A CONDITION FOR UNIVALENCY

HORIANA OVESEA-TUDOR

Abstract

In this paper we establish a very simple and useful univalence criteria for a class of functions defined by an integral operator.

MSC 2000. 30C45.
Key words. Analytic function, univalent function, Löwner chain, univalence criteria.

1. INTRODUCTION

We denote by $U_{r}=\{z \in C:|z|<r\}$ the disk of z-plane, where $r \in(0,1]$, $U_{1}=U$ and $I=[0, \infty)$. Let A be the class of functions f analytic in U such that $f(0)=0, f^{\prime}(0)=1$. Our consideration are based on the theory of Löwner chains; we first recall here the basic result of this theory, from Pommerenke.

THEOREM 1.1. ([2]). Let $L(z, t)=a_{1}(t) z+a_{2}(t) z^{2}+\ldots, a_{1}(t) \neq 0$ be analytic in U_{r} for all $t \in I$, locally absolutely continuous in I and locally uniform with respect to U_{r}. For almost all $t \in I$ suppose

$$
z \frac{\partial L(z, t)}{\partial z}=p(z, t) \frac{\partial L(z, t)}{\partial t}, \quad \forall z \in U_{r}
$$

where $p(z, t)$ is analytic in U and satisfies the condition $\operatorname{Rep}(z, t)>0$ for all $z \in U, t \in I$. If $\left|a_{1}(t)\right| \rightarrow \infty$ for $t \rightarrow \infty$ and $\left\{L(z, t) / a_{1}(t)\right\}$ forms a normal family in U_{r}, then for each $t \in I$ the function $L(z, t)$ has an analytic and univalent extension to the whole disk U.

2. MAIN RESULTS

Theorem 2.1. Let α, β be real numbers, $\alpha>0, \beta \geq 1$, and let $f \in A$. If the inequalities

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-\beta\right|<\beta \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\left.\left.\left|\frac{1}{\beta}\left(\frac{z f^{\prime}(z)}{f(z)}-\beta\right)\right| z\right|^{2(\alpha+\beta-1)}+\frac{1-|z|^{2(\alpha+\beta-1)}}{\alpha+\beta-1}\left(\frac{z f^{\prime}(z)}{f(z)}-\beta\right) \right\rvert\, \leq 1 \tag{2}
\end{equation*}
$$

are true for all $z \in U$, then the function

$$
\begin{equation*}
F(z)=\left(\alpha \int_{0}^{z} u^{\alpha-1} f^{\prime}(u) \mathrm{d} u\right)^{1 / \alpha} \tag{3}
\end{equation*}
$$

is analytic and univalent in U, where the principal branch is intended.

Proof. Let us prove that there exists $r \in(0,1]$ such that the function L : $U_{r} \times I \rightarrow C$ defined as

$$
\begin{align*}
L(z, t) & =\left[(\alpha+\beta-1) \int_{0}^{\mathrm{e}^{-t} z} u^{\alpha-1} f^{\prime}(u) \mathrm{d} u\right. \\
& \left.+\beta\left(\mathrm{e}^{(\alpha+2 \beta-2) t}-\mathrm{e}^{-\alpha t}\right) z^{\alpha} \cdot \frac{f\left(\mathrm{e}^{-t} z\right)}{\mathrm{e}^{-t} z}\right]^{1 / \alpha} \tag{4}
\end{align*}
$$

is analytic in U_{r} for all $t \in I$. Denoting

$$
g_{1}(z, t)=(\alpha+\beta-1) \int_{0}^{\mathrm{e}^{-t} z} u^{\alpha-1} f^{\prime}(u) \mathrm{d} u
$$

we have $g_{1}(z, t)=z^{\alpha} g_{2}(z, t)$ and it is easy to see that g_{2} is analytic in U for all $t \in I$ and $g_{2}(0, t)=(\alpha+\beta-1) / \alpha \cdot \mathrm{e}^{-\alpha t}$. The function

$$
g_{3}(z, t)=g_{2}(z, t)+\beta\left(\mathrm{e}^{(\alpha+2 \beta-2) t}-\mathrm{e}^{-\alpha t}\right) \frac{f\left(\mathrm{e}^{-t} z\right)}{\mathrm{e}^{-t} z}
$$

is also analytic in U and

$$
g_{3}(0, t)=\frac{(\alpha-1)(1-\beta)}{\alpha} \mathrm{e}^{-\alpha t}+\beta \mathrm{e}^{(\alpha+2 \beta-2) t}
$$

Let us now prove that $g_{3}(0, t) \neq 0$ for any $t \in I$. We have $g_{3}(0,0)=(\alpha+$ $\beta-1) / \alpha$ and from the hypothesis $\alpha+\beta-1>0$. Assume that there exists $t_{0}>0$ such that $g_{3}\left(0, t_{0}\right)=0$. Then $\mathrm{e}^{2(\alpha+\beta-1) t_{0}}=(\alpha-1)(\beta-1) /(\alpha \beta)$. In view of $\alpha+\beta-1>0$ it follows $\mathrm{e}^{2(\alpha+\beta-1) t_{0}}>1$ and $(\alpha-1)(\beta-1) /(\alpha \beta)<1$ and then we conclude that $g_{3}(0, t) \neq 0$ for all $t \in I$. Therefore, there is a disk $U_{r_{1}}, 0<r_{1} \leq 1$, in which $g_{3}(z, t) \neq 0$ for all $t \in I$. Then we choose the uniform branch of $\left(g_{3}(z, t)\right)^{1 / \alpha}$ analytic in $U_{r_{1}}$, denoted by $g(z, t)$, that is equal to

$$
\begin{equation*}
a_{1}(t)=\mathrm{e}^{\frac{\alpha+2 \beta-2}{\alpha} t}\left[\beta+\frac{(\alpha-1)(1-\beta)}{\alpha} \cdot \mathrm{e}^{-2(\alpha+\beta-1) t}\right]^{1 / \alpha} \tag{5}
\end{equation*}
$$

at the origin. From these considerations, it results that the relation (4) may be written as

$$
L(z, t)=z g(z, t)=a_{1}(t) z+a_{2}(t) z^{2}+\ldots
$$

where $a_{1}(t)$ is given by (5). Because $\alpha>0, \beta \geq 1$, then $\alpha+2 \beta-2>0$ and $\lim _{t \rightarrow \infty}\left|a_{1}(t)\right|=\infty$. Moreover, $a_{1}(t) \neq 0$ for all $t \in I$. From the analyticity of $L(z, t)$ in $U_{r_{1}}$, it follows that there is a number $r_{2}, 0<r_{2}<r_{1}$, and a constant $K=K\left(r_{2}\right)$ such that

$$
\left|L(z, t) / a_{1}(t)\right|<K, \quad \forall z \in U_{r_{2}}, \quad t \in I
$$

and then $\left\{L(z, t) / a_{1}(t)\right\}$ is a normal family in $U_{r_{2}}$. From the analyticity of $\partial L(z, t) / \partial t$, for all fixed numbers $T>0$ and $r_{3}, 0<r_{3}<r_{2}$, there exists a
constant $K_{1}>0$ (that depends on T and $\left.r_{3}\right)$ such that

$$
\left|\frac{\partial L(z, t)}{\partial t}\right|<K_{1}, \quad \forall z \in U_{r_{3}}, \quad t \in[0, T] .
$$

Therefore the function $L(z, t)$ is locally absolutely continuous in I, locally uniform with respect to $U_{r_{3}}$. Let us set

$$
p(z, t)=z \frac{\partial L(z, t)}{\partial z} / \frac{\partial L(z, t)}{\partial t} \quad \text { and } \quad w(z, t)=\frac{p(z, t)-1}{p(z, t)+1}
$$

The function $p(z, t)$ is analytic in $U_{r}, 0<r<r_{3}$ and so is $w(z, t)$. The function $p(z, t)$ has an analytic extension with positive real part in U, for all $t \in I$, if the function $w(z, t)$ can be continued analytically in U and $|w(z, t)|<1$ for all $z \in U$ and $t \in I$. After computation we obtain

$$
\begin{gather*}
w(z, t)=\frac{1}{\beta}\left(\frac{\mathrm{e}^{-t} z f^{\prime}\left(\mathrm{e}^{-t} z\right)}{f\left(\mathrm{e}^{-t} z\right)}-\beta\right) \cdot \mathrm{e}^{-2(\alpha+\beta-1) t} \tag{6}\\
+\frac{1-\mathrm{e}^{-2(\alpha+\beta-1) t}}{\alpha+\beta-1}\left(\frac{\mathrm{e}^{-t} z f^{\prime}\left(\mathrm{e}^{-t} z\right)}{f\left(\mathrm{e}^{-t} z\right)}-\beta\right)
\end{gather*}
$$

From (1) and (2) we deduce that the function $w(z, t)$ is analytic in the unit disk U. In view of (1), from (6) we have

$$
\begin{equation*}
|w(z, 0)|=\left|\frac{1}{\beta}\left(\frac{z f^{\prime}(z)}{f(z)}-\beta\right)\right|<1 \tag{7}
\end{equation*}
$$

For $z=0, t>0$, in view of $\alpha>0, \beta \geq 1$, from (6) we obtain

$$
\begin{equation*}
|w(0, t)|=\frac{\beta-1}{\beta(\alpha+\beta-1)} \cdot\left|\beta+(\alpha-1) \mathrm{e}^{-2(\alpha+\beta-1) t}\right|<1 \tag{8}
\end{equation*}
$$

If $t>0$ is a fixed number and $z \in U, z \neq 0$, then the function $w(z, t)$ is analytic in \bar{U} because $\left|\mathrm{e}^{-t} z\right| \leq \mathrm{e}^{-t}<1$ for all $z \in \bar{U}$ and it is known that

$$
\begin{equation*}
|w(z, t)|=\max _{|\zeta|=1}|w(\zeta, t)|=\left|w\left(\mathrm{e}^{i \theta}, t\right)\right|, \quad \theta=\theta(t) \in R \tag{9}
\end{equation*}
$$

Let us denote $u=\mathrm{e}^{-t} \mathrm{e}^{i \theta}$. Then $|u|=\mathrm{e}^{-t}$ and from (6) we get
$\left.\left|w\left(\mathrm{e}^{i \theta}, t\right)\right|=\left.\left|\frac{1}{\beta}\left(\frac{u f^{\prime}(u)}{f(u)}-\beta\right)\right| u\right|^{2(\alpha+\beta-1)}+\frac{1-|u|^{2(\alpha+\beta-1)}}{\alpha+\beta-1}\left(\frac{u f^{\prime}(u)}{f(u)}-\beta\right) \right\rvert\,$.
Because $u \in U$, the relation (2) implies $\left|w\left(\mathrm{e}^{i \theta}, t\right)\right| \leq 1$ and from (7), (8) and (9) we conclude that $|w(z, t)|<1$ for all $z \in U$ and $t \in I$. From Theorem 1.1 it follows that the function $L(z, t)$ has an analytic and univalent extension to the whole disk U, for each $t \in I$. For $t=0$ it follows that the function

$$
L(z, 0)=\left((\alpha+\beta-1) \int_{0}^{z} u^{\alpha-1} f^{\prime}(u) \mathrm{d} u\right)^{1 / \alpha}
$$

is analytic and univalent in U and then the function F defined by (3) is also analytic and univalent in U.

REmark. If we ask for α to be $\alpha \geq 1$, then if the inequality (1) is true, it results that the inequality (2) is also true and we have the following results:

Theorem 2.2. Let α, β be real numbers, $\alpha \geq 1, \beta \geq 1$ and let $f \in A$. If the inequality

$$
\begin{equation*}
\left|\frac{z f^{\prime}(z)}{f(z)}-\beta\right|<\beta \tag{1}
\end{equation*}
$$

is true for all $z \in U$, then the function

$$
\begin{equation*}
F\left((z)=\left(\alpha \int_{0}^{z} u^{\alpha-1} f^{\prime}(u) \mathrm{d} u\right)^{1 / \alpha}\right. \tag{3}
\end{equation*}
$$

is analytic and univalent in U.
Proof. Since $\alpha \geq 1$, the left-hand side of the inequality (2) can be majorated and in view of (1) we obtain:

$$
\begin{gathered}
\left.\left.\left|\frac{z f^{\prime}(z)}{f(z)}-\beta\right| \cdot\left|\frac{1}{\beta}\right| z\right|^{2(\alpha+\beta-1)}+\frac{1-|z|^{2(\alpha+\beta-1)}}{\alpha+\beta-1} \right\rvert\, \\
\leq\left|\frac{z f^{\prime}(z)}{f(z)}-\beta\right| \cdot\left(\frac{1}{\beta}|z|^{2(\alpha+\beta-1)}+\frac{1-|z|^{2(\alpha+\beta-1)}}{\beta}\right)=\frac{1}{\beta}\left|\frac{z f^{\prime}(z)}{f(z)}-\beta\right|<1 .
\end{gathered}
$$

Then (2) is satisfied and from Theorem 2.1, the function F defined by (3) is analytic and univalent in U.

REFERENCES

[1] Becker, J., Löwnersche Differentialgleichung und quasi-konform fortsetzbare schlichte Funktionen, J. Reine Angew. Math., 255 (1972), 23-43.
[2] Pommerenke, C., Über die Subordination analytischer Funktionen, J. Reine Angew. Math., 218 (1965), 159-173.

Received July 8, 2003

"Transilvania" University
Department of Mathematics 2200 Braşov, Romania

