n, x_n) δ -pre-converges to (x, y). Since A is sequentially δ -preclosed, $(x, y) \in A$ which means that x = y implies space X is δ -pre-US.

THEOREM 3. Every δ -pre- T_2 space is δ -pre-US.

Proof. Let X be δ -pre- T_2 space and (x_n) be a sequence in X. Suppose that $(x_n) \delta$ -pre-converge to two distinct points x and y. That is, (x_n) is eventually in every δ -preopen set containing x and also in every δ -preopen set containing y. This is contradiction since X is δ -pre- T_2 space. Hence, the space X is δ -pre-US.

THEOREM 4. Every δ -pre-US space is δ -pre- T_1 .

Proof. Let X be δ -pre-US space. Let x and y be two distinct points of X. Consider the sequence (x_n) where $x_n = x$ for every n. Clearly, $(x_n) \delta$ -pre-converges to x. Also, since $x \neq y$ and X is δ -pre-US, (x_n) cannot δ -pre-converge to y, i.e, there exists a δ -preopen set V containing y but not x. Similarly, if we consider the sequence (y_n) where $y_n = y$ for all n, and proceeding as above we get a δ -preopen set U containing x but not y. Thus, the space X is δ -pre- T_1 .

THEOREM 5. In a δ -pre-US space every sequentially δ -pre-compact set is sequentially δ -preclosed.

Proof. Let X be δ -pre-US space. Let Y be a sequentially δ -pre-compact subset of X. Let (x_n) be a sequence in Y. Suppose that $(x_n) \delta$ -pre-converges to a point in $X \setminus Y$. Let (x_{n_k}) be subsequence of (x_n) which δ -pre-converges to a point $y \in Y$ since Y is sequentially δ -pre-compact.

Also, a subsequence (x_{n_k}) of (x_n) δ -pre-converges to $x \in X \setminus Y$. Since (x_{n_k}) is a sequence in the δ -pre-US space X, x = y. Thus, Y is sequentially δ -preclosed set.

THEOREM 6. Every δ -open set of a δ -pre-US space is δ -pre-US.

Proof. Let X be a δ -pre-US space and $Y \subset X$ be an δ -open set. Let (x_n) be a sequence in Y. Suppose that $(x_n) \delta$ -pre-converge to x and y in Y. We shall prove that $(x_n) \delta$ -pre-converges to x and y in X. Let U be any δ -preopen subset of X containing x and V be any δ -preopen set of X containing y. Then, $U \cap Y$ and $V \cap Y$ are δ -preopen sets in Y. Therefore, (x_n) is eventually in $U \cap Y$ and $V \cap Y$ and so in U and V. Since X is δ -pre-US, this implies that x = y. Hence the subspace Y is δ -pre-US.

THEOREM 7. A space X is δ -pre-T₂ if and only if it is both δ -pre-R₁ and δ -pre-US.

Proof. Let X be a δ -pre- T_2 space. Then X is δ -pre- R_1 by Theorem 2 and δ -pre-US by Theorem 4.

Coversely, let X be both δ -pre- R_1 and δ -pre-US space. By Theorem 5 we obtain that every δ -pre-US space is δ -pre- T_1 and X is both δ -pre- T_1 and δ -pre- R_1 and, it follows from Theorem 2 that space X is δ -pre- T_2 .

Next, we prove the product theorem for δ -pre-US spaces.

THEOREM 8. If X_1 and X_2 are δ -pre-US spaces, then $X_1 \times X_2$ is δ -pre-US.

Proof. Let $X = X_1 \times X_2$ where X_i is δ -pre-US and $I = \{1, 2\}$. Let a sequence (x_n) in X δ -pre-converges to $x = (x_i)_{i \in I}$ and $y = (y_i)_{i \in I}$. Then the sequence (x_{n_i}) δ -pre-converges to x_i and y_i for all $i \in I$. Suppose that for $2 \in I$, (x_{n_2}) does not δ -pre-converges to x_2 . Then there exists δ -preopen set U_2 containing x_2 such that (x_{n_2}) is not eventually in U_2 . Consider the set, $U = X_1 \times U_2$. Then U is a δ -preopen subset of X and $x \in U$. Also, (x_n) is not eventually in U which contradicts the fact that (x_n) δ -pre-converges to x_i and y_i for all $i \in I$. Since X_i is δ -pre-US for each $i \in I$, we obtain x = y. Hence, X is δ -pre-US.

Now we define the notion of sequentially δ -precontinuous functions in the following:

DEFINITION 12. A function $f: X \to Y$ is said to be

(1) sequentially δ -precontinuous at $x \in X$ if $f(x_n)$ δ -pre-converges to f(x) whenever (x_n) is a sequence δ -pre-converging to x,

(2) sequentially δ -precontinuous if f is sequentially δ -precontinuous at all $x \in X$.

DEFINITION 13. A function $f : X \to Y$ is said to be sequentially nearly δ -precontinuous if for each point $x \in X$ and each sequence (x_n) in X δ -preconverging to x, there exists a subsequence (x_{n_k}) of (x_n) such that $f(x_{n_k}) \xrightarrow{\delta p} f(x)$.

DEFINITION 14. A function $f : X \to Y$ is said to be sequentially sub- δ -precontinuous if for each point $x \in X$ and each sequence (x_n) in $X \delta$ -preconverging to x, there exists a subsequence (x_{n_k}) of (x_n) and a point $y \in Y$ such that $f(x_{n_k}) \xrightarrow{\delta p} y$.

DEFINITION 15. A function $f : X \to Y$ is said to be sequentially δ -precompact preserving if the image f(K) of every sequentially δ -pre-compact set K of X is sequentially δ -pre-compact in Y.

THEOREM 9. Every function $f : X \to Y$ is sequentially sub- δ -precontinuous if Y is a sequentially δ -pre-compact.

Proof. Let (x_n) be a sequence in X δ -pre-converging to a point x of X. Then $(f(x_n))$ is a sequence in Y and as Y is sequentially δ -pre-compact, there exists a subsequence $(f(x_{n_k}))$ of $(f(x_n))$ δ -pre-converging to a point $y \in Y$. Hence, $f: X \to Y$ is sequentially sub- δ -precontinuous.

THEOREM 10. A function $f: X \to Y$ is sequentially δ -pre-compact preserving if and only if $f \mid M : M \to f(M)$ is sequentially sub- δ -precontinuous for each sequentially δ -pre-compact subset M of X.

Proof. Suppose that $f: X \to Y$ is a sequentially δ -pre-compact preserving function. Then f(M) is sequentially δ -pre-compact set in Y for each sequentially δ -pre-compact set M of X. Therefore, by Theorem 10, $f \mid M : M \to f(M)$ is sequentially sub- δ -precontinuous function.

Conversely, let M be any sequentially δ -pre-compact set of X. We shall show that f(M) is sequentially δ -pre-compact set in Y. Let (y_n) be any sequence in f(M). Then for each positive integer n, there exists a point $x_n \in M$ such that $f(x_n) = y_n$. Since (x_n) is a sequence in the sequentially δ -pre-compact set M, there exists a subsequence (x_{n_k}) of $(x_n) \delta$ -pre-converging to a point $x \in M$. Since $f \mid M : M \to f(M)$ is sequentially sub- δ -precontinuous, then there exists a subsequence (y_{n_k}) of $(y_n) \delta$ -pre-converging to a point $y \in f(M)$. This implies that f(M) is sequentially δ -pre-compact set in Y. Thus, $f : X \to Y$ is sequentially δ -pre-compact preserving function. \Box

The following theorem gives a sufficient condition for a sequentially sub- δ -precontinuous function to be sequentially δ -pre-compact preserving.

THEOREM 11. If a function $f: X \to Y$ is sequentially sub- δ -precontinuous and f(M) is sequentially δ -preclosed set in Y for each sequentially δ -precompact set M of X, then f is sequentially δ -pre-compact preserving function. E. Ekici

Proof. We use the previous theorem. It suffices to prove that $f \mid M : M \to f(M)$ is sequentially sub- δ -precontinuous for each sequentially δ -precompact subset M of X. Let (x_n) be any sequence in M δ -pre-converging to a point $x \in M$. Then since f is sequentially sub- δ -precontinuous, there exist a subsequence (x_{n_k}) of (x_n) and a point $y \in Y$ such that $f(x_{n_k})$ δ -pre-converges to y. Since $f(x_{n_k})$ is a sequence in the sequentially δ -preclosed set f(M) of Y, we obtain $y \in f(M)$. This implies that $f \mid M : M \to f(M)$ is sequentially sub- δ -precontinuous.

THEOREM 12. Every sequentially nearly δ -precontinuous function is sequentially δ -pre-compact preserving.

Proof. Suppose that $f: X \to Y$ is a sequentially nearly δ -precontinuous function and let M be any sequentially δ -pre-compact subset of X. We shall show that f(M) is a sequentially δ -pre-compact set of Y. Let (y_n) be any sequence in f(M). Then for each positive integer n, there exists a point $x_n \in M$ such that $f(x_n) = y_n$. Since (x_n) is a sequence in the sequentially δ pre-compact set M, there exists a subsequence (x_{n_k}) of (x_n) δ -pre-converging to a point $x \in M$. Since f is sequentially nearly δ -precontinuous, then there exists a subsequence (x_j) of (x_{n_k}) such that $f(x_j) \xrightarrow{\delta p} f(x)$. Thus, there exists a subsequence (y_j) of (y_n) δ -pre-converging to $f(x) \in f(M)$. This shows that f(M) is sequentially δ -pre-compact set in Y.

THEOREM 13. Every sequentially δ -pre-compact preserving function is sequentially sub- δ -precontinuous.

Proof. Suppose $f: X \to Y$ is a sequentially δ -pre-compact preserving function. Let x be any point of X and (x_n) any sequence in X δ -pre-coverging to x. We shall denote the set $\{x_n : n = 1, 2, 3, ...\}$ by N and $M = N \cup \{x\}$. Then M is sequentially δ -pre-compact since $x_n \xrightarrow{\delta p} x$. Since f is sequentially δ pre-compact preserving, it follows that f(M) is a sequentially δ -pre-compact set of Y. Since $(f(x_n))$ is a sequence in f(M), there exists a subsequence $(f(x_{n_k}))$ of $(f(x_n))$ δ -pre-converging to a point $y \in f(M)$. This implies that f is sequentially sub- δ -precontinuous. \Box

THEOREM 14. Let $f : X \to Y$ and $g : X \to Y$ be two sequentially δ -precontinuous functions. If Y is δ -pre-US, then the set $A = \{x : f(x) = g(x)\}$ is sequentially δ -preclosed.

Proof. Let Y be δ -pre-US and suppose that there exists a sequence (x_n) in A δ -pre-converging to $x \in X$. Since f and g are sequentially δ -precontinuous functions, $f(x_n) \xrightarrow{\delta p} f(x)$ and $g(x_n) \xrightarrow{\delta p} g(x)$. Hence f(x) = g(x) and $x \in A$. Therefore, A is sequentially δ -preclosed.

THEOREM 15. Let $f : X \to Y$ be a sequentially δ -precontinuous function. If Y is δ -pre-US, then the set $E = \{(x, y) \in X \times X : f(x) = f(y)\}$ is sequentially δ -preclosed in $X \times X$.

Proof. Suppose that there exists a sequence (x_n, y_n) in E δ -pre-converging to $(x, y) \in X \times X$. Since f is sequentially δ -precontinuous functions, $f(x_n) \xrightarrow{\delta p} f(x)$ and $f(y_n) \xrightarrow{\delta p} f(y)$. Hence f(x) = f(y) and $(x, y) \in E$. Hence, E is sequentially δ -preclosed.

REFERENCES

- CHATTOPADHYAY, A., Pre-T₀ and pre-T₁ topological spaces, J. Indian Acad. Math., 17 (1995), 156–159.
- [2] EKICI, E., On separation axioms, submitted.
- [3] ΕΚΙCI, Ε., (δ-pre,s)-continuous functions, Bulletin of the Malaysian Mathematical Sciences Society, 27 (2004), 237–251.
- [4] EKICI, E., On some separation axioms in topological spaces, submitted.
- [5] KAR, A. and BHATTACHARYYA, P., Some weak separation axioms, Bull. Cal. Math. Soc., 82 (1990), 415–422.
- [6] MAHESHWARI, S. N. and THAKUR, S. S., On α-irresolute mappings, Tamkang J. Math., 11 (1980), 209–214.
- [7] MAKI, H., DEVI, R. and BALACHANDRAN, K., Generalized α-closed sets in topology, Bull. Fukuoka Univ. Ed. Part III, 42 (1993), 13–21.
- [8] MASHHOUR, A. S., EL-MONSEF, M. E. A. and EL-DEEB, S. N., On precontinuous and weak precontinuous mappings, Proc. Phys. Soc. Egypt, 53 (1982), 47–53.
- [9] NJÅSTAD, O., On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [10] RAYCHAUDHURI, S. and MUKHERJEE, N., On δ-almost continuity and δ-preopen sets, Bull. Inst. Math. Acad. Sinica, 21 (1993), 357–366.
- [11] STONE, M. H., Applications of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41 (1937), 375–381.
- [12] WILANSKY, A., Between T₁ and T₂, Amer. Math. Monthly., **74** (1967), 261–266.
- [13] VELIČKO, N. V., H-closed topological spaces, Amer. Math. Soc. Trans., 78 (1968), 103–118.

Received April 14, 2005

Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale, Turkey E-mail: eekici@comu.edu.tr