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PENCILS OF STRAIGHT LINES IN LOGARITHMIC

POTENTIALS

MIRA-CRISTIANA ANISIU and VALERIU ANISIU

Abstract. The aim of the planar inverse problem of dynamics is to find the
potentials under whose action a material point of unit mass, with appropriate
initial conditions, describes the curves in a given family. We solve the following
special problem: determine the finite Borel measures, with support in the unit
circle, whose logarithmic potentials give rise to a family of lines passing through
a given point.
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1. INTRODUCTION

The goal of the classical inverse problem of dynamics is to find the planar
potentials V = V (x, y) creating preassigned families of orbits, traced by a
material point of unit mass. Reviews of this and of other versions of the
inverse problem can be found in [10], [6] and [1].

The equations governing the motion of the particle are

(1) ẍ = −Vx ÿ = −Vy.

The very simple families of straight lines have been considered only recently.
The interest in such families was raised by the fact that isolated straight line
solutions have been found in galactic models by Contopoulos and Zikides [9]
and by Caranicolas and Innanen [8]. Straight lines appear also in the Hénon-
Heiles model [12] (van der Merwe [13], Antonov and Timoshkova [3]). Some
families of straight lines were studied by Grigoriadou [11] in connection with
the problem of Darboux integrability.

A monoparametric family of curves

(2) f (x, y) = c

is determined by the slope function

(3) γ =
fy

fx
,

where the subscripts denote partial differentiation. To each f there corre-
sponds obviously one γ and to each γ there corresponds just one monopara-
metric family (2). We define also the function

(4) Γ = γγx − γy
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which can be expressed in terms of the derivatives of f as

Γ =
2fxyfxfy − fxxf2

y − fyyf
2
x

f3
x

.

It follows that the curvature of the orbits in (2) is given by

K = |Γ| /
(

1 + γ2
)3/2

,

therefore the family (2) consists of straight lines if and only if Γ = 0. In view
of (4) this condition may be written as

(5) γγx − γy = 0.

The potentials which produce the family of straight lines (2) (for which (5) is
fulfilled) satisfy the linear first order equation

(6) Vx + γVy = 0.

Equation (6) was derived in [7] as a consequence of the equation of Szebehely
[16], written in terms of γ and Γ in [5]; later it was obtained directly in [2].
Expressing γ from (6) and introducing its value into (5), a nonlinear partial
differential equation

(7) VxVy (Vxx − Vyy) = Vxy

(

V 2
x − V 2

y

)

was given in [7], which must be satisfied by all potentials creating (among
other orbits) a family of straight lines. It is obvious that the potential will not
be uniquely determined.

It can be easily checked that for a family of straight lines through a fixed
point (x0, y0) we have γ = −(x−x0)/(y−y0), and from (6) we obtain V (x, y) =
v((x − x0)

2 + (y − y0)
2), hence the potential is an arbitrary function of the

distance to the point (x0, y0).

2. LOGARITHMIC POTENTIALS ASSOCIATED TO A BOREL MEASURE

Betsakos and Grigoriadou [4] considered the following type of inverse prob-
lem of dynamics: Given a monoparametric family of planar curves, find the
finite Borel measures supported in the unit circle, whose logarithmic poten-
tials generate the curves of the family. The problem was solved for families of
straight lines through the origin or through the point (1, 0), as well as for the
family of circles centered at the origin. In what follows we shall consider the
problem for pencils of lines through an arbitrary point of the plane.

Let σ be a finite Borel measure with support in a compact set K ⊂ C. The
logarithmic potential Vσ : C → (−∞,∞] is given by

(8) Vσ(z) =

∫

K
log

1

|z − ζ|
d σ(ζ),

and is harmonic in the complement of its support ([14], Ch. 3).
Using a reflection principle for harmonic functions, the following theorem

was proved in [4].
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Theorem 1. [4] Let σ be a finite Borel measure with compact support K ⊂
C. Suppose that the logarithmic potential (8) generates an orbit α ∈ C(I) given
by

α(t) = x(t) + iy(t), t ∈ I

(I being a real interval) that lies on a straight line ℓ. Then Vσ is locally sym-
metric with respect to ℓ, i. e. Vσ(z) = Vσ(ẑ) for all z in a neighbourhood of
the trace {α(t) : t ∈ I} of α, ẑ being the reflection of z in ℓ.

3. MAIN RESULTS

From now on we shall consider that the finite Borel measure σ is supported
in the unit circle T = {z ∈ C : |z| = 1} .

Proposition 1. The form of the logarithmic potential generated by the
Lebesgue measure Λ supported in T is

(9)
VΛ(z) = 0 for |z| < 1;
VΛ(z) = −2π log |z| for |z| > 1.

For the Dirac measure concentrated at z0 ∈ T we obtain

(10) Vδz0
(z) = log

1

|z − z0|
.

Proof. Jensen’s formula ([15], p. 307, Theorem 15.18) states that if g with
g(0) 6= 0 is holomorphic on a disk centered at 0 and having the radius greater
than 1, and α1, ..., αN are the zeros of g in D, then

|g(0)|
∏N

n=1

1

|αn|
= exp

(

1

2π

∫ π

−π
log

∣

∣

∣
g(eiθ)

∣

∣

∣
d θ

)

.

When N = 0, the product is considered 1. By taking g(ζ) = z − ζ, the left
hand side equals |z| / |z| = 1 if 0 < |z| < 1, and |z| if |z| > 1 (for z = 0,
Vσ(0) = 0 obviously); therefore (9) follows. The result for the Dirac measure
is obtained by an easy calculation. �

The next result expresses some properties of the logarithmic potential; a)
and b) appear in the proof of the basic Theorem 4 in [4].

Theorem 2. Let Vσ be the logarithmic potential given by (8).
a) If D is an open disk so that D ∩ T = ∅ and

(11)
∂

∂θ
Vσ(z) = 0 for each z = reiθ ∈ D,

then Vσ(z) = 0 for each z in the unit disk D = {z ∈ C : |z| < 1} .
b) If Vσ is constant in D, then the Borel measure σ is a constant multiple

of the Lebesgue measure Λ on T.
c) If the logarithmic potential Vσ is constant in C\D, it follows that σ = 0.
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Proof. The proof of part a) makes use of the fact that ∂
∂θVσ can be expressed

using the Poisson transform associated to the measure σ. Part b) relies on the
uniqueness of the Borel measure used in the representation of a harmonic
function. Part c) follows from the fact that σ must be a multiple of the
Lebesgue measure, σ = C ·Λ, and from Proposition 1 Vσ(z) = −2πC log |z| in
C\D; therefore if Vσ is constant in C\D, we have C = 0. �

We consider now the case when the potential Vσ given by (8) gives rise to
a pencil of lines through z0.

Theorem 3. Let D be an open disk and z0 a point so that D ∪ {z0} ⊆ D

or D ∪ {z0} ⊆ C\D. Let

(12) {sp : p ∈ J}

be the family of all chords in D passing through z0. If Vσ generates the family
(12), then Vσ is constant on the connected component containing z0, hence
σ = C · Λ. Furthermore, if z0 ∈ C\D, then σ = 0, i. e. C = 0.

Proof. Using Theorem 1, we obtain that Vσ is locally symmetric with respect
to each line supporting sp. It results that Vσ(z) depends only on |z − z0|, as it
was already shown in the Introduction; Vσ being also harmonic, we have

(13) Vσ(z) = a log
1

|z − z0|
+ b, for each z ∈ D\ {z0} .

The potential Vσ being bounded at z = z0, it follows that a = 0, hence Vσ is
constant on the connected component containing z0. Applying Theorem 2, we
obtain the conclusion. �

The case z0 ∈ T is covered by Theorem 5 from [4], where z0 was chosen equal
to 1 (which is possible by means of a rotation). We shall state the theorem
for arbitrary z0.

Theorem 4. Let D be an open disk and consider the family (12) of all
chords in D passing through z0 ∈ T, generated by the logarithmic potential Vσ.

If D ⊂ D, then σ = C1 · Λ + C2 · δz0
, where C1 and C2 are constants, and

δz0
is the Dirac measure concentrated at z0.

If D ⊆ C\D, then σ = C3 · δz0
, where C3 is a constant.

Remark 1. This type of inverse problem, treated here for pencils of lines,
can be considered for various families of functions. In [4] it was proved that
if a logarithmic potential Vσ generates each circular arc in a disk D ⊂ C \ T,
then σ = C · Λ, where C is a constant. We mention that if D ⊂ D, then
from Proposition 1 it follows that Vσ(z) = 0 in D, and this potential does not
produce any circle.

The problem of finding all logarithmic potentials which give rise to families
of parallel lines is still open.
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