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CONDITIONAL CAUCHY EQUATIONS OF RIGHT
CYLINDER TYPE ON n-GROUPS

VASILE POP

Abstract. The subject of this paper is the extension of the results obtained for
a conditional Cauchy equation on groups (equation that is called by J. Dhombres
[3], Cauchy equation of right cylinder type) to the similar equations on n-groups.
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1. INTRODUCTION

We recall the results for the Cauchy functional equation of right cylinder
type on groups, that will be further used.

Definition 1.1. ([3]) If (G, ◦) and (H, ∗) are two groups and Y is a subset
of G, then the functional equation:{

f : G→ H
f(x ◦ y) = f(x) ∗ f(y), x ∈ G, y ∈ Y

is called conditional Cauchy equation of right cylinder type.

Theorem 1.1. ([3]) If (G, ◦) and (H, ∗) are two groups, Y is a nonempty
subset of G, G◦ is the subgroup generated by Y in G, then the functional
equations

(1.1)
{
f : G→ H
f(x ◦ y) = f(x) ∗ f(y), x ∈ G, y ∈ Y

and

(1.2)
{
f : G→ H
f(x ◦ y) = f(x) ∗ f(y), x ∈ G, y ∈ G◦

are equivalent.

Theorem 1.2. ([3]) The general solution of the equation (1.1) (of right
cylinder type) is:

f(x) = h(p(x)) ∗ g(x ◦ (s(p(x)))−1),

where:
p : G → G/ρ is the canonical projection on the quotient set with respect to

the equivalence relation xρy ⇔ x ◦ y−1 ∈ G◦;
h : G/ρ→ H is an arbitrary function such that h(p(1)) = 1;
s : G/ρ→ G is a lifting relative to p;
g : G◦ → H is a morphism such that g(s(p(1))) = 1.
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2. MAIN RESULTS

Let (G,ϕ) and (H,ψ) be (n + 1)-groups with the (n + 1)-ary operations
ϕ : Gn+1 → G and ψ : Hn+1 → H.

Definition 2.1. If Y is a nonempty subset of G, then the functional equa-
tion:

(2.1)
{
f : G→ H
f(ϕ(x, y1, . . . , yn)) = ψ(f(x), f(y1), . . . , f(yn))

x ∈ G, y1, . . . , yn ∈ Y
is called Cauchy functional equation of right cylinder type.

Remark 2.1. The Cauchy functional equation of right cylinder type is a
constant conditional equation or a Z-conditional Cauchy equation [6], in which
the set Z is Z = G× Y n.

In the sequel we will consider the equation (2.1), we denote by G◦ the sub-
(n + 1)-group generated by the set Y in G, Z = G × Gn

◦ and the constant
conditional Cauchy equation:

(2.2)
{
f : G→ H
f(ϕ(x, z1, . . . , zn)) = ψ(f(x), f(z1), . . . , f(zn))

x ∈ G, z1, . . . , zn ∈ G◦.

Theorem 2.1. The functional equations (2.1) and (2.2) are equivalent.

Proof. In the proof we will use the notation

ϕ(x, y1, . . . , yn) = (x, y1, . . . , yn)◦
ψ(u, v1, . . . , vn) = (u, v1, . . . , vn)∗

We consider the sets

Z1 = G× Y n−1 ×G◦, Z2 = G× Y n−2 ×G2
◦, . . . , Zn = G×Gn

◦ = Z

and we will prove by induction that all these Zi-Cauchy conditional equations
are equivalent.

Taking into account the inductive construction of the sub (n + 1)-group
generated by the set Y , to prove that the Z Cauchy equation is equivalent to
the Z1-Cauchy equation it is sufficient to show that:

a) If x ∈ G, y1, . . . , yn−1 ∈ Y , z1, . . . , zn+1 ∈ Y and z = (z1, . . . , zn+1)◦
then:

f((x, y1, . . . , yn−1, z)◦) = (f(x), f(y1), . . . , f(yn−1), f(z))∗;
b) If x ∈ G, y1, . . . , yn ∈ Y then:

f((x, y1, . . . , yn−1, yn)◦) = (f(x), f(y1), . . . , f(yn), f(yn))∗
where z is the skew element of z in G.

a) f((x, y1, . . . , yn−1, z)◦) = f(((x, y1, . . . , yn−1, z1)◦, z2, . . . , zn+1)◦) =

= (f((x, y1, . . . , yn−1, z)◦), f(x2), . . . , f(xn+1))∗ =
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= ((f(x), f(y1), . . . , f(yn−1), f(z1))∗, f(z2), . . . , f(zn+1))∗ =
= (f(x), f(y1), . . . , f(z))∗.

b) For y ∈ G we can write

f(y) = f((y, y, . . . , y)0) = (f(y), f(y), . . . , f(y))∗
and

(f(y), f(y), . . . , f(y))∗ = f(x) ⇒ f(y) = f(y).
Then:

f((x, y1, . . . , yn)◦) = f((x, y1, . . . , yn−1, (yn, . . . , yn)◦)◦) =

= f(((x, y1, . . . , yn−1, yn)◦, yn, . . . , yn)◦) =
= f((x, y1, . . . , yn−1, yn)◦, f(yn), . . . , f(yn))∗.

We can also write:

f((x, y1, . . . , yn)◦) = (f(x), f(y1), . . . , f(yn))∗ =

= (f(x), f(y1), . . . , f(yn−1), (f(yn), f(yn), . . . , f(yn))∗)∗ =

= ((f(x), f(y1), . . . , f(yn−1), f(yn))◦, f(yn), . . . , f(yn))∗.
From the previous two relations it follows:

f((x, y1, . . . , yn−1, yn)◦) = (f(x), f(y1), . . . , f(yn−1), f(yn))∗.

We prove now that the Z1-Cauchy equation is equivalent with Z2-Cauchy
equation.

For x ∈ G, y1, . . . , yn−2 ∈ Y , z1, . . . , zn+1 ∈ Y , z = (z1, . . . , zn+1)◦ and
t ∈ G0 we have:

f((x, y1, . . . , yn−2, z, t)◦) =
= f(((x, y1, . . . , yn−2, z1, z2)◦, z3, . . . , zn+1, t)◦) =

= (f((x, y1, . . . , yn−2, z1, z2)◦), f(z3), . . . , f(zn+1), f(t))∗ =
= (f(x), f(y1), . . . , f(yn−2), f(z1), f(z2), . . . , f(zn+1), f(t))∗∗ =

= (f(x), f(y1), . . . , f(yn−2), f(z), f(t))∗.
For x ∈ G, y1, . . . , yn−1 ∈ Y , t ∈ G◦; because G◦ is a sub-(n+ 1)-group the

equation (yn−1, . . . , yn−1, y)0 = t ⇔ (yn−1
n
, y)0 = t has a solution y = u ∈ G◦

and then:

f((x, y1, . . . ,yn−1, t)◦) = f((x, y1, . . . , yn−1, yn−1
n
, u)◦◦)

= f((x, y1, . . . , yn−1, u)◦)

= (f(x), f(y1), . . . , f(yn−1), f(u))∗

= (f(x), f(y1), . . . , f(yn−1), f(yn−1), . . . , f(yn−1), f(u))∗∗

= (f(x), f(y1), . . . , f(yn−1), f(t))∗
= (f(x), f(y1), . . . , f(yn−1), f(t))∗.
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In the same way one can prove that the Zi-Cauchy equation is equivalent to
Zi+1-Cauchy equation, for i = 2, . . . , n− 1. �

Foreword to obtain the general solution of the equation (2.1), we define an
equivalence relation on G and we point out some properties of this relation.

If G◦ ≤ G is a sub-(n+ 1)-group in G, we define the relation: (G,G, (G◦))
by:
x(G◦)y ⇔ there exists u ∈ G0 such that (x, y

n−2
, y, u) ∈ G◦.

The relation (G◦) has the properties [7]:
a) If (G, ◦) = Redu(G, ( )◦) is the binary Hosszu reduces group and we

denote by yu the inverse element of y in (G, ◦), then:

x(G◦)y ⇔ x ◦ yu ∈ G◦;

b) x(G◦)y ⇔ there exists g1, . . . , gn ∈ G◦ such that:

x = (g1, . . . , gn, y)◦;

c) x(G◦)y ⇔ (x, y
n−2

, y, v) ∈ G◦ for all v ∈ G◦.

Let u ∈ G◦, (G, ◦) = Redu(G, ( )◦), (H, ∗) = Redf(u)(H, ( )∗), α, β the
automorphisms of Hosszu’s reduces:

α(x) = (u, x, u
n−2

, u)◦, β(x) = (f(u), y, f( u
n−2

), f(u))∗

Since α ∈ Aut(G, ◦) and G◦ is a sub-(n + 1)-group, α is also an automor-
phism of (G◦, ◦).

Theorem 2.2. The function f : G→ H is a solution of equation (2.2) if an
only if f is a solution of equation (1.2) and f |G◦ : G◦ → H is (n+ 1)-groups
morphism.

Proof. If
f((x, g1, . . . , gn)◦) = (f(x), f(g1), . . . , f(gn))∗

then f |G◦ : G◦ → H is (n+1)-groups morphism, f(u) = f(u), u ∈ G◦, u ∈ G◦,
and

f((x, un−2, u, g)◦) = (f(x), f(un−2)f(u), f(g))∗,

x ∈ G, u ∈ G◦, g ∈ G◦.

Conversely:

(x, g1, . . . , gn)◦ = x ◦ α(g1) ◦ · · · ◦ αn(gn) ◦ a,

a = ( u
n+1

)◦, f(a) = f(( u
n+1

)◦) = (f(u)
n+1

)∗ = b,

f((x, g1, . . . , gn)◦) = f(x ◦ g) = f(x) ∗ f(g)

(g = α(g1) ◦ · · · ◦ αn(gn) ◦ a ∈ G◦).
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But f ◦ α|G◦ = β ◦ f |G◦ [5] and

f(g) = β(f(g1 ◦ · · · ◦ αn−1(gn) ◦ a)
= β(f(g1) ∗ · · · ∗ f(αn−1(gn)) ∗ b
= β(f(g1)) ∗ · · · ∗ βn(f(gn)) ∗ b.

It follows that f(x) ∗ f(g) = (f(x), f(g1), . . . , f(gn))∗. �

Applying Theorem 1.2 we obtain:

Theorem 2.3. The general solution of functional Cauchy equation of right
cylinder type (2.1) is:

f(x) = g(x ◦ (s(p(x)))−1) ∗ h(p(x)),
where the functions p, h, s, g are the same as those of Theorem 1.2 and the
relation ρ is ρ = (G◦).

The theorem can be rewritten without using the reduction to bigroups, it
is sufficient to take into account the relation between reduces and extendings.

Theorem 2.4. The function f : G → H is a solution of equation (2.1) if
and only if there exist u ∈ G◦, v ∈ H; (v = g(u)) such that:

f(x) = (g((x, s( p
n−2

(x)), s(p(x)), u)◦), v
n−2

, v, h(p(x)))∗,

where the functions p, s, h, g are those from Theorem 2.3.
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