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SUBORDINATION CHAINS AND SOLUTIONS
OF THE LOEWNER DIFFERENTIAL EQUATION IN Cn

GABRIELA KOHR

Abstract. In this paper we continue the work begun in [8] and study the general
solution of the Loewner differential equation on the unit ball in Cn. We generalize
to several variables a result of Becker concerning the form of arbitrary solutions
to the Loewner differential equation. We do not require the solutions to be
normalized. In particular, we determine the form of biholomorphic solutions,
which need not be unique in higher dimensions. Also, we give some applications.
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1. INTRODUCTION AND PRELIMINARIES

Let Cn denote the space of n complex variables z = (z1, . . . , zn) with the
Euclidean inner product 〈·, ·〉 and the Euclidean norm ‖z‖ = 〈z, z〉1/2. Let
Br = {z ∈ Cn : ‖z‖ < r} and let B = B1. In the case of one variable, Br is
denoted by Ur and U1 by U . The topological closure of a subset A of Cn is
denoted by A. If Ω ⊂ Cn is an open set, let H(Ω) be the set of holomorphic
mappings from Ω into Cn. Also let L(Cn,Cm) be the space of continuous
linear operators from Cn into Cm with the standard operator norm. Let I be
the identity in L(Cn,Cn).

If f ∈ H(B), let Dkf(z) be the k-th Fréchet derivative of f at z ∈ B and
let

Dkf(z)(wk) = Dkf(z)(w, . . . , w︸ ︷︷ ︸
k-times

), w ∈ Cn.

If f, g ∈ H(B), we say that f is subordinate to g (write f ≺ g) if there
exists a Schwarz mapping v (i.e. v ∈ H(B), v(0) = 0 and ‖v(z)‖ < 1, z ∈ B)
such that f(z) = g(v(z)) for z ∈ B. If g is biholomorphic on B, this condition
is equivalent to requiring that f(0) = 0 and f(B) ⊆ g(B).

Definition 1.1. A mapping f : B × [0,∞) → Cn is called a subordination
chain if it satisfies the following conditions:

(i) f(·, t) ∈ H(B), t ≥ 0;
(ii) f(·, s) ≺ f(·, t) for t ≥ s ≥ 0.
Moreover, if f(z, t) is a subordination chain such that f(·, t) is biholomor-

phic on B for t ≥ 0, we say that f(z, t) is a Loewner chain (or a univalent
subordination chain). In this case, the condition (ii) is equivalent to the fact
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that there is a unique biholomorphic Schwarz mapping v = v(z, s, t) such that

(1.1) f(z, s) = f(v(z, s, t), t), z ∈ B, 0 ≤ s ≤ t <∞.

An important role in our discussion is played by the following sets, which
are n-dimensional versions of the well known Carathéodory set in one variable:

N = {h ∈ H(B) : h(0) = 0, Re 〈h(z), z〉 > 0, z ∈ B \ {0}},

M = {h ∈ N : Dh(0) = I}.
Recently, Graham, Hamada and Kohr [5] have proved that M is a compact

set. In fact, the authors proved the following result:

Lemma 1.2. For each r ∈ (0, 1), there exists a number M = M(r) ≤
4r/(1− r)2 such that ‖h(z)‖ ≤M(r) for z ∈ Br and h ∈M.

Next, we recall the following result due to Pfaltzgraff [11] which yields that
the solutions of the Loewner differential equation, which satisfy a normality
condition, give Loewner chains. We have (cf. [11, Theorem 2.1 and Lemma
2.2], [13, Theorems 2 and 3], and [5, Theorem 1.4]):

Lemma 1.3. Let h : B × [0,∞) → Cn be a mapping which satisfies the
following assumptions:

(i) h(·, t) ∈M, t ≥ 0;
(ii) h(z, ·) is measurable on [0,∞), z ∈ B.
Then there exists a unique solution v(t) = v(z, s, t) of the initial value prob-

lem

(1.2)
∂v

∂t
= −h(v, t) a.e. t ≥ s, v(s) = z.

The mapping v(z, s, t) = es−tz + · · · is a biholomorphic Schwarz mapping
and is Lipschitz continuous in t ∈ [s,∞) locally uniformly with respect to
z ∈ B. In addition,

(1.3) lim
t→∞

etv(z, s, t) = f(z, s)

locally uniformly on B for s ≥ 0, f(·, s) is biholomorphic on B and

(1.4) f(z, s) = f(v(z, s, t), t), z ∈ B, t ≥ s ≥ 0.

Thus f(z, t) is a Loewner chain. Moreover, f(z, ·) is locally absolutely contin-
uous on [0,∞) locally uniformly with respect to z ∈ B and

(1.5)
∂f

∂t
(z, t) = Df(z, t)h(z, t) a.e. t ≥ 0, ∀ z ∈ B.

Also

(1.6) et ‖z‖
(1 + ‖z‖)2

≤ ‖f(z, t)‖ ≤ et ‖z‖
(1− ‖z‖)2

, z ∈ B, t ≥ 0.
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Note that the solution v(z, s, t) of (1.2) satisfies the following semigroup
property (see [11], [6]):

(1.7) v(z, s, u) = v(v(z, s, t), t, u), z ∈ B, 0 ≤ s ≤ t ≤ u <∞.

We next provide a method that can be used to obtain univalence criteria and
quasiconformal extension. The method is similar to that in [8], but is rather
more general than in [8, Corollary 2.4] since it can be applied to nonnormalized
subordination chains. In the case of one variable, this method is due to Becker
(see [1, 2]).

2. MAIN RESULTS

We begin this section with the following useful result, which is a gener-
alization to higher dimensions of [2, Lemma 1] (compare with [11, Theorem
2.1]):

Lemma 2.1. Let h : B × [0,∞) → Cn satisfy the following conditions:
(i) h(·, t) ∈ N , Dh(0, t) = c(t)I where c : [0,∞) → C is a bounded integrable

function on each closed interval [0, T ], T > 0, such that

(2.1)
∫ ∞

0
Re c(t)dt = ∞;

(ii) h(z, ·) is measurable on [0,∞) for z ∈ B.
Then for each s ≥ 0 and z ∈ B, the initial value problem

(2.2)
∂v

∂t
= −h(v, t) a.e. t ≥ s, v(z, s, s) = z,

has a unique solution v = v(z, s, t) such that for fixed s and t, v(·, s, t) is
a biholomorphic Schwarz mapping, Dv(0, s, t) = (a(s)/a(t))I where a(t) =
exp

∫ t
0 c(τ)dτ . Moreover, v(z, s, ·) is a locally Lipschitz continuous function

on [s,∞) locally uniformly with respect to z ∈ B. In addition, for each s ≥ 0,

(2.3) lim
t→∞

a(t)v(z, s, t) = f(z, s)

locally uniformly on B, f(·, s) is biholomorphic on B and

(2.4) f(z, s) = f(v(z, s, t), t), z ∈ B, t ≥ s ≥ 0.

Thus f(z, t) is a Loewner chain, which is locally absolutely continuous in
t ∈ [0,∞) locally uniformly with respect to z ∈ B and

(2.5)
∂f

∂t
(z, t) = Df(z, t)h(z, t) a.e. t ≥ 0, ∀ z ∈ B.

The Loewner chain given by (2.3) may be called the canonical solution of
the Loewner differential equation (2.5).
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Proof. First, we mention that Re c(t) > 0 for t ≥ 0, according to [14,
Lemma 3] and the fact that h(·, t) ∈ N . Let

α(t) =
∫ t

0
Re c(τ)dτ and β(t) =

∫ t

0
Im c(τ)dτ, t ≥ 0.

Since c is a locally integrable function on [0,∞), it follows that α and β are
locally absolutely continuous functions on [0,∞) and

α′(t) = Re c(t) and β′(t) = Im c(t) a.e. t ≥ 0.

Moreover, since a(t) = exp
∫ t
0 c(τ)dτ and Re c(t) > 0 for t ≥ 0, we deduce

that |a(·)| is a strictly increasing function on [0,∞), a(0) = 1 and |a(t)| → ∞
as t→∞, in view of (2.1).

Let
z∗ = eiβ(t)z and t∗ = α(t), z ∈ B, t ≥ 0.

Then ‖z∗‖ = ‖z‖ < 1 and since α(t) > 0 for t > 0, it follows that t∗ is a
function of [0,∞) into [0,∞). Since α is strictly increasing on [0,∞), α(0) = 0
and α(t) →∞ as t→∞, we deduce that α : [0,∞) → [0,∞) is one-to-one.

Further, let h∗ : B × [0,∞) → Cn be given by

h∗(z, t∗) =
1

Re c(t)

[
eiβ(t)h(e−iβ(t)z, t)− iIm c(t)z

]
.

Then h∗(·, t∗) ∈ H(B), h∗(0, t∗) = 0 and Dh∗(0, t∗) = I for t∗ ≥ 0. Since
h(z, ·) is measurable on [0,∞), it is clear that h∗(z, ·) is also measurable on
[0,∞). Moreover,

Re 〈h∗(z, t∗), z〉 =
1

Re c(t)
Re 〈h(e−iβ(t)z, t), e−iβ(t)z〉 > 0

for z ∈ B \ {0} and t ≥ 0. Consequently, taking into account Lemma 1.3, we
deduce for each s∗ ≥ 0 and z∗ ∈ B that the initial value problem

(2.6)
∂v∗

∂t∗
= −h∗(v∗, t∗) a.e. t∗ ≥ s∗, v∗(z∗, s∗, t∗) = z∗,

has a unique solution v∗ = v∗(z∗, z∗, t∗) = es∗−t∗z∗+ . . . such that for fixed s∗

and t∗, v∗(·, s∗, t∗) is a biholomorphic Schwarz mapping.
Now, let

v(z, s, t) = e−iβ(t)v∗(eiβ(s)z, α(s), α(t)), z ∈ B, 0 ≤ s ≤ t <∞.

Then v(·, s, t) is a biholomorphic Schwarz mapping and

Dv(0, s, t) = ei(β(s)−β(t))Dv∗(0, α(s), α(t)) =
a(s)
a(t)

I.

Since v∗(z∗, s∗, t∗) is Lipschitz continuous with respect to t∗ ≥ s∗, the func-
tion c is bounded on each interval [0, T ], T > 0, and the functions α and β are
locally absolutely continuous on [0,∞), it is easily seen that the v(z, s, t) is
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locally Lipschitz continuous with respect to t ≥ s. Also a simple computation
and the relation (2.2) yield that

∂v

∂t
= −h(v, t) a.e. t ≥ s, v(z, s, s) = z.

Consequently, v = v(z, s, t) is a solution of the initial value problem (2.1).
On the other hand, the uniqueness of solutions to the initial value problem
(2.6) implies the uniqueness of solutions to (2.1). Indeed, if u = u(z, s, t) is
another solution of (2.1), then u∗(z, s∗, t∗) = eiβ(t)u(e−iβ(s)z, s, t) satisfies the
initial value problem (2.6), and thus u∗ must be equal to v∗. This implies that
u ≡ v.

Moreover, since for s∗ ≥ 0,

lim
t∗→∞

et∗v∗(z∗, s∗, t∗) = f∗(z∗, s∗),

and the above limit holds locally uniformly on B and provides a Loewner chain,
we deduce that f(z, t) = f∗(eiβ(t)z, α(t)) is also a Loewner chain. Indeed,
since f∗(·, t∗) is biholomorphic, it follows that f(·, t) is also biholomorphic
on B, and since f∗(z∗, s∗) = f∗(v∗(z∗, s∗, t∗), t∗) it is easy to deduce that
f(z, s) = f(v(z, s, t), t) for z ∈ B and 0 ≤ s ≤ t <∞. This chain satisfies the
following conditions: f(0, t) = 0, Df(0, t) = a(t)I, and for each s ≥ 0,

lim
t→∞

a(t)v(z, s, t) = lim
t→∞

eα(t)v∗(eiβ(s)z, α(s), α(t)) = f∗(eiβ(s)z, α(s)) = f(z, s)

locally uniformly on B, i.e. (2.3) holds. Clearly, f(0, s) = 0 and Df(0, s) =
a(s)I for s ≥ 0. According to Lemma 1.3, f∗(z∗, ·) is locally absolutely con-
tinuous on [0,∞) locally uniformly with respect to z∗ ∈ B. Moreover,

(2.7)
∂f∗

∂t∗
(z∗, t∗) = Df∗(z∗, t∗)h∗(z∗, t∗) a.e. t∗ ≥ 0, ∀ z∗ ∈ B.

Taking into account the above arguments and the fact that α is locally
absolutely continuous on [0,∞), we deduce that f(z, ·) is also locally absolutely
continuous on [0,∞) locally uniformly with respect to z ∈ B. According to
(2.7), we obtain for almost all t ≥ 0 that

∂f

∂t
(z, t) = eiβ(t)iβ′(t)Df∗(eiβ(t)z, t∗)(z) +

∂f∗

∂t∗
(eiβ(t)z, t∗)α′(t)

= Df(z, t)h(z, t), z ∈ B.
Hence (2.5) holds, as desired. This completes the proof. �

The following result is a direct consequence of Lemma 2.1 and [11, Lemma
2.2] (compare with [4]).

Lemma 2.2. Let v = v(z, s, t) be the solution of (2.2). Then

|a(t)| ‖v(z, s, t)‖
(1− ‖v(z, s, t)‖)2

≤ |a(s)| ‖z‖
(1− ‖z‖)2
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and

|a(t)| ‖v(z, s, t)‖
(1 + ‖v(z, s, t)‖)2

≥ |a(s)| ‖z‖
(1 + ‖z‖)2

,

for all z ∈ B and t ≥ s ≥ 0.

Proof. Let v∗(z, α(s), α(t)) = eiβ(t)v(e−iβ(s)z, s, t) for z ∈ B and t ≥ s ≥ 0.
As in the proof of Lemma 2.1, we deduce that v∗(z, α(s), α(t)) is the solution
of (2.6), and thus

eα(t) ‖v∗(z, α(s), α(t))‖
(1− ‖v∗(z, α(s), α(t))‖)2

≤ eα(s) ‖z‖
(1− ‖z‖)2

,

and

eα(t) ‖v∗(z, α(s), α(t))‖
(1 + ‖v∗(z, α(s), α(t))‖)2

≥ eα(s) ‖z‖
(1 + ‖z‖)2

,

by [11, Lemma 2.2]. The conclusion now easily follows. �

Taking into account Lemmas 2.1 and 2.2, we obtain (compare with [4]):

Lemma 2.3. Let f(z, t) be the Loewner chain given by (2.3). Then

(2.8) |a(t)| ‖z‖
(1 + ‖z‖)2

≤ ‖f(z, t)‖ ≤ |a(t)| ‖z‖
(1− ‖z‖)2

, z ∈ B, t ≥ 0.

Proof. It suffices to apply the relation (2.3) and Lemma 2.2. �

We are now able to prove the main result of this paper. This result has been
recently obtained in [8], in the case a(t) = et, t ≥ 0. In one variable, this result
is due to Becker [2] (see also [3]). His assumptions hold on the punctured disc
U \ {0}. But in higher dimensions, holomorphic functions have no isolated
singularities, and thus we assume that our conditions hold on B. We mention
that in [8, Theorem 2.1] we allowed the radius r(t) of the ball Br(t) on which
the solution was initially defined in z to vary with t; for our purpose, we shall
work with r(t) ≡ 1. We have

Theorem 2.4. Let h(z, t) satisfy the conditions (i) and (ii) in Lemma 2.1.
Also let f(z, t) be given by (2.3) and g = g(z, t) : B×[0,∞) → Cn be a mapping
such that g(·, t) ∈ H(B), t ≥ 0, and g(z, ·) is locally absolutely continuous on
[0,∞) locally uniformly with respect to z ∈ B. Assume g(z, t) satisfies the
differential equation

(2.9)
∂g

∂t
(z, t) = Dg(z, t)h(z, t) a.e. t ≥ 0, ∀ z ∈ B.

Then g(z, t) is a subordination chain and there is a mapping Φ ∈ H(Cn)
such that

(2.10) g(z, t) = Φ(f(z, t)), z ∈ B, t ≥ 0.

Moreover, g(z, t) is a Loewner chain if and only if Φ is biholomorphic on Cn.
Conversely, if g(z, t) = Φ(f(z, t)), z ∈ B, t ≥ 0, where Φ is a biholomorphic
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mapping on Cn, then g(z, t) is a Loewner chain which satisfies the Loewner
differential equation (2.9).

Proof. As in the proof of [11, Theorem 2.2] and [8, Lemma 2.2], we deduce
that

(2.11) g(v(z, s, t), t) = g(z, s), z ∈ B, t ≥ s ≥ 0,

where v = v(z, s, t) is the unique solution of the initial value problem (2.2).
Indeed, let vs,t(z) = v(z, s, t) for z ∈ B and t ≥ s ≥ 0, and let gt(z) = g(z, t),
z ∈ B, t ≥ 0. Fix T > 0. Since g(z, ·) is locally absolutely continuous on [0,∞)
locally uniformly with respect to z ∈ B, and g(·, t) ∈ H(B) for t ≥ 0, it follows
that the mapping g is continuous on B× [0,∞). Thus for each ρ ∈ (0, 1) there
is some K = K(ρ, T ) > 0 such that

‖g(z, t)‖ ≤ K, z ∈ Bρ, t ∈ [0, T ].

Moreover, according to the Cauchy integral formula for vector valued holo-
morphic functions, it is easy to deduce for each ρ ∈ (0, 1) that there is some
K ′ = K ′(ρ, T ) > 0 such that

(2.12) ‖Dg(z, t)‖ ≤ K ′, z ∈ Bρ, t ∈ [0, T ].

Consequently, for each ρ ∈ (0, 1) we obtain

(2.13) ‖g(z, t)− g(w, t)‖ ≤ K ′‖z − w‖, z, w ∈ Bρ, t ∈ [0, T ].

Further, let h∗ = h∗(z, t∗) : B × [0,∞) → Cn be given by

h∗(z, t∗) =
1

Re c(t)

[
eiβ(t)h(e−iβ(t)z, t)− iIm c(t)z

]
, z ∈ B, t∗ ≥ 0,

where t∗ = α(t) and β(t) are given in the proof of Lemma 2.1. We have shown
that h∗(·, t∗) ∈ M, and thus in view of Lemma 1.2, for each ρ ∈ (0, 1) there
is some M = M(ρ) > 0 such that ‖h∗(z, t∗)‖ ≤ M(ρ) for ‖z‖ ≤ ρ and t∗ ≥ 0.
Then

‖h(z, t)‖ ≤M(ρ)Re c(t) + ρ|Im c(t)|, z ∈ Bρ, t ≥ 0.
On the other hand, taking into account the relations (2.9) and (2.12), we

deduce that∥∥∥∥∂g∂t (z, t)
∥∥∥∥ ≤ K ′[M(ρ)Re c(t) + ρ|Im c(t)|], a.e. t ∈ [0, T ], ∀ z ∈ Bρ.

Since g(z, ·) is locally absolutely continuous on [0,∞), we obtain in view of
the above relation that

‖g(z, t1)− g(z, t2)‖ ≤ K ′
∫ t2

t1

[M(ρ)Re c(τ) + ρ|Im c(τ)|]dτ,

and since c is bounded on [0, T ], there exists some constant K∗ = K∗(ρ, T ) > 0
such that

(2.14) ‖g(z, t1)− g(z, t2)‖ ≤ K∗|t1 − t2|, z ∈ Bρ, t1, t2 ∈ [0, T ].
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Next, fix ρ ∈ (0, 1) and s ∈ [0, T ]. Let q(z, t) = g(vs,t(z), t) for z ∈ Bρ and
t ∈ [s, T ]. According to the relations (2.13) and (2.14), and the local Lipschitz
continuity of v(z, s, ·) on [s,∞), we obtain

‖q(z, t1)− q(z, t2)‖

≤ ‖g(vs,t1(z), t1)− g(vs,t1(z), t2)‖+ ‖g(vs,t1(z), t2)− g(vs,t2(z), t2)‖
≤ K∗|t1 − t2|+K ′‖vs,t1(z)− vs,t2(z)‖

≤ [K∗ +K ′L(r, T )]|t1 − t2| ≤ K∗∗|t1 − t2|, z ∈ Bρ, t1, t2 ∈ [s, T ].

Hence for each z ∈ Bρ, q(z, t) is Lipschitz continuous with respect to t ∈
[s, T ] and in view of the relations (2.2) and (2.9) we obtain

∂q

∂t
(z, t) = Dg(vs,t(z), t)

∂vs,t

∂t
(z) +

∂g

∂t
(vs,t(z), t)

= −Dg(vs,t(z), t)h(vs,t(z), t) +Dg(vs,t(z), t)h(vs,t(z, t), t) = 0,
for almost all t ∈ [s, T ]. Since q(z, ·) is absolutely continuous on [s, T ], we
conclude that q(z, ·) is constant on [s, T ], and thus q(z, s) = q(z, t) i.e.

g(v(z, s, t), t) = g(z, s), t ∈ [s, T ], z ∈ Bρ.

Since T is arbitrary, we obtain

g(v(z, s, t), t) = g(z, s), t ∈ [s,∞), z ∈ Bρ.

Further, taking into account the identity theorem for holomorphic mappings
and the above equality, we deduce (2.11), as claimed. This relation can be
written equivalently, as follows

(2.15) gs(z) = gt((a(t))−1a(t)vs,t(z)), z ∈ B, t ≥ s ≥ 0.

Let ψs,t(z) = a(t)vs,t(z) for z ∈ B and 0 ≤ s ≤ t <∞. In view of (2.3), we
deduce for each s ≥ 0 that

(2.16) lim
t→∞

ψs,t(z) = f(z, s)

and the above limit holds locally uniformly on B. Moreover, ft(z) = f(z, t)
satisfies the following growth result

|a(t)| ‖z‖
(1 + ‖z‖)2

≤ ‖ft(z)‖ ≤ |a(t)| ‖z‖
(1− ‖z‖)2

, z ∈ B, t ≥ 0,

by (2.8). Since |a(t)| is strictly increasing to ∞ as t→∞, we deduce for each
m = 1, 2, . . . that there is some sm ≥ 0 such that fsm(B) ⊇ Bm. Consequently,
taking into account (2.16) and the above relation, we obtain for each m =
1, 2, . . . that there is some tm ≥ sm such that ψsm,t(B) ⊇ Bm, t ≥ tm.

Since {ψsm,t}t≥tm is a family of biholomorphic mappings on B such that
ψsm,t(0) = 0, Dψsm,t(0) = a(sm)I for t ≥ tm, and

|a(sm)| ‖z‖
(1 + ‖z‖)2

≤ ‖ψsm,t(z)‖ ≤ |a(sm)| ‖z‖
(1− ‖z‖)2

, z ∈ B, t ≥ tm,
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by Lemma 2.2, we obtain in view of [10, Theorem 2.1] that

lim
t→∞

ψ−1
sm,t

(w) = f−1
sm

(w)

locally uniformly on Bm for m = 1, 2, . . . . According to (2.15), we have

gt((a(t))−1w) = gsm(ψ−1
sm,t

(w)), w ∈ Bm, t ≥ tm.

Since gsm ∈ H(B) and ψ−1
sm,t

(w) → f−1
sm

(w) as t → ∞ locally uniformly on
Bm, we deduce from the above equality that gt((a(t))−1w) → Φm locally uni-
formly on Bm as t→∞, where Φm is a holomorphic mapping by Weierstrass
theorem, for m = 1, 2, . . . . Since m is arbitrary, we deduce in view of the iden-
tity theorem for holomorphic mappings that there is a mapping Φ ∈ H(Cn)
such that Φ is the holomorphic extension to Cn of Φm for m = 1, 2, . . . and
gt((a(t))−1w) → Φ locally uniformly on Cn. Letting t → ∞ in (2.15) and
using (2.16), we conclude that

gs(z) = Φ(fs(z)), z ∈ B, s ≥ 0,

and thus (2.10) holds, as desired.
Finally, we note that the estimate (2.8) and the fact that |a(t)| → ∞ as

t→∞ imply that
⋃
s≥0

fs(B) = Cn. This easily implies that g(z, t) is a Loewner

chain if and only if Φ is biholomorphic on Cn.
Conversely, if g(z, t) = Φ(f(z, t)), z ∈ B, t ≥ 0, where Φ is a biholomorphic

mapping on Cn, then it is clear that g(·, t) is biholomorphic on B, g(z, s) =
g(v(z, s, t), t) for z ∈ B and t ≥ 0, and thus g(z, t) is a Loewner chain. Also,
it is easily seen that g(z, t) satisfies the Loewner differential equation (2.9).
This completes the proof. �

We next give the following consequence of Theorem 2.4, in terms of the
coefficients of g(z, t). In the case of one variable, this result was obtained by
Becker [2]. We have

Corollary 2.5. Let g(z, t) and h(z, t) satisfy the assumptions of Theorem
2.4. Also let f(z, t) be given by (2.3) and let

ck(t) =
1
k!
Dkgt(0), t ≥ 0, k ≥ 0.

Assume that

(2.17) lim inf
t→∞

|a(t)|−k‖ck(t)‖ = 0, k = 2, 3, . . . .

Then g(z, t) = c0(0) + c1(0)(f(z, t)), z ∈ B, t ≥ 0.

Proof. According to Theorem 2.4, there is an entire mapping Φ such that

(2.18) g(z, t) = Φ(f(z, t)), z ∈ B, t ≥ 0.

Since Φ ∈ H(Cn), it can be expanded in a power series

Φ(w) = A0 +A1(w) + · · ·+Ak(wk) + . . . , w ∈ Cn,
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where
Ak =

1
k!
DkΦ(0), k ≥ 0.

We prove that Ak ≡ 0 for k ≥ 2. To this end, let

ak(t) =
1
k!
Dkft(0), t ≥ 0, k ≥ 0.

Then a0(t) = 0 and a1(t) = a(t)I, t ≥ 0, and thus a1(0) = I. Moreover,
(2.18) yields

∞∑
k=0

ck(t)(zk) =
∞∑

k=0

Ak(wk), z ∈ B,

where w =
∞∑

k=0

ak(t)(zk), and hence

c0(t) = A0, c1(t) = a(t)A1, t ≥ 0,

and

(2.19) ck(t) = A1 ◦ ak(t) + [a(t)]kAk, k ≥ 2, t ≥ 0.

On the other hand, taking into account Lemma 2.3 and the Cauchy integral
formulas for vector valued holomorphic functions, it is easy to deduce for each
k ≥ 2 that there is some Ck > 0 such that

‖ak(t)‖ ≤ Ck|a(t)|, t ≥ 0.

Indeed, since

ak(t)(wk) =
1

2πi

∫
|ζ|=r

f(ζw, t)
ζk+1

dζ, ‖w‖ = 1,

for any r ∈ (0, 1), and since

‖f(z, t)‖ ≤ |a(t)| r

(1− r)2
, ‖z‖ = r, t ≥ 0,

we obtain the following relation

‖ak(t)‖ ≤ |a(t)| min
r∈(0,1)

1
rk−1(1− r)2

≤ |a(t)|
[
e(k + 1)

2

]2

.

Letting Ck = e2(k + 1)2/4, the claimed conclusion follows.
Next, fix k ≥ 2. Multiplying both sides of (2.19) by [a(t)]−k and using the

above relation, we obtain

‖[a(t)]−kck(t)−Ak‖ ≤ ‖A1‖ · |a(t)|−k‖ak(t)‖ ≤ Ck|a(t)|1−k‖A1‖, t ≥ 0.

Further, according to (2.17), there is a sequence {tm}m∈N such that tm > 0,
tm →∞ as m→∞, and

(2.20) |a(tm)|−k‖ck(tm)‖ → 0 as m→∞.
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Finally, letting m→∞ in the relation

‖[a(tm)]−kck(tm)−Ak‖ ≤ Ck|a(tm)|1−k‖A1‖,
and using (2.20) and the fact that |a(tm)| → ∞ as m→∞, we conclude that
Ak ≡ 0. Hence

g(z, t) = A0 +A1(f(z, t)) = c0(0) + c1(0)(f(z, t)), t ≥ 0, z ∈ B,
as claimed. This completes the proof. �

Remark 2.6. The condition (2.17) is satisfied if {g(z, t)/a(t)}t≥0 is a normal
family on B. In particular, if g(z, t) = a(t)z + · · · satisfies the assumptions
of Theorem 2.4 and {g(z, t)/a(t)}t≥0 is a normal family on B, then g(z, t) =
f(z, t) for z ∈ B and t ≥ 0, where f(z, t) is given by (2.3). Thus, we obtain
(see [8, Corollary 2.3] in the case a(t) = et, t ≥ 0).

Corollary 2.7. Let h(z, t) = c(t)z + · · · satisfy the conditions (i) and
(ii) in Lemma 2.1, where c : [0,∞) → C is a bounded integrable function
on each closed interval [0, T ], T > 0, that satisfies the relation (2.1). Also
let a(t) = exp

∫ t
0 c(τ)dτ for t ≥ 0, and g : B × [0,∞) → Cn be a mapping

such that g(·, t) ∈ H(B), g(0, t) = 0, Dg(0, t) = a(t)I, t ≥ 0, and g(z, ·) is
locally absolutely continuous on [0,∞) locally uniformly with respect to z ∈ B.
Assume that g(z, t) satisfies the differential equation (2.9) and {g(z, t)/a(t)}t≥0

is a normal family on B. Then g(z, t) is a Loewner chain.

Finally we mention the following generalization of [8, Theorem 2.1] to non-
normalized subordination chains g(z, t) = a(t)z + · · · In the case of one vari-
able, this result is due to Becker [2, 3]. We show that with appropriate condi-
tions on c(t) and the radius of convergence r(t), we can obtain subordination
chains as solutions of the Loewner differential equation

∂g

∂t
(z, t) = Dg(z, t)h(z, t), a.e. t ≥ 0, ∀ z ∈ Br(t).

The proof of this result follows arguments similar to those in the proofs of
Theorem 2.4 and [8, Theorem 2.1]. We shall leave it to the reader.

Theorem 2.8. Let h(z, t) = c(t)z + · · · satisfy the conditions (i) and (ii)
in Lemma 2.1, where c : [0,∞) → C is a bounded integrable function on
each closed interval [0, T ], T > 0, that satisfies the relation (2.1). Also let
a(t) = exp

∫ t
0 c(τ)dτ for t ≥ 0, f(z, t) be given by (2.3) and let g(z, t) be a

mapping such that for each t ≥ 0, g(·, t) ∈ H(Br(t)) where r : [0,∞) → (0, 1]
is a continuous function with lim sup

t→∞
r(t)|a(t)| = ∞. Assume there exist two

positive functions ρ and δ on [0,∞) such that ρ(t) < 1, t ≥ 0, and for each
t0 ≥ 0 the following conditions hold:

(a) r(t) ≥ ρ(t0) for t ∈ Eδ(t0) = [t0 − δ(t0), t0 + δ(t0)] ∩ [0,∞);
(b) g(z, ·) is absolutely continuous on Eδ(t0) for z ∈ Bρ(t0), and

∂g

∂t
(z, t) = Dg(z, t)h(z, t), a.e. t ∈ Eδ(t0), ∀ z ∈ Bρ(t0).
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Then g(z, t) extends to a subordination chain, again denoted by g(z, t), and
there exists a mapping Ψ : Cn → Cn which is holomorphic such that

g(z, t) = Ψ(f(z, t)), z ∈ B, t ≥ 0.
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