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A UNIFIED TREATMENT OF CERTAIN UNIFORMLY

ANALYTIC FUNCTIONS

MASLINA DARUS

Abstract. In this paper we introduce and study some properties of a unified
class U [Φ, Ψ; α, β, λ, n] of certain uniformly analytic functions with negative co-
efficients in a unit disk U . These properties include growth and distortion, radii
of convexity, radii of starlikeness and radii of close-to-convexity. Further, results
on integral transform are also given.
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1. INTRODUCTION

Denote by A the class of functions of the form

(1) f(z) = z +
∞
∑

n=2

anzn

which are analytic and univalent in the open disc U = {z : z ∈ C and |z| < 1}.
Denote by S∗(α) the class of starlike functions f ∈ A of order α(0 ≤ α < 1)
satifying

Re

(

zf ′(z)

f(z)

)

> α, z ∈ U

and let C(α) be the class of convex functions f ∈ A of order α(0 ≤ α < 1)
such that zf ′ ∈ S∗(α).

A function f ∈ A is said to be in the class of β-uniformly convex functions
of order α, denoted by β − UCV (α) [8, 9] if

(2) Re

{

1 +
zf ′′(z)

f ′(z)
− α

}

≥ β

∣

∣

∣

∣

zf ′′(z)

f ′(z)
− 1

∣

∣

∣

∣

,

and is said to be in a corresponding subclass of β−UCV (α) denote by β−Sp(α)
if

(3) Re

{

zf ′(z)

f(z)
− α

}

≥ β

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

,

where −1 ≤ α ≤ 1 and z ∈ U.

The class of uniformly convex and uniformly starlike functions has been
extensively studied by Goodman [2, 3], Ma and Minda [7]. In fact the class of
uniformly β-starlike funtions was introduced by Kanas and Wisniowski [5], and
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for which it can be generalised to β − Sp(α), the class of uniformly β-starlike
functions of order α.

If f of the form (1) and g(z) = z +
∞
∑

n=2
bnzn are two functions in A, then

the hadamard product (or convolution) of f and g is denoted by f ∗ g and is
given by

(4) (f ∗ g)(z) = z +
∞
∑

n=2

anbnzn.

Ruscheweyh [10] using the convolution techniques, introduced and studied
an important subclass of A, the class of prestarlike functions of order α, which
denoted by R(α). Thus f ∈ A is said to be prestarlike function of order α

(0 ≤ α < 1) if f ∗ Sα ∈ S∗(α) where

Sα(z) =
z

(1 − z)2(1−α)
= z +

∞
∑

n=2

cn(α)zn

and cn(α) =
Πn

j=2
(j−2α)

(n−1)! (n ∈ N {1} N := {1, 2, 3, . . .}). We note that

R(0) = C(0) and R(1
2) = S∗(1

2). Juneja et.al [4] define the family D(Φ, Ψ;α)
consisting of functions f ∈ A so that

Re

(

f(z) ∗ Φ(z)

f(z) ∗ Ψ(z)

)

> α, z ∈ U ,

where Φ(z) = z +
∑

∞

n=2 Υnzn and Ψ(z) = z +
∑

∞

n=2 γnzn analytic in U such

that f(z) ∗ Ψ(z) 6= 0, Υn ≥ 0, γn ≥ 0 and Υn > γn (n ≥ 2).
Darus [1] define the family D(Φ, Ψ;α, β) consisting of functions f ∈ A such

that

(5) Re

(

f(z) ∗ Φ(z)

f(z) ∗ Ψ(z)

)

> β

∣

∣

∣

∣

∣

f(z) ∗ Φ(z)

f(z) ∗ Ψ(z)
− 1

∣

∣

∣

∣

∣

+ α,

where 0 ≤ α < 1 and β ≥ 0. For suitable choices of Φ and Ψ, the vari-
ous subclasses of A are obtained. For example D( z

(1−z)2
, z

1−z
; α, 0) = S∗(α),

D( z+z2

(1−z)3
, z

(1−z)2
; α, 0) = C(α), D( z+(1−2α)z2

(1−z)3−2α , z
(1−z)2−2α ; α, 0) = R(α). More-

over, D( z
(1−z)2

, z
1−z

; α, β) = β−Sp(α) and D( z+z2

(1−z)3
, z

(1−z)2
; α, β) = β−UCV (α).

Also denote by T [11] the subclass of A consisting of functions of the form

(6) f(z) = z −
∞
∑

n=2

anzn

Now let us write DT (Φ, Ψ;α, β) = D(Φ, Ψ;α, β) ∩ T where T is the class of
functions of the form (6) that are analytic and univalent in U .
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In this paper, we will study the unified presentation of function f ∈ T

belongs to U [Φ, Ψ;α, β, λ, n] which include growth and distortion theorem,
radii of convexity, radii of starlikeness and radii of close-to-convexity.

2. COEFFICIENT INEQUALITY

The following result is needed for the purpose of the study.

Lemma 1. [1] A function f defined by (6) is in the class DT (Φ, Ψ;α, β) if
and only if

(7)
∞
∑

n=2

[(1 + β)Υn − (α + β)γn]

1 − α
|an| ≤ 1,

where 0 ≤ α < 1, β ≥ 0, Υn ≥ 0, γn ≥ 0 and Υn > γn.

Next, by observing that

(8) f ∈ ET (Φ, Ψ;α, β) ⇔ zf ′ ∈ DT (Φ, Ψ;α, β),

we gain the following Lemma 2.

Lemma 2. A function f defined by (6) is in the class ET (Φ, Ψ;α, β) if and
only if

(9)
∞
∑

n=2

n[(1 + β)Υn − (α + β)γn]

1 − α
|an| ≤ 1,

where 0 ≤ α < 1, β ≥ 0, Υn ≥ 0, γn ≥ 0 and Υn > γn.

In view of Lemma 1 and Lemma 2, we unify the classes DT (Φ, Ψ;α, β) and
ET (Φ, Ψ;α, β) and so a new class U(Φ, Ψ;α, β, λ, n) is formed. Thus we say
that a function f defined by (6) belongs to U(Φ, Ψ;α, β, λ, n) if and only if,

(10)
∞
∑

n=2

(1 − λ + nλ)[(1 + β)Υn − (α + β)γn]|an| ≤ 1 − α,

where 0 ≤ α < 1, β ≥ 0, Υn ≥ 0, γn ≥ 0, λ ≥ 0 and Υn > γn. Clearly, we
obtain

U(Φ, Ψ;α, β, λ, n) = (1 − λ)DT (Φ, Ψ;α, β) + λET (Φ, Ψ;α, β),

so that

U(Φ, Ψ;α, β, 0, n) = DT (Φ, Ψ;α, β),

and

U(Φ, Ψ;α, β, 1, n) = ET (Φ, Ψ;α, β).



152 M. Darus 4

3. GROWTH AND DISTORTION THEOREM

Our first result for function f to be in the class U(Φ, Ψ;α, β, λ, n) is given
as follows:

Theorem 1. Let the function f defined by the formula (6) be in the class
U(Φ, Ψ;α, β, λ, n), then

(11) |z| − |z|2
1 − α

(1 + λ)[(1 + β)Υ2 − (α + β)γ2]
≤ |f(z)|

≤ |z| + |z|2
1 − α

(1 + λ)[(1 + β)Υ2 − (α + β)γ2]

and

(12) 1 − |z|
2(1 − α)

(1 + λ)[(1 + β)Υ2 − (α + β)γ2]
≤ |f ′(z)|

≤ 1 + |z|
2(1 − α)

(1 + λ)[(1 + β)Υ2 − (α + β)γ2]

The bounds (11) and (12) are attained for functions given by

(13) f(z) = z − z2 1 − α

(1 + λ)[(1 + β)Υ2 − (α + β)γ2]
.

Proof. We find from (10) that

(14)
∞
∑

n=2

|an| ≤
(1 − α)

(1 + λ)[(1 + β)Υ2 − (α + β)γ2]
.

Using (6) and (14), we readily have (z ∈ U)

|f(z)| ≥ |z| −
∞
∑

n=2

|an||z
n|

≥ |z| − |z2|
∞
∑

n=2

|an|

≥ r −
1 − α

(1 + λ)[(1 + β)Υ2 − (α + β)γ2]
r2, |z| = r < 1
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and

|f(z)| ≤ |z| +
∞
∑

n=2

|an||z
n|

≤ |z| + |z2|
∞
∑

n=2

|an|

≤ r +
1 − α

(1 + λ)[(1 + β)Υ2 − (α + β)γ2]
r2, |z| = r < 1,

which proves the assertion (11) of Theorem 1. Also, from (6), we find for
z ∈ U that

|f ′(z)| ≥ 1 −
∞
∑

n=2

n|an||z
n−1|

≥ 1 − |z|
∞
∑

n=2

n|an|

≥ 1 −
2(1 − α)

(1 + λ)[(1 + β)Υ2 − (α + β)γ2]
r, |z| = r < 1

and

|f ′(z)| ≤ 1 +
∞
∑

n=2

n|an||z
n−1|

≤ 1 + |z|

∞
∑

n=2

n|an|

≤ 1 +
2(1 − α)

(1 + λ)[(1 + β)Υ2 − (α + β)γ2]
r, |z| = r < 1,

which proves the assertion (12) of Theorem 1. �

4. RADII CONVEXITY AND STARLIKENESS

The radii of convexity for class U(Φ, Ψ;α, β, λ, n) is given by the following
theorem.

Theorem 2. Let the function f be in the class U(Φ, Ψ;α, β, λ, n). Then the
function f is convex of order ρ (0 ≤ ρ < 1) in the disk

|z| < r1(Φ, Ψ;α, β, λ, n, ρ) = r1,
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where

(15) r1 = inf
n

{

(1 − ρ)[(1 + β)Υn − (α + β)γn](1 − λ + nλ)

n(n − ρ)(1 − α)

}
1

n−1

.

Proof. It sufficient to show that

∣

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

−
∑

∞

n=2 n(n − 1)anzn−1

1 −
∑

∞

n=2 nanzn−1

∣

∣

∣

∣

∣

≤

∑

∞

n=2 n(n − 1)an|z|
n−1

1 −
∑

∞

n=2 nan|z|1−n
(16)

which implies that

(1 − ρ) −

∣

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

∣

≥ (1 − ρ) −

∑

∞

n=2 n(n − 1)|an||z|
n−1

1 −
∑

∞

n=2 nanzn−1

=
(1 − ρ) −

∑

∞

n=2 n(n − ρ)an|z|
n−1

1 −
∑

∞

n=2 nan|z|n−1
.(17)

Hence, from (15), if

(18) |z|n−1 ≤
(1 − ρ)[(1 + β)Υn − (α + β)γn](1 − λ + nλ)

n(n − ρ)(1 − α)
,

and according to (10)

(19) 1 − ρ −
∞
∑

n=2

n(n − ρ)an|z|
n−1 > 1 − ρ − (1 − ρ) = ρ.

Hence, from (19), we obtain
∣

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

∣

< 1 − ρ.

Therefore

Re

{

1 +
zf ′′(z)

f ′(z)

}

> ρ,

which shows that f is convex in the disk |z| < r1(Φ, Ψ;α, β, λ, n, ρ). �

By setting λ = 0 and λ = 1, we have the Corollary 1 and the Corollary 2,
respectively.

Corollary 1. Let the function f be in the class DT (Φ, Ψ;α, β). Then the
function f is convex of order ρ (0 ≤ ρ < 1) in the disk

|z| < r2(Φ, Ψ;α, β, 0, n, ρ) = r2,
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where

(20) r2 = inf
n

{

(1 − ρ)[(1 + β)Υ2 − (α + β)γ2]

n(n − ρ)(1 − α)

}
1

n−1

.

Corollary 2. Let the function f be in the class ET (Φ, Ψ;α, β). Then the
function f is convex of order ρ (0 ≤ ρ < 1) in the disk

|z| < r3(Φ, Ψ;α, β, 1, n, ρ) = r3,

where

(21) r3 = inf
n

{

(1 − ρ)[(1 + β)Υn − (α + β)γn]

(n − ρ)(1 − α)

}
1

n−1

.

Theorem 3. Let the function f be in the class U(Φ, Ψ;α, β, λ, n). Then the
function f is starlike of order ρ (0 ≤ ρ < 1) in the disk

|z| < r4(Φ, Ψ;α, β, λ, n, ρ) = r4,

where

(22) r4 = inf
n

{

(1 − ρ)[(1 + β)Υn − (α + β)γn](1 − λ + nλ)

(n − ρ)(1 − α)

}
1

n−1

.

Proof. It sufficient to show that
∣

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

∣

< 1 − ρ

Using similar method of Theorem 2 and making use of (10), we get (22). �

Letting λ = 0 and λ = 1, we have the Corollary 3 and the Corollary 4,
respectively.

Corollary 3. Let the function f be in the class DT (Φ, Ψ;α, β, n). Then
the function f is starlike of order ρ (0 ≤ ρ < 1) in the disk

|z| < r5(Φ, Ψ;α, β, 0, n, ρ) = r5,

where

(23) r5 = inf
n

{

(1 − ρ)[(1 + β)Υn − (α + β)γn]

(n − ρ)(1 − α)

}
1

n−1

.

Corollary 4. Let the function f be in the class ET (Φ, Ψ;α, β, n). Then
the function f is starlike of order ρ (0 ≤ ρ < 1) in the disk

|z| < r6(Φ, Ψ;α, β, 1, n, ρ) = r6,
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where

(24) r6 = inf
n

{

n(1 − ρ)[(1 + β)Υn − (α + β)γn]

(n − ρ)(1 − α)

}
1

n−1

.

Last, but not least we give the following result.

Theorem 4. Let the function f be in the class U(Φ, Ψ;α, β, λ, n). Then the
function f is close-to-convex of order ρ(0 ≤ ρ < 1) in the disk

|z| < r7(Φ, Ψ;α, β, λ, n, ρ) = r7,

where

(25) r7 = inf
n

{

(1 − ρ)[(1 + β)Υn − (α + β)γn](1 − λ + nλ)

n(1 − α)

}
1

n−1

.

Proof. It sufficient to show that

|f ′(z) − 1| < 1 − ρ.

Using similar technique of Theorem 2 and making use of (10), we get (25). �

5. INTEGRAL TRANSFORM OF THE CLASS U(Φ, Ψ;α, β, λ, N)

For f ∈ A we define the integral transform

Vµ(f)(z) =

∫ 1

0
µ(t)

f(tz)

t
dt,

where µ is real valued, non-negative weight function normalized such that
∫ 1
0 µ(t)dt = 1. Since special cases of µ(t) are particularly interesting such as

µ(t) = (1 + c)tc, c > −1, for which Vµ is known as the Bernardi operator, and

µ(t) =
(c + 1)δ

µ(δ)
tc
(

log
1

t

)δ−1

, c > −1, δ ≥ 0

which gives the Komatu operator. For more details see [6].

First of all, we show that the class U(Φ, Ψ;α, β, λ, n) is closed under Vµ(f).

Theorem 5. Let f ∈ U(Φ, Ψ;α, β, λ, n). Then Vµ(f) ∈ U(Φ, Ψ;α, β, λ, n).

Proof. By definition, we can write

Vµ(f) =
(c + 1)δ

µ(δ)

∫ 1

0
(−1)δ−1tc(log t)δ−1

(

z −
∞
∑

n=2

anzntn−1

)

dt

=
(−1)δ−1(c + 1)δ

µ(δ)
lim

r→0+

[

∫ 1

r

tc(log t)δ−1

(

z −

∞
∑

n=2

anzntn−1

)

dt

]

,
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and a simple calculation gives

Vµ(f)(z) = z −
∞
∑

n=2

(

c + 1

c + n

)δ

anzn.

We need to prove that

(26)
∞
∑

n=2

(1 − λ + nλ)[(1 + β)Υn − (α + β)γn]

1 − α

(

c + 1

c + n

)δ

an < 1.

On the other hand by (10), f ∈ U(Φ, Ψ;α, β, λ, n) if and only if

(27)

∞
∑

n=2

(1 − λ + nλ)[(1 + β)Υn − (α + β)γn]

1 − α
< 1.

Hence c+1
c+n

< 1. Therefore (26) holds true and the proof is complete. �

Next we provide a starlikeness condition for functions in U(Φ, Ψ;α, β, λ, n)
under Vµ(f).

Theorem 6. Let f ∈ U(Φ, Ψ;α, β, λ, n). Then Vµ(f) is starlike of order
0 ≤ ρ < 1 in |z| < R8 where

R8 = inf
n

[

(

c + n

c + 1

)δ (1 − ρ)[(1 + β)Υn − (α + β)γn](1 − λ + nλ)

(n − ρ)(1 − α)

]
1

n−1

Proof. It is sufficient to prove

(28)

∣

∣

∣

∣

z(Vµ(f)(z))′

Vµ(f)(z)
− 1

∣

∣

∣

∣

< 1 − ρ.

For the left hand side of (28) we have

∣

∣

∣

∣

z(Vµ(f)(z))′

Vµ(f)(z)
− 1

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∞
∑

n=2
(1 − n)( c+1

c+n
)δanzn−1

1 −
∞
∑

n=2
( c+1

c+n
)δanzn−1

∣

∣

∣

∣

∣

∣

∣

∣

≤

∞
∑

n=2
(n − 1)( c+1

c+n
)δan|z|

n−1

1 −
∞
∑

n=2
( c+1

c+n
)δan|z|n−1

.

This last expression is less than (1 − ρ) since

|z|n−1 <

(

c + 1

c + n

)δ (1 − ρ)[(1 + β)Υn − (α + β)γn](1 − λ + nλ)

(n − ρ)(1 − α)
.

Therefore the proof is complete. �

Using the fact that f is convex if and only if zf ′ is starlike, we obtain the
following:



158 M. Darus 10

Theorem 7. Let f ∈ U(Φ, Ψ;α, β, λ, n). Then Vµ(f) is convex of order
0 ≤ ρ < 1 in |z| < R9, where

R9 = inf
n

[

(

c + n

c + 1

)δ (1 − ρ)[(1 + β)Υn − (α + β)γn](1 − λ + nλ)

n(n − ρ)(1 − α)

]
1

n−1

.

We omit the proof as it is easily derived.
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