CONDITIONAL CAUCHY EQUATIONS OF RIGHT CYLINDER TYPE ON n-GROUPS

VASILE POP

Abstract

The subject of this paper is the extension of the results obtained for a conditional Cauchy equation on groups (equation that is called by J. Dhombres [3], Cauchy equation of right cylinder type) to the similar equations on n-groups. MSC 2000. 39B22, 20 M 15. Key words. Functional equations, n-groups.

1. INTRODUCTION

We recall the results for the Cauchy functional equation of right cylinder type on groups, that will be further used.

Definition 1.1. ([3]) If (G, \circ) and $(H, *)$ are two groups and Y is a subset of G, then the functional equation:

$$
\left\{\begin{array}{l}
f: G \rightarrow H \\
f(x \circ y)=f(x) * f(y), x \in G, y \in Y
\end{array}\right.
$$

is called conditional Cauchy equation of right cylinder type.
Theorem 1.1. ([3]) If (G, \circ) and $(H, *)$ are two groups, Y is a nonempty subset of $G, G \circ$ is the subgroup generated by Y in G, then the functional equations

$$
\left\{\begin{array}{l}
f: G \rightarrow H \tag{1.1}\\
f(x \circ y)=f(x) * f(y), x \in G, y \in Y
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
f: G \rightarrow H \tag{1.2}\\
f(x \circ y)=f(x) * f(y), x \in G, y \in G \circ
\end{array}\right.
$$

are equivalent.
Theorem 1.2. ([3]) The general solution of the equation (1.1) (of right cylinder type) is:

$$
f(x)=h(p(x)) * g\left(x \circ(s(p(x)))^{-1}\right),
$$

where:
$p: G \rightarrow G / \rho$ is the canonical projection on the quotient set with respect to the equivalence relation $x \rho y \Leftrightarrow x \circ y^{-1} \in G_{\circ}$;
$h: G / \rho \rightarrow H$ is an arbitrary function such that $h(p(1))=1$;
$s: G / \rho \rightarrow G$ is a lifting relative to p;
$g: G_{\circ} \rightarrow H$ is a morphism such that $g(s(p(1)))=1$.

2. MAIN RESULTS

Let (G, φ) and (H, ψ) be $(n+1)$-groups with the $(n+1)$-ary operations $\varphi: G^{n+1} \rightarrow G$ and $\psi: H^{n+1} \rightarrow H$.

Definition 2.1. If Y is a nonempty subset of G, then the functional equation:

$$
\left\{\begin{array}{l}
f: G \rightarrow H \tag{2.1}\\
f\left(\varphi\left(x, y_{1}, \ldots, y_{n}\right)\right)=\psi\left(f(x), f\left(y_{1}\right), \ldots, f\left(y_{n}\right)\right) \\
x \in G, \quad y_{1}, \ldots, y_{n} \in Y
\end{array}\right.
$$

is called Cauchy functional equation of right cylinder type.
Remark 2.1. The Cauchy functional equation of right cylinder type is a constant conditional equation or a Z-conditional Cauchy equation [6], in which the set Z is $Z=G \times Y^{n}$.

In the sequel we will consider the equation (2.1), we denote by G_{\circ} the sub-$(n+1)$-group generated by the set Y in $G, \bar{Z}=G \times G_{\circ}^{n}$ and the constant conditional Cauchy equation:

$$
\left\{\begin{array}{l}
f: G \rightarrow H \tag{2.2}\\
f\left(\varphi\left(x, z_{1}, \ldots, z_{n}\right)\right)=\psi\left(f(x), f\left(z_{1}\right), \ldots, f\left(z_{n}\right)\right) \\
\quad x \in G, \quad z_{1}, \ldots, z_{n} \in G_{\circ}
\end{array}\right.
$$

THEOREM 2.1. The functional equations (2.1) and (2.2) are equivalent.
Proof. In the proof we will use the notation

$$
\begin{aligned}
& \varphi\left(x, y_{1}, \ldots, y_{n}\right)=\left(x, y_{1}, \ldots, y_{n}\right)_{\circ} \\
& \psi\left(u, v_{1}, \ldots, v_{n}\right)=\left(u, v_{1}, \ldots, v_{n}\right)_{*}
\end{aligned}
$$

We consider the sets

$$
Z_{1}=G \times Y^{n-1} \times G_{\circ}, Z_{2}=G \times Y^{n-2} \times G_{\circ}^{2}, \ldots, Z_{n}=G \times G_{\circ}^{n}=\bar{Z}
$$

and we will prove by induction that all these Z_{i}-Cauchy conditional equations are equivalent.

Taking into account the inductive construction of the sub $(n+1)$-group generated by the set Y, to prove that the Z Cauchy equation is equivalent to the Z_{1}-Cauchy equation it is sufficient to show that:
a) If $x \in G, y_{1}, \ldots, y_{n-1} \in Y, z_{1}, \ldots, z_{n+1} \in Y$ and $z=\left(z_{1}, \ldots, z_{n+1}\right)$ 。 then:

$$
f\left(\left(x, y_{1}, \ldots, y_{n-1}, z\right)_{\circ}\right)=\left(f(x), f\left(y_{1}\right), \ldots, f\left(y_{n-1}\right), f(z)\right)_{*}
$$

b) If $x \in G, y_{1}, \ldots, y_{n} \in Y$ then:

$$
f\left(\left(x, y_{1}, \ldots, y_{n-1}, \bar{y}_{n}\right)_{\circ}\right)=\left(f(x), f\left(y_{1}\right), \ldots, f\left(y_{n}\right), f\left(\bar{y}_{n}\right)\right)_{*}
$$

where \bar{z} is the skew element of z in G.
a) $f\left(\left(x, y_{1}, \ldots, y_{n-1}, z\right)_{\circ}\right)=f\left(\left(\left(x, y_{1}, \ldots, y_{n-1}, z_{1}\right)_{\circ}, z_{2}, \ldots, z_{n+1}\right)_{\circ}\right)=$

$$
=\left(f\left(\left(x, y_{1}, \ldots, y_{n-1}, z\right)_{\circ}\right), f\left(x_{2}\right), \ldots, f\left(x_{n+1}\right)\right)_{*}=
$$

$$
\begin{gathered}
=\left(\left(f(x), f\left(y_{1}\right), \ldots, f\left(y_{n-1}\right), f\left(z_{1}\right)\right)_{*}, f\left(z_{2}\right), \ldots, f\left(z_{n+1}\right)\right)_{*}= \\
=\left(f(x), f\left(y_{1}\right), \ldots, f(z)\right)_{*} .
\end{gathered}
$$

b) For $y \in G$ we can write

$$
f(y)=f\left((\bar{y}, y, \ldots, y)_{0}\right)=(f(\bar{y}), f(y), \ldots, f(y))_{*}
$$

and

$$
(\overline{f(y)}, f(y), \ldots, f(y))_{*}=f(x) \Rightarrow f(\bar{y})=\overline{f(y)} .
$$

Then:

$$
\begin{gathered}
f\left(\left(x, y_{1}, \ldots, y_{n}\right)_{\circ}\right)=f\left(\left(x, y_{1}, \ldots, y_{n-1},\left(\bar{y}_{n}, \ldots, y_{n}\right)_{\circ}\right)_{\circ}\right)= \\
=f\left(\left(\left(x, y_{1}, \ldots, y_{n-1}, \bar{y}_{n}\right)_{\circ}, y_{n}, \ldots, y_{n}\right)_{\circ}\right)= \\
=f\left(\left(x, y_{1}, \ldots, y_{n-1}, \bar{y}_{n}\right)_{\circ}, f\left(y_{n}\right), \ldots, f\left(y_{n}\right)\right)_{*} .
\end{gathered}
$$

We can also write:

$$
\begin{gathered}
f\left(\left(x, y_{1}, \ldots, y_{n}\right)_{\circ}\right)=\left(f(x), f\left(y_{1}\right), \ldots, f\left(y_{n}\right)\right)_{*}= \\
=\left(f(x), f\left(y_{1}\right), \ldots, f\left(y_{n-1}\right),\left(\overline{f\left(y_{n}\right)}, f\left(y_{n}\right), \ldots, f\left(y_{n}\right)\right)_{*}\right)_{*}= \\
=\left(\left(f(x), f\left(y_{1}\right), \ldots, f\left(y_{n-1}\right), \overline{f\left(y_{n}\right)}\right)_{\circ}, f\left(y_{n}\right), \ldots, f\left(y_{n}\right)\right)_{*} .
\end{gathered}
$$

From the previous two relations it follows:

$$
f\left(\left(x, y_{1}, \ldots, y_{n-1}, \bar{y}_{n}\right)_{\circ}\right)=\left(f(x), f\left(y_{1}\right), \ldots, f\left(y_{n-1}\right), f\left(\bar{y}_{n}\right)\right)_{*} .
$$

We prove now that the Z_{1}-Cauchy equation is equivalent with Z_{2}-Cauchy equation.

For $x \in G, y_{1}, \ldots, y_{n-2} \in Y, z_{1}, \ldots, z_{n+1} \in Y, z=\left(z_{1}, \ldots, z_{n+1}\right)$ 。and $t \in G_{0}$ we have:

$$
\begin{gathered}
f\left(\left(x, y_{1}, \ldots, y_{n-2}, z, t\right)_{\circ}\right)= \\
=f\left(\left(\left(x, y_{1}, \ldots, y_{n-2}, z_{1}, z_{2}\right)_{\circ}, z_{3}, \ldots, z_{n+1}, t\right)_{\circ}\right)= \\
=\left(f\left(\left(x, y_{1}, \ldots, y_{n-2}, z_{1}, z_{2}\right)_{\circ}\right), f\left(z_{3}\right), \ldots, f\left(z_{n+1}\right), f(t)\right)_{*}= \\
=\left(f(x), f\left(y_{1}\right), \ldots, f\left(y_{n-2}\right), f\left(z_{1}\right), f\left(z_{2}\right), \ldots, f\left(z_{n+1}\right), f(t)\right)_{* *}= \\
=\left(f(x), f\left(y_{1}\right), \ldots, f\left(y_{n-2}\right), f(z), f(t)\right)_{*} .
\end{gathered}
$$

For $x \in G, y_{1}, \ldots, y_{n-1} \in Y, t \in G_{\circ}$; because G_{\circ} is a sub- $(n+1)$-group the
 and then:

$$
\begin{aligned}
f\left(\left(x, y_{1}, \ldots,\right.\right. & \left.\left.\bar{y}_{n-1}, t\right)_{\circ}\right)=f\left(\left(x, y_{1}, \ldots, \bar{y}_{n-1}, y_{n-1}, u\right)_{\circ \circ}\right) \\
& =f\left(\left(x, y_{1}, \ldots, y_{n-1}, u\right)_{\circ}\right) \\
& =\left(f(x), f\left(y_{1}\right), \ldots, f\left(y_{n-1}\right), f(u)\right)_{*} \\
& =\left(f(x), f\left(y_{1}\right), \ldots, \overline{f\left(y_{n-1}\right)}, f\left(y_{n-1}\right), \ldots, f\left(y_{n-1}\right), f(u)\right)_{* *} \\
& =\left(f(x), f\left(y_{1}\right), \ldots, \overline{f\left(y_{n-1}\right)}, f(t)\right)_{*} \\
& =\left(f(x), f\left(y_{1}\right), \ldots, f\left(\bar{y}_{n-1}\right), f(t)\right)_{*} .
\end{aligned}
$$

In the same way one can prove that the Z_{i}-Cauchy equation is equivalent to Z_{i+1}-Cauchy equation, for $i=2, \ldots, n-1$.

Foreword to obtain the general solution of the equation (2.1), we define an equivalence relation on G and we point out some properties of this relation.

If $G_{\circ} \leq G$ is a sub- $(n+1)$-group in G, we define the relation: $\left(G, G,\left(G_{\circ}\right)\right)$ by:
$x\left(G_{\circ}\right) y \Leftrightarrow$ there exists $u \in G_{0}$ such that $(x, \underset{n-2}{y}, \bar{y}, u) \in G_{\circ}$.
The relation $\left(G_{\circ}\right)$ has the properties [7]:
a) If $(G, \circ)=\operatorname{Red}_{u}\left(G,()_{\circ}\right)$ is the binary Hosszu reduces group and we denote by y^{u} the inverse element of y in (G, \circ), then:

$$
x\left(G_{\circ}\right) y \Leftrightarrow x \circ y^{u} \in G_{\circ} ;
$$

b) $x\left(G_{\circ}\right) y \Leftrightarrow$ there exists $g_{1}, \ldots, g_{n} \in G_{\circ}$ such that:

$$
x=\left(g_{1}, \ldots, g_{n}, y\right)_{\circ} ;
$$

c) $x\left(G_{\circ}\right) y \Leftrightarrow(x, \underset{n-2}{y}, \bar{y}, v) \in G_{\circ}$ for all $v \in G_{\circ}$.

Let $u \in G_{\circ},(G, \circ)=\operatorname{Red}_{u}\left(G,()_{\circ}\right),(H, *)=\operatorname{Red}_{f(u)}\left(H,()_{*}\right), \alpha, \beta$ the automorphisms of Hosszu's reduces:

$$
\alpha(x)=(u, x, \underset{n-2}{u}, \bar{u})_{\odot}, \quad \beta(x)=\left(f(u), y, f\left({ }_{n-2}^{u}\right), \overline{f(u)}\right)_{*}
$$

Since $\alpha \in \operatorname{Aut}(G, \circ)$ and G_{\circ} is a sub- $(n+1)$-group, α is also an automorphism of (G_{\circ}, \circ).

Theorem 2.2. The function $f: G \rightarrow H$ is a solution of equation (2.2) if an only if f is a solution of equation (1.2) and $\left.f\right|_{G_{\circ}}: G_{\circ} \rightarrow H$ is $(n+1)$-groups morphism.

Proof. If

$$
f\left(\left(x, g_{1}, \ldots, g_{n}\right)_{\circ}\right)=\left(f(x), f\left(g_{1}\right), \ldots, f\left(g_{n}\right)\right)_{*}
$$

then $\left.f\right|_{G_{\circ}}: G_{\circ} \rightarrow H$ is $(n+1)$-groups morphism, $f(\bar{u})=\overline{f(u)}, u \in G_{\circ}, \bar{u} \in G_{\circ}$, and

$$
\begin{gathered}
f\left(\left(x, u_{n-2}, \bar{u}, g\right)_{\circ}\right)=\left(f(x), f\left(u_{n-2}\right) f(\bar{u}), f(g)\right)_{*}, \\
x \in G, \quad u \in G_{\circ}, \quad g \in G_{\circ} .
\end{gathered}
$$

Conversely:

$$
\begin{gathered}
\left(x, g_{1}, \ldots, g_{n}\right)_{\circ}=x \circ \alpha\left(g_{1}\right) \circ \cdots \circ \alpha^{n}\left(g_{n}\right) \circ a, \\
a=(\underset{n+1}{u}), \quad f(a)=f\left(\left({ }_{n+1}^{u}\right)_{0}\right)=\left(\underset{n+1}{f(u))_{*}=b,}\right. \\
f\left(\left(x, g_{1}, \ldots, g_{n}\right)_{\circ}\right)=f(x \circ g)=f(x) * f(g) \\
\left(g=\alpha\left(g_{1}\right) \circ \cdots \circ \alpha^{n}\left(g_{n}\right) \circ a \in G_{\circ}\right) .
\end{gathered}
$$

But $\left.f \circ \alpha\right|_{G_{\circ}}=\left.\beta \circ f\right|_{G \circ}[5]$ and

$$
\begin{aligned}
f(g) & =\beta\left(f\left(g_{1} \circ \cdots \circ \alpha^{n-1}\left(g_{n}\right) \circ a\right)\right. \\
& =\beta\left(f\left(g_{1}\right) * \cdots * f\left(\alpha^{n-1}\left(g_{n}\right)\right) * b\right. \\
& =\beta\left(f\left(g_{1}\right)\right) * \cdots * \beta^{n}\left(f\left(g_{n}\right)\right) * b .
\end{aligned}
$$

It follows that $f(x) * f(g)=\left(f(x), f\left(g_{1}\right), \ldots, f\left(g_{n}\right)\right)_{*}$.
Applying Theorem 1.2 we obtain:
Theorem 2.3. The general solution of functional Cauchy equation of right cylinder type (2.1) is:

$$
f(x)=g\left(x \circ(s(p(x)))^{-1}\right) * h(p(x))
$$

where the functions p, h, s, g are the same as those of Theorem 1.2 and the relation ρ is $\rho=\left(G_{\circ}\right)$.

The theorem can be rewritten without using the reduction to bigroups, it is sufficient to take into account the relation between reduces and extendings.

TheOrem 2.4. The function $f: G \rightarrow H$ is a solution of equation (2.1) if and only if there exist $u \in G_{\circ}, v \in H ;(v=g(u))$ such that:

$$
f(x)=\left(g\left((x, s(\underset{n-2}{p}(x)), \overline{s(p(x))}, u)_{\circ}\right), \underset{n-2}{v}, \bar{v}, h(p(x))\right)_{*},
$$

where the functions p, s, h, g are those from Theorem 2.3.

REFERENCES

[1] Chronowski, A., On the conditional Cauchy equation on 3-adic groups, Univ. u Novom Sadu, Zb. Rad. Prirod.-Mat. Fak., Ser. Math. 23 (1993), 269-282.
[2] Corovei, I. and Pop, V., Relations between the homomorphisms of $(n+1)$-groups and the homomorphisms of their extensions and reduces, Anal. Numer. Theor. Approx., 19 (1990), 15-19.
[3] Dhombres, J., Some Aspect of Functional Equations, Chualalongkorn University Press, Bangkok, 1979.
[4] Hosszu, M., On the explicit form of n-group operation, Publ. Math. Debrecen, 10 (1963), 88-92.
[5] Pop, V., Relations between the homomorphisms of n-groups and the homomorphisms of their Hosszu reduces, Automat. Comput. Appl. Math., 10 (2001), 32-35.
[6] Pop, V., On the functional Cauchy equation on n-groups, Proceedings of the International Workshop "Trends and recent achievement in information technology", ClujNapoca, 2002, pp. 93-94.
[7] Pop, V., Equivalence relations on n-groups, Proocedings of the Algebra Symposium "Babeş-Bolyai" Univ. Cluj-Napoca, 2002, pp. 219-222.

Received February 18, 2004

Technical University Department of Mathematics
Str. C. Daicoviciu nr. 15
400020 Cluj-Napoca, Romania
E-mail: vasile.pop@math.utcluj.ro

