A CONDITION FOR UNIVALENCY

HORIANA OVESEA-TUDOR

Abstract. In this paper we establish a very simple and useful univalence criteria for a class of functions defined by an integral operator.

MSC 2000. 30C45.

Key words. Analytic function, univalent function, Löwner chain, univalence criteria.

1. INTRODUCTION

We denote by $U_r = \{z \in C : |z| < r\}$ the disk of z-plane, where $r \in (0, 1]$, $U_1 = U$ and $I = [0, \infty)$. Let A be the class of functions f analytic in U such that f(0) = 0, f'(0) = 1. Our consideration are based on the theory of Löwner chains; we first recall here the basic result of this theory, from Pommerenke.

THEOREM 1.1. ([2]). Let $L(z,t) = a_1(t)z + a_2(t)z^2 + \ldots, a_1(t) \neq 0$ be analytic in U_r for all $t \in I$, locally absolutely continuous in I and locally uniform with respect to U_r . For almost all $t \in I$ suppose

$$z\frac{\partial L(z,t)}{\partial z} = p(z,t)\frac{\partial L(z,t)}{\partial t}, \quad \forall z \in U_r,$$

where p(z,t) is analytic in U and satisfies the condition $\operatorname{Rep}(z,t) > 0$ for all $z \in U$, $t \in I$. If $|a_1(t)| \to \infty$ for $t \to \infty$ and $\{L(z,t)/a_1(t)\}$ forms a normal family in U_r , then for each $t \in I$ the function L(z,t) has an analytic and univalent extension to the whole disk U.

2. MAIN RESULTS

THEOREM 2.1. Let α , β be real numbers, $\alpha > 0$, $\beta \ge 1$, and let $f \in A$. If the inequalities

(1)
$$\left| \frac{zf'(z)}{f(z)} - \beta \right| < \beta,$$

(2)
$$\left| \frac{1}{\beta} \left(\frac{zf'(z)}{f(z)} - \beta \right) |z|^{2(\alpha+\beta-1)} + \frac{1 - |z|^{2(\alpha+\beta-1)}}{\alpha+\beta-1} \left(\frac{zf'(z)}{f(z)} - \beta \right) \right| \le 1$$

are true for all $z \in U$, then the function

(3)
$$F(z) = \left(\alpha \int_0^z u^{\alpha - 1} f'(u) \mathrm{d}u\right)^{1/\alpha}$$

is analytic and univalent in U, where the principal branch is intended.

Proof. Let us prove that there exists $r \in (0, 1]$ such that the function $L : U_r \times I \to C$ defined as

(4)
$$L(z,t) = \left[(\alpha + \beta - 1) \int_0^{e^{-t_z}} u^{\alpha - 1} f'(u) du + \beta (e^{(\alpha + 2\beta - 2)t} - e^{-\alpha t}) z^{\alpha} \cdot \frac{f(e^{-t_z})}{e^{-t_z}} \right]^{1/\alpha}$$

is analytic in U_r for all $t \in I$. Denoting

$$g_1(z,t) = (\alpha + \beta - 1) \int_0^{e^{-t_z}} u^{\alpha - 1} f'(u) du$$

we have $g_1(z,t) = z^{\alpha}g_2(z,t)$ and it is easy to see that g_2 is analytic in U for all $t \in I$ and $g_2(0,t) = (\alpha + \beta - 1)/\alpha \cdot e^{-\alpha t}$. The function

$$g_3(z,t) = g_2(z,t) + \beta (e^{(\alpha+2\beta-2)t} - e^{-\alpha t}) \frac{f(e^{-t}z)}{e^{-t}z}$$

is also analytic in U and

$$g_3(0,t) = \frac{(\alpha - 1)(1 - \beta)}{\alpha} e^{-\alpha t} + \beta e^{(\alpha + 2\beta - 2)t}.$$

Let us now prove that $g_3(0,t) \neq 0$ for any $t \in I$. We have $g_3(0,0) = (\alpha + \beta - 1)/\alpha$ and from the hypothesis $\alpha + \beta - 1 > 0$. Assume that there exists $t_0 > 0$ such that $g_3(0,t_0) = 0$. Then $e^{2(\alpha+\beta-1)t_0} = (\alpha - 1)(\beta - 1)/(\alpha\beta)$. In view of $\alpha + \beta - 1 > 0$ it follows $e^{2(\alpha+\beta-1)t_0} > 1$ and $(\alpha - 1)(\beta - 1)/(\alpha\beta) < 1$ and then we conclude that $g_3(0,t) \neq 0$ for all $t \in I$. Therefore, there is a disk $U_{r_1}, 0 < r_1 \leq 1$, in which $g_3(z,t) \neq 0$ for all $t \in I$. Then we choose the uniform branch of $(g_3(z,t))^{1/\alpha}$ analytic in U_{r_1} , denoted by g(z,t), that is equal to

(5)
$$a_1(t) = e^{\frac{\alpha+2\beta-2}{\alpha}t} \left[\beta + \frac{(\alpha-1)(1-\beta)}{\alpha} \cdot e^{-2(\alpha+\beta-1)t}\right]^{1/\alpha}$$

at the origin. From these considerations, it results that the relation (4) may be written as

$$L(z,t) = zg(z,t) = a_1(t)z + a_2(t)z^2 + \dots,$$

where $a_1(t)$ is given by (5). Because $\alpha > 0$, $\beta \ge 1$, then $\alpha + 2\beta - 2 > 0$ and $\lim_{t\to\infty} |a_1(t)| = \infty$. Moreover, $a_1(t) \ne 0$ for all $t \in I$. From the analyticity of L(z,t) in U_{r_1} , it follows that there is a number r_2 , $0 < r_2 < r_1$, and a constant $K = K(r_2)$ such that

$$|L(z,t)/a_1(t)| < K, \qquad \forall z \in U_{r_2}, \quad t \in I.$$

and then $\{L(z,t)/a_1(t)\}\$ is a normal family in U_{r_2} . From the analyticity of $\partial L(z,t)/\partial t$, for all fixed numbers T > 0 and r_3 , $0 < r_3 < r_2$, there exists a

constant $K_1 > 0$ (that depends on T and r_3) such that

$$\frac{\partial L(z,t)}{\partial t} \mid < K_1, \quad \forall z \in U_{r_3}, \quad t \in [0,T].$$

Therefore the function L(z,t) is locally absolutely continuous in I, locally uniform with respect to U_{r_3} . Let us set

$$p(z,t) = z \frac{\partial L(z,t)}{\partial z} \left/ \frac{\partial L(z,t)}{\partial t} \quad \text{and} \quad w(z,t) = \frac{p(z,t)-1}{p(z,t)+1} \cdot$$

The function p(z,t) is analytic in U_r , $0 < r < r_3$ and so is w(z,t). The function p(z,t) has an analytic extension with positive real part in U, for all $t \in I$, if the function w(z,t) can be continued analytically in U and |w(z,t)| < 1 for all $z \in U$ and $t \in I$. After computation we obtain

(6)
$$w(z,t) = \frac{1}{\beta} \left(\frac{e^{-t}zf'(e^{-t}z)}{f(e^{-t}z)} - \beta \right) \cdot e^{-2(\alpha+\beta-1)t} + \frac{1 - e^{-2(\alpha+\beta-1)t}}{\alpha+\beta-1} \left(\frac{e^{-t}zf'(e^{-t}z)}{f(e^{-t}z)} - \beta \right).$$

From (1) and (2) we deduce that the function w(z,t) is analytic in the unit disk U. In view of (1), from (6) we have

(7)
$$|w(z,0)| = \left|\frac{1}{\beta}\left(\frac{zf'(z)}{f(z)} - \beta\right)\right| < 1.$$

For z = 0, t > 0, in view of $\alpha > 0$, $\beta \ge 1$, from (6) we obtain

(8)
$$|w(0,t)| = \frac{\beta - 1}{\beta(\alpha + \beta - 1)} \cdot \left| \beta + (\alpha - 1)e^{-2(\alpha + \beta - 1)t} \right| < 1.$$

If t > 0 is a fixed number and $z \in U$, $z \neq 0$, then the function w(z,t) is analytic in \overline{U} because $|e^{-t}z| \leq e^{-t} < 1$ for all $z \in \overline{U}$ and it is known that

(9)
$$|w(z,t)| = \max_{|\zeta|=1} |w(\zeta,t)| = |w(e^{i\theta},t)|, \quad \theta = \theta(t) \in R.$$

Let us denote $u = e^{-t}e^{i\theta}$. Then $|u| = e^{-t}$ and from (6) we get

$$|w(e^{i\theta},t)| = \left| \frac{1}{\beta} \left(\frac{uf'(u)}{f(u)} - \beta \right) |u|^{2(\alpha+\beta-1)} + \frac{1 - |u|^{2(\alpha+\beta-1)}}{\alpha+\beta-1} \left(\frac{uf'(u)}{f(u)} - \beta \right) \right|.$$

Because $u \in U$, the relation (2) implies $|w(e^{i\theta}, t)| \leq 1$ and from (7), (8) and (9) we conclude that |w(z,t)| < 1 for all $z \in U$ and $t \in I$. From Theorem 1.1 it follows that the function L(z,t) has an analytic and univalent extension to the whole disk U, for each $t \in I$. For t = 0 it follows that the function

$$L(z,0) = \left(\left(\alpha + \beta - 1\right) \int_0^z u^{\alpha - 1} f'(u) \mathrm{d}u \right)^{1/\alpha}$$

is analytic and univalent in U and then the function F defined by (3) is also analytic and univalent in U. REMARK. If we ask for α to be $\alpha \geq 1$, then if the inequality (1) is true, it results that the inequality (2) is also true and we have the following results:

THEOREM 2.2. Let α , β be real numbers, $\alpha \geq 1$, $\beta \geq 1$ and let $f \in A$. If the inequality

(1)
$$\left| \frac{zf'(z)}{f(z)} - \beta \right| < \beta$$

is true for all $z \in U$, then the function

(3)
$$F((z) = \left(\alpha \int_0^z u^{\alpha-1} f'(u) \mathrm{d}u\right)^{1/\alpha}$$

is analytic and univalent in U.

Proof. Since $\alpha \ge 1$, the left-hand side of the inequality (2) can be majorated and in view of (1) we obtain:

$$\left| \frac{zf'(z)}{f(z)} - \beta \right| \cdot \left| \frac{1}{\beta} |z|^{2(\alpha+\beta-1)} + \frac{1 - |z|^{2(\alpha+\beta-1)}}{\alpha+\beta-1} \right|$$

$$\leq \left| \frac{zf'(z)}{f(z)} - \beta \right| \cdot \left(\frac{1}{\beta} |z|^{2(\alpha+\beta-1)} + \frac{1 - |z|^{2(\alpha+\beta-1)}}{\beta} \right) = \frac{1}{\beta} \left| \frac{zf'(z)}{f(z)} - \beta \right| < 1.$$

Then (2) is satisfied and from Theorem 2.1, the function F defined by (3) is analytic and univalent in U.

REFERENCES

- BECKER, J., Löwnersche Differentialgleichung und quasi-konform fortsetzbare schlichte Funktionen, J. Reine Angew. Math., 255 (1972), 23–43.
- [2] POMMERENKE, C., Über die Subordination analytischer Funktionen, J. Reine Angew. Math., 218 (1965), 159–173.

Received July 8, 2003

"Transilvania" University Department of Mathematics 2200 Braşov, Romania