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OPENNESS RESULTS FOR MULTIFUNCTIONS
VIA AN ABSTRACT SUBDIFFERENTIAL

MARIUS DUREA

Abstract. In this paper we establish some openness-type results for set-valued
maps in Banach spaces, using a coderivarive which is defined via abstract sub-
differentials. Mainly, results of openness at a linear rate are obtained. Then
we apply these results to derive a necessary optimality condition for a nonlinear
optimization problem, without any convexity assumptions.
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1. INTRODUCTION AND PRELIMINARY RESULTS

The aim of this paper is to obtain openness results for set-valued maps
using an abstract subdifferential; one of this results will be used to derive
necessary optimality conditions for a nonlinear optimization problem. This
kind of results have been obtained, for example, by B. Mordukhovich in [11]
for the Mordukhovich subdifferential and A. D. Ioffe in [5] for approximative
subdifferential. Both papers [11] and [5] concerning with the finite dimen-
sional spaces. A very significant step on this topic is done in the paper [6]
in terms of abstract subdifferential. Here we try to use some similar condi-
tions on a coderivative associated with an abstract subdifferential in Banach
spaces for obtaining openness results with a more accurate estimates for the
neighborhoods involved.

The notations are basically standard. By X, Y, Z we denote linear normed
spaces, by L(X, Y ) the space of all continuous linear operators from X into
Y and by X∗ the topological dual of the space X; w is the weak convergence
on X and w∗ is the weak-star convergence on X∗; if x ∈ X the open ball
with center x and radius r > 0 is denoted by B(x, r) and V(x) is the filter
of neighborhoods of x; by SX we mean the unit sphere of X, and by UX the
closed unit ball of X. On the product space X×Y we consider the sum norm.
If S is a subset of X we denote by S the closure of S; if x ∈ X, we denote
the distance from x to S by d(x, S) = infy∈S d(x, y) and by dS the distance
function with respect to S, dS(x) = d(x, S) for every x ∈ X (by convention,
d(x, ∅) = ∞); IS is the indicator function of S (IS(x) = 0, if x ∈ S and IS(x) =
∞, if x /∈ S).

For r > 0 we note B(S, r) := {x ∈ X | d(x, S) < r}; of course, B({x}, r) =
B(x, r). If f :X → R ∪ {∞} is a function we write, as usual, Dom f = {x ∈
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X | f(x) < ∞} for the domain of f and epi f = {(x, α) ∈ X × R | f(x) ≤ α}
for the epigraph of f.

Next we use an abstract subdifferential (see, e.g., [12]) and, for a set-valued
map, the associated coderivative. In the sequel ∂ is a map which associates
to any lower semicontinuous (lsc for short) function f from a Banach space X
to R ∪ {∞}, and to any x ∈ X a subset of X∗, denoted by ∂f(x). The map ∂
has the following basic properties:

(P1) f(x) = ∞ implies ∂f(x) =∅;
(P2) If there exists V ∈ V(x) such that f |V = g|V then ∂f(x) = ∂g(x);
(P3) If the function f is convex then ∂f is the subdifferential in the sense

of convex analysis;
(P4) If x ∈ Dom f is a local minimum point for f, then 0 ∈ ∂f(x) ;
(P5) If X = Y ×Z and f(y, z) = g(y)+h(z), then ∂f(y, z) = ∂g(y)×∂h(z);
(P6) ∂(αf)(x) = α∂f(x), for every α > 0.
In fact we shall use only (P3), (P4), (P5) and (P6) in the sequel, but we

preferred to give a more comprehensive definition of this notion.

Remark 1. The main subdifferential types (called in [12] elementary sub-
differentials): the Fréchet subdifferential, the Dini-Hadamard subdifferential,
the viscosity subdifferentials have the properties (P1)–(P6).

If S ⊂ X is a closed set and x ∈ S, we define the normal cone to S ⊂ X
at x by N(S, x) := ∂IS(x) (the function IS is lsc, so the subdifferential is well
defined). From properties (P4) and (P6), N(S, x) defined above is a cone. If
A is a convex set, from (P3), N(A, x) = {x∗ ∈ X∗ | x∗(y − x) ≤ 0,∀y ∈ A}.

If A ⊂ X, B ⊂ Y, (x, y) ∈ X×Y, then IA×B(x, y) = IA(x)+ IB(y). If A and

B are closed and (a, b) ∈ A×B, then N(A×B, (a, b))
(P5)
= N(A, a)×N(B, b).

Since we have a normal cone notion we can define the cone T (S, x) := {u ∈
X | x∗(u) ≤ 0,∀x∗ ∈ N(S, x)}, called the tangent cone to the set S at x.

We suppose that ∂ enjoys the next sum basic principle (a space on which
this principle holds is called a ∂−trustworthy space: see, e.g., [3] and [7]):

(P7) Let f1, f2,..., fn : X → R∪{+∞} be lsc functions. If f1, f, ..., fn are all,
but at most one, lipschitzian, and x is a local minimum point for the function
n∑

i=1
fi, then for every ε > 0, there exist xi ∈ B(x, ε), and x∗i ∈ ∂fi(xi) such

that |fi(xi)− fi(x)| < ε, for every i = 1, n and
∥∥∥∥ n∑

i=1
x∗i

∥∥∥∥ < ε.

In some specific situations we also suppose that the subdifferential ∂ has
the next stability property:

(P8) lim sup
y→x

∂f(y) = ∂f(x), for every lsc function f and for every x ∈ X,

where by lim sup
y→x

∂f(y) we mean {x∗ ∈ X∗ | ∃xn → x,∃x∗n
w∗
→ x∗,∀n ∈ N, x∗n ∈

∂f(xn)}.
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For a multifunction F : X ⇒ Y we denote the domain and the graph by
Dom F = {x ∈ X | F (x) 6= ∅} and GrF = {(x, y) | y ∈ F (x)}, respectively.
F−1 : Y ⇒ X is the multifunction given by the relation (y, x) ∈ GrF−1 if and
only if (x, y) ∈ GrF. If A ⊂ X, F (A) :=

⋃
x∈A

F (x).

Definition 1. Let F : X ⇒ Y be a multifunction with closed graph and
(x, y) ∈ GrF . The derivative of F at (x, y) associated with the subdifferential
∂ is the multifunction DF (x, y) : X ⇒ Y given by

(1) GrDF (x, y) = T (GrF, (x, y)).

The coderivative of F at (x, y) associated with the subdifferential ∂ is the
multifunction D∗F (x.y) : Y ∗ ⇒ X∗ given by

(2) D∗F (x, y)(y∗) := {x∗ ∈ X∗ | (x∗,−y∗) ∈ N(GrF, (x, y))}.

2. MAIN RESULTS

We recall the notions we use below, using mainly the terms from [2].

Definition 2. A multifunction F : X ⇒ Y is said to be open at a linear
rate (a > 0) around (x, y) ∈ GrF if there exist a > 0, r > 0 and τ > 0
such that, for each (u, v) ∈ (B(x, r) × B(y, r)) ∩GrF and for each t ∈ (0, τ ],
B(v, at) ⊂ F (B(u, t)).

Definition 3. A multifunction F : X ⇒ Y is said to be metrically reg-
ular around (x, y) ∈ GrF if there exist a1 > 0 and r1 > 0 such that, for
each u ∈ B(x, r1) and for each v ∈ B(y, r1) with d(v, F (u)) ≤ r1, we have
d(u, F−1(v)) ≤ a1d(v, F (u)).

The following result is known (see [2]). For the convenience of the reader
we present here a proof of it.

Lemma 1. A multifunction F : X ⇒ Y with closed graph is open at a linear
rate around (x, y) ∈ GrF if and only if F is metrically regular around (x, y).

Proof. We use the notations from Definitions 2 and 3. Suppose that F is
open at a linear rate around (x, y). Let ε ∈ (0, a); take a1 = 1/(a − ε), r1 ∈
(0, r/2) such that r1a1 ≤ τ. Let u ∈ B(x, r1), v ∈ B(y, r1) with d(v, F (u)) ≤ r1

be fixed. We want to prove that d(u, F−1(v)) ≤ a1d(v, F (u)). If v ∈ F (u)
the inequality is obvious. Else, if v /∈ F (u), consider α ∈ (0,min(r/2 −
r1, εa1d(v, F (u)))). There exists v′ ∈ F (u) such that∥∥v′ − v

∥∥ < d(v, F (u)) + α ≤ ad(v, F (u))/(a− ε).

Moreover, ∥∥v′ − y
∥∥ ≤ ∥∥v′ − v

∥∥ + ‖v − y‖ < r/2− r1 + r1 + r1 < r.

Therefore, (u, v′) ∈ (B(x, r1)×B(y, r1))∩GrF and for t = d(v, F (u))/(a−ε) ≤
τ, using Definition 2, we can write

v ∈ B(v′, ad(v, F (u))/(a− ε)) ⊂ F (B(u, d(v, F (u))/(a− ε))),
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whence there exists u′ ∈ B(u, a1d(v, F (u))) with v ∈ F (u′); then u′ ∈ F−1(v)
and d(u, F−1(v)) ≤ ‖u− u′‖ ≤ a1d(v, F (u)), i.e. the conclusion.

Suppose now that F is metrically regular around (x, y). We choose ε > 0
and take r = r1/2, a ∈ (0, 1/(a1 + ε)) and τ = r1a1/2. Let (u, v) ∈ (B(x, r)×
B(y, r)) ∩ GrF , t ∈ (0, τ ] and v′ ∈ B(v, at). If v′ ∈ F (u) we have nothing to
prove. In the contrary case,

d(v′, F (u)) ≤
∥∥v′ − v

∥∥ < at < (1/a1)(r1a1/2) < r1.

Moreover, ∥∥v′ − y
∥∥ ≤ ∥∥v′ − v

∥∥ + ‖v − y‖ < r1/2 + r1/2 = r1.

Consequently, (u, v) ∈ B(x, r1) × B(y, r1) and d(v′, F (u)) ≤ r1. Using now
Definition 3, we have that

d(u, F−1(v′)) ≤ a1d(v′, F (u)) < (a1 + ε/2)d(v′, F (u))

(d(v′, F (u)) > 0 because F (u) is closed, the graph of F being closed). We
obtain that d(u, F−1(v′)) < (a1 + ε/2)at < t, whence there exists u′ ∈ F−1(v′)
such that ‖u− u′‖ < t, i.e. v′ ∈ F (B(u, t)). �

We also use the following definition.

Definition 4. We say that a closed subset S of a Banach space X is
proximinal if for every x ∈ X there exists an element x′ ∈ S such that d(x, S) =
‖x− x′‖ .

It is well known (and easy to prove) that any closed set in a finite dimen-
sional normed space is proximinal; also, if S is compact (weakly compact) in
a linear normed space X or S is weakly closed and convex and X is reflexive,
then S is proximinal.

Proposition 1. Let f : X → R be a Lipschitz function and S ⊂ X a
closed set. If x ∈ S is a local minimum point for f on S, then for every
ε > 0 there exist x1 ∈ B(x, ε), x2 ∈ B(x, ε) ∩ S with |f(x1)− f(x)| < ε and
x∗1 ∈ ∂f(x1), x∗2 ∈ N(S, x2) such that ‖x∗1 + x∗2‖ < ε.

Proof. Since x is a minimum local point for f on S, it follows that x is a
minimum local point on X for f+IS , so, by (P7), there exist x1 ∈ B(x, ε), x2 ∈
B(x, ε), with |f(x1)− f(x)| < ε, |IS(x2)− IS(x)| < ε, and x∗1 ∈ ∂f(x1), x∗2 ∈
∂IS(x2) such that ‖x∗1 + x∗2‖ < ε. Since |IS(x2)− IS(x) < ε| , we have that
x2 ∈ B(x, ε) ∩ S. The relation x∗2 ∈ ∂IS(x2) and the definition of the normal
cone ensure that x∗2 ∈ N(S, x2), i.e. the conclusion. �

Now, we are able to prove our main results.

Theorem 1. Let X, Y be Banach spaces, F : X ⇒ Y be a multifunction
with closed graph and (x, y) ∈ GrF . Suppose that a > 0, r > 0 are such that:

a) B(x, r) ⊂ Dom F, F is upper semicontinuous (usc for short) on B(x, r);
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b) for each x′ ∈ B(x, r) and y′ ∈ B(y, 2ar) ∩ F (x′),

a ≤ inf{‖x∗‖ | x∗ ∈ D∗F (x′, y′)(y∗), y∗ ∈ SY ∗};
c) F (x′) is proximinal for every x′ ∈ B(x, r).
Then, for every r′ ∈ (0, r), B(y, ar′) ⊂ F (B(x, r′)).

Proof. Let r′ ∈ (0, r) be fixed and let v ∈ B(y, ar′). Suppose that v /∈
F (B(x, r′)), which means that for all u ∈ B(x, r′), v /∈ F (u); since F (u) is
closed (GrF is closed), d(v, F (u)) > 0. We define f : B(x, r′) → R, f(u) :=
d(v, F (u)). We show that f is lsc on B(x, r′) ⊂ Dom F. Let u ∈ B(x, r′).
If f(u) = 0 the property is obvious; consider 0 < λ < f(u) = d(v, F (u));
there exists θ > 0 such that F (u) ∩ B(v, λ + θ) = ∅. Since F is usc at u
we can find (see [9]) a neighborhood U of u s.t. for all u′ ∈ U the relation
F (u′) ∩ B(v, λ + θ) = ∅ is true. It implies that d(v, F (u′)) ≥ λ + θ > λ, for
all u′ ∈ U, whence f is lsc. Now, we can apply Ekeland’s variational principle
(in the form given in [1]) for the function f with x0 = x, ε = a′, where
‖y − v‖ /r′ < a′ < a . There exists ua ∈ B(x, r′) which satisfies the relations:

(3) d(v, F (ua)) ≤ d(v, F (x))− a′ ‖x− ua‖

(4) d(v, F (ua)) < d(v, F (u)) + a′ ‖u− ua‖ ,∀u ∈ B(x, r′)\{ua}
If ‖ua − x‖ = r′, by (3), we can write a′r′ ≤ d(v, F (x)) ≤ ‖y − v‖ < a′r′,
which is a contradiction; then ua ∈ B(x, r′) and ua ∈ Dom F (we can obtain
this also from d(v, F (ua)) < ∞). Hypothesis c) implies that there exists
va ∈ F (ua) such that d(v, F (ua)) = ‖v − va‖ > 0. We consider h : X×Y → R,
h(u, y′) := ‖v − y′‖ + a′ ‖u− ua‖. Let (u, y′) ∈ (B(x, r′) × Y ) ∩ GrF ; using
(4), we have

h(u, y′) ≥ d(v, F (u)) + a′ ‖u− ua‖ ≥ d(v, F (ua)) = h(ua, va),

whence (ua, va) is a local minimum point for h on GrF ; taking into account
that h is Lipschitz, we can apply Proposition 1 with an ε which satisfies the
inequalities 0 < ε < min(r − r′, 2ar − 2ar′, ‖v − va‖ , (a − a′)/(1 + a)). We
obtain that there exist (x1, y1) ∈ B((ua, va), ε), (x2, y2) ∈ B((ua, va), ε)∩GrF,
(x∗1, y

∗
1) ∈ ∂h(x1, y1), (x∗2, y

∗
2) ∈ N(GrF, (x2, y2)) such that max(‖x∗1 + x∗2‖ ,

‖y∗1 + y∗2‖) < ε. We have that ‖y1 − va‖ < ε < ‖v − va‖ , whence y1 6= v; since
(x∗1, y

∗
1) ∈ ∂h(x1, y1) and h is a sum of convex and continuous functions, it

follows that
(x∗1, y

∗
1) ∈ {0X∗} × SY ∗ + a′(UX∗ × {0Y ∗}),

whence ‖y∗1‖ = 1 and ‖x∗1‖ ≤ a′. From ‖y∗1 + y∗2‖ < ε we have ‖y∗2‖ > ‖y∗1‖ −
ε > 0 (ε < 1), whence y∗2 6= 0. N(GrF, (x2, y2)) is a cone and (x∗2, y

∗
2) ∈

N(GrF, (x2, y2)); we obtain that

(x∗2/ ‖y∗2‖ , y∗2/ ‖y∗2‖) ∈ N(GrF, (x2, y2)),

whence
x∗2/ ‖y∗2‖ ∈ D∗F (x2, y2)(−y∗2/ ‖y∗2‖).
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Clearly, y∗2/ ‖y∗2‖ ∈ SY ∗ and, moreover, ‖x∗2‖ < ε + ‖x∗1‖ ≤ ε + a′; taking into
account the choice of ε, it implies that ‖x∗2‖ / ‖y∗2‖ < (ε + a′)/(1− ε) < a. We
can write

‖x2 − x‖ ≤ ‖x2 − ua‖+ ‖ua − x‖ ≤ ε + r′ < r

and

‖y2 − y‖ ≤ ‖y2 − va‖+ ‖va − y‖ < ε + ‖va − v‖+ ‖v − y‖

< ε + d(v, F (ua)) + ar′
(3)
< ε + d(v, F (x)) + ar′ < ε + 2ar′ < 2ar,

which is in contradiction with the assumption b) on the coderivative. The
proof is complete. �

Remark 2. If X, Y are finite dimensional spaces, then we can remove the
assumption a) on the set-valued map F from the preceding theorem. Indeed,
in the proof we used that B(x, r) ⊂ Dom F and that F usc on B(x, r) in order
to prove that the function f is lsc. On finite dimensional spaces, if we take λ <
f(u) = d(v, F (u)), we have F (u)∩B(v, λ) = ∅, so GrF ∩ ({u}×B(v, λ)) = ∅.
Taking into account that GrF is a closed set and {u} ×B(v, λ) is a compact
set, there exists ε > 0 such that GrF ∩ (B(u, ε) × B(v, λ + ε)) = ∅, whence,
for all u′ ∈ B(u, ε), F (u′) ∩B(v, λ + ε) = ∅, whence d(v, F (u′)) > λ.

A similar remark can be formulated concerning Theorems 2, 3 and Corollary
2 given below.

Theorem 2. Let X, Y be Banach spaces, F : X ⇒ Y be a multifunction
with closed graph and x ∈ Dom F . Suppose that there exist a > 0 and r > 0
such that:

a) B(x, r) ⊂ Dom F, F is usc on B(x, r);
b) for each x′ ∈ B(x, r) and y′ ∈ B(F (x), 2ar) ∩ F (x′),

a ≤ inf{‖x∗‖ | x∗ ∈ D∗F (x′, y′)(y∗), y∗ ∈ SY ∗};

c) F (x′) is proximinal for every x′ ∈ B(x, r).
Then, for every r′ ∈ (0, r), B(F (x), ar′) ⊂ F (B(x, r′)).

Proof. The conclusion follows from Theorem 1 applied in each point y ∈
F (x). �

The next result gives sufficient conditions for F to be open at a specific
linear rate.

Theorem 3. Let X, Y be Banach spaces, F : X ⇒ Y be a multifunction
with closed graph and (x, y) ∈ GrF . Suppose that there exist a > 0, r > 0, γ >
0 such that:

a) B(x, r) ⊂ Dom F, F is usc on B(x, r);
b) for each x′ ∈ B(x, r) and y′ ∈ B(y, 2ar + γ) ∩ F (x′),

a ≤ inf{‖x∗‖ | x∗ ∈ D∗F (x′, y′)(y∗), y∗ ∈ SY ∗};
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c) F (x′) is proximinal for every x′ ∈ B(x, r).
Then F is open at the linear rate a around the point (x, y).

Proof. First, we prove that B(F (x′′) ∩ B(y, γ), ar′′) ⊂ F (B(x′′, r′′)), for
all pairs (x′′, r′′) which satisfies B(x′′, r′′) ⊂ B(x, r′), where 0 < r′ < r/2.
Taking a pair (x′′, r′′) such that B(x′′, r′′) ⊂ B(x, r′), we have r′′ ≤ r′ < r.
Let v ∈ B(F (x′′) ∩ B(y, γ), ar′′); there exists y′′ ∈ F (x′′) ∩ B(y, γ) such that
‖y′′ − v‖ < ar′′. Suppose that v /∈ F (B(x′′, r′′)). We apply now Ekeland’s
variational principle for d(v, F (·)) on B(x′′, r′′), with x0 = x′′, ε = a′, where
‖y′′ − v‖ /r′′ < a′ < a. There exists ua ∈ B(x′′, r′′), which satisfies the rela-
tions:

(5) d(v, F (ua)) ≤ d(v, F (x′′))− a′
∥∥x′′ − ua

∥∥ ,

(6) d(v, F (ua)) < d(v, F (u)) + a′ ‖u− ua‖ ,∀u ∈ B(x′′, r′′)\{ua}.

If ‖ua − x′′‖ = r′′, from (5), we obtain that a′r′′ ≤ d(v, F (x)) ≤ ‖y − v‖ <
a′r′′, which is absurd, whence ua ∈ B(x, r′) and ua ∈ Dom F . From hypothesis
c), there exists an element va ∈ F (ua) such that d(v, F (ua)) = ‖v − va‖ > 0.
Consider the function h : X × Y → R, h(u, y′) := ‖v − y′‖+ a′ ‖u− ua‖. Let
(u, y′) ∈ (B(x′′, r′′)× Y ) ∩GrF ; we have

h(u, y′) ≥ d(v, F (u)) + a′ ‖u− ua‖ ≥ d(v, F (ua)) = h(ua, va),

whence the point (ua, va) is a local minimum on Gr F for h; but h is Lip-
schitz and we can apply Proposition 1 for an ε which satisfies the inequali-
ties 0 < ε < min(r − 2r′, 2ar − 2ar′′, ‖v − va‖ , (a − a′)/(1 + a)). There exist
(x1, y1) ∈ B((ua, va), ε), (x2, y2) ∈ B((ua, va), ε) ∩ GrF, (x∗1, y

∗
1) ∈ ∂h(x1, y1),

(x∗2, y
∗
2)∈N(Gr, (x2, y2)) such that max(‖x∗1 + x∗2‖ , ‖y∗1 + y∗2‖) < ε. We have

‖y1 − va‖ < ε < ‖v − va‖ , whence y1 6= v; moreover, (x∗1, y
∗
1) ∈ ∂h(x1, y1), so

(x∗1, y
∗
1) ∈ {0X∗} × SY ∗ + a′(UX∗ × {0Y ∗})

whence ‖y∗1‖ = 1 and ‖x∗1‖ ≤ a′. The relation ‖y∗1 + y∗2‖ < ε implies that
‖y∗2‖ > ‖y∗1‖ − ε > 0 (ε < 1), so y∗2 6= 0. Since (x∗2, y

∗
2) ∈ N(GrF, (x2, y2)), we

have

(x∗2/ ‖y∗2‖ , y∗2/ ‖y∗2‖) ∈ N(GrF, (x2, y2)),

which means that

x∗2/ ‖y∗2‖ ∈ D∗F (x2, y2)(−y∗2/ ‖y∗2‖).

Clearly, y∗2/ ‖y∗2‖ ∈ SY ∗. We can write ‖x∗2‖ < ε + ‖x∗1‖ < ε + a′ whence,
‖x∗2‖ / ‖y∗2‖ < (ε + a′)/(1− ε) < a (from the choice of ε); we obtain

‖x2 − x‖ ≤ ‖x2 − ua‖+
∥∥ua − x′′

∥∥ +
∥∥x′′ − x

∥∥ ≤ ε + r′′ + r′ < r
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and

‖y2 − y‖ ≤ ‖y2 − va‖+ ‖va − y‖
< ε + ‖va − v‖+

∥∥v − y′′
∥∥ +

∥∥y′′ − y
∥∥

< ε + d(v, F (ua)) + ar′′ + γ
(5)
< ε + d(v, F (x′′)) + ar′′ + γ

< ε + 2ar′′ + γ < 2ar + γ,

which is in contradiction with hypothesis b) on the coderivative. To complete
the proof, we take ρ = min(r′/2, γ/2) and τ ∈ (0, r′/2); let (u, v) ∈ (B(x, ρ)×
B(y, ρ)) ∩ GrF and t ∈ (0, τ ] be all fixed. We have B(u, t) ⊂ B(x, r′) and
from the above part of the proof we can write B(v, at) ⊂ F (B(u, t)), i.e. the
definition of openness at linear rate a with r = ρ. �

Let us to compare the above results with Theorems 1 and 1a from [6, Chap-
ter 3]. In our results the hypotheses are stronger, but we obtain a more
accurate conclusion by means of the exact description of the neighborhoods
involved: in this result it is indicated where the condition on the coderiva-
tive should take place and where the openness (regularity) holds. Taking into
account these considerations, the results we mention are independent.

3. AN APPLICATION TO AN OPTIMIZATION PROBLEM

In this section we consider that X is an arbitrary Banach space, Y, Z are
finite dimensional spaces, partially ordered by the convex closed non-empty
pointed cones Y+, respectively Z+, with the relations y1 ≤ y2 if and only if
y2 − y1 ∈ Y+ (y1, y2 ∈ Y ), respectively, z1 ≤ z2 if and only if z2 − z1 ∈ Z+

(z1, z2 ∈ Z). Moreover, we consider that Y+ has non-empty interior and we
write y1 < y2 for y2 − y1 ∈ intY+ (y1, y2 ∈ Y ).

Let F : X ⇒ Y and G : X ⇒ Z be multifunctions with closed graph. We
define F ×G : X ⇒ Y ×Z, (F ×G)(x) = F (x)×G(x), for all x ∈ X (consider
A×∅ = ∅). Let us consider the following optimization problem (also discussed,
e.g., in [4], [10]):

(P) min F (x); 0 ∈ G(x) + Z+.

Definition 5. A point (x0, y0) ∈ GrF is called weak local minimum point
for the problem (P ) if 0 ∈ G(x0) + Z+ and there exists a neighborhood U of
x0 such that, for all x ∈ U with 0 ∈ G(x) + Z+, (y0 − F (x)) ∩ intY+ = ∅
(consider ∅ ±A = ∅ for every set A).

Remark 3. a) The above definition is equivalent to the following condition:
there exists a neighborhood U of x0 such that for every point x in U with
0 ∈ G(x) + Z+, there is no y ∈ F (x) such that y < y0.

b) The condition 0 ∈ G(x) + Z+ is equivalent to G(x) ∩ (−Z+) 6= ∅.
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In order to present an optimality condition for the problem (P), we give a
condition for F to be open with a non specific linear rate (in contrast with
Theorem 3: in this result the linear rate is known). The main tools of the
proof will be Lemma 1, the following lemma due to A. Jourani ([8]) and the
methods already used in the previous section.

Lemma 2. Let F : X ⇒ Y be a multifunction with closed graph and (x, y) ∈
GrF. If F is not metrically regular around (x, y), then there are (sn)n∈N, sn ↓ 0
(which means sn → 0 and (sn) ⊂ (0,∞)), (xn)n∈N, (yn)n∈N, (zn)n∈N, xn → x,
yn → y, zn → y such that, for every n ≥ 0, (xn, yn) /∈ GrF, (xn, zn) ∈ GrF
and the function h : X×Y → R, h(u, v) = ‖v − yn‖+sn(‖u− xn‖+‖v − zn‖)
attains its minimum on GrF at the point (xn, zn).

Theorem 4. Let F : X ⇒ Y be a multifunction with closed graph and
(x, y) ∈ GrF. Suppose that there exist a > 0 and r > 0 such that for each
x′ ∈ B(x, r) and y′ ∈ B(y, r) ∩ F (x′)

(7) a ≤ inf{‖x∗‖ | x∗ ∈ D∗F (x′, y′)(y∗), y∗ ∈ SY ∗}.

Then F is open at a linear rate around (x, y).

Proof. Suppose, by contradiction, that F is not open at a linear rate around
(x, y). Therefore, by Lemma 1, F is not metrically regular around (x, y) and
we can apply Lemma 2: there are (sn)n∈N, sn ↓ 0, (xn)n∈N, (yn)n∈N, (zn)n∈N,
xn → x, yn → y, zn → y such that, for every n ≥ 0, (xn, yn) /∈ GrF,
(xn, zn) ∈ GrF and the function h : X × Y → R, h(u, v) = ‖v − yn‖ +
sn(‖u− xn‖ + ‖v − zn‖) attains its minimum on GrF at the point (xn, zn).
Taking into account the convergence of the sequences (sn), (xn), (yn) and
(zn) we can find n ∈ N such that ‖yn − zn‖ + ‖zn − y‖ < r, ‖yn − zn‖ +
‖xn − x‖ < r and sn < a/(a + 1). For this n, since yn 6= zn we can find an
ε ∈ (0,min(‖yn − zn‖ , a/(a + 1) − sn). For this ε we apply Proposition 1 to
the Lipschitz function h. There exist (x1n, z1n) ∈ B((xn, zn), ε), (x2n, z2n) ∈
B((xn, zn), ε)∩GrF, (x∗1n, z∗1n) ∈ ∂h(x1n, z1n), (x∗2n, z∗2n) ∈ N(GrF, (x2n, z2n))
such that

max(‖x∗1n + x∗2n‖ , ‖z∗1n + z∗2n‖) < ε.

Since ε < ‖yn − zn‖ and ‖z1n − zn‖ < ε, it follows that yn 6= z1n and this
implies that

(x∗1n, z∗1n) ∈ {0X∗} × SY ∗ + sn(UX∗ × {0Y ∗}+ {0X∗} × UY ∗);

whence ‖x∗1n‖ ≤ sn and ‖z∗1n‖ > 1 − sn. Taking into account the inequalities
‖z∗1n‖ − ‖z∗2n‖ ≤ ‖z∗1n + z∗2n‖ < ε, we obtain that ‖z∗2n‖ > 1 − sn − ε > 0
so, z∗2n 6= 0. Obviously, x∗2n/ ‖z∗2n‖ ∈ D∗F (x2n, z2n)(−z∗2n/ ‖z∗2n‖) and from
‖x∗2n‖ < ε + sn, we have

‖x∗2n‖ / ‖z∗2n‖ < (ε + sn)/(1− ε− sn) < a.
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Moreover,

‖x2n − x‖ ≤ ‖x2n − xn‖+ ‖xn − x‖
< ε + ‖xn − x‖ < ‖yn − zn‖+ ‖xn − x‖ < r

and
‖z2n − y‖ ≤ ‖z2n − yn‖+ ‖yn − y‖

< ε + ‖yn − y‖ < ‖yn − zn‖+ ‖yn − y‖ < r,

which is in contradiction with (7). �

We use the above result to obtain the following corollary.

Corollary 1. Let X be a Banach space, Y be a finite dimensional normed
vector space, F : X ⇒ Y be a multifunction with closed graph and (x, y) ∈
GrF . Suppose that:

a) 0 ∈ D∗F (x, y)(y∗) implies y∗ = 0;
b) ∂ satisfies the stability property (P8).
Then the image from F of any neighborhood of x is a neighborhood of y.

Proof. We show that the relation (7) holds. Suppose the contrary and take
a = 1/n, r = 1/n; we obtain that there are xn → x, yn → y, yn ∈ F (xn), and
x∗n → 0, y∗n ∈ SY ∗ such that x∗n ∈ D∗F (xn, yn)(y∗n). Since (y∗n) is a bounded
sequence, eventually taking a subsequence, we find an element y∗ ∈ Y such
that y∗n → y∗ ∈ SY ∗ . Since

(x∗n,−y∗n) ∈ N(GrF, (xn, yn)) = ∂IGr F (xn, yn),

from the stability property we obtain that

(0,−y∗) ∈ ∂IGr F (x, y) = N(GrF, (x, y))

and y∗ 6= 0, which is a contradiction. We can apply now Theorem 4 and the
conclusion follows. �

Remark 4. If F is convex, in Corollary 1 the condition (a) is equivalent to
the condition

(8) DF (x, y)(X) = Y.

Indeed, if (8) holds, take (0,−y∗) ∈ N(GrF, (x, y)). Since GrF is closed and
convex, 0∗(u) − y∗(v) ≤ 0 for all (u, v) ∈ T (GrF, (x, y)), i.e., −y∗(v) ≤ 0
for all v ∈ Y, whence y∗ = 0. The converse is also true: if not, we use a
separation theorem to find an y∗ ∈ Y ∗, y∗ 6= 0 such that y∗(v) ≤ 0 for all
v ∈ DF (x, y)(X), i.e., 0 ∈ D∗F (x, y)(−y∗), a contradiction. Taking into
account the surjectivity condition (8), one can see the links with Banach open
principle (see also [2]).

We can use the proof of Corollary 1 with few differences and Theorem 2
instead of Theorem 4 to obtain the next corollary.
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Corollary 2. Let X be a Banach space, Y be a finite dimensional space,
F : X ⇒ Y be a multifunction with closed graph and x ∈ Dom F such that
F (x) is a bounded set. Suppose that:

a) there exists V ∈ V(x) such that V ⊂ Dom F, F is usc on V ;
b) if y ∈ F (x), 0 ∈ D∗F (x, y)(y∗), then y∗ = 0;
c) ∂ satisfies the stability property (P8).
Then the image by F of any neighborhood of x contains a neighborhood of

F (x).

We give now a necessary optimality condition for the problem (P).

Theorem 5. Let (x0, y0) be a weak local minimum point for the problem
(P). Suppose that ∂ satisfies the stability property (P8).

Then, for every z0 ∈ G(x0)∩(−Z+), there are y∗ ∈ Y ∗ and z∗ ∈ Z∗, (y∗, z∗)
6= (0, 0) such that y∗(v)+z∗(w) ≥ 0 for every (v, w) ∈ D(F×G)(x0, y0, z0)(X).

Proof. Let z0 ∈ G(x0) ∩ (−Z+) and U be the neighborhood of x0 given by
definition of weak local minimum. Suppose that (F×G)(U) is a neighborhood
of (y0, z0). Therefore, there exists a neighborhood V of y0 such that

V × {z0} ⊂ (F ×G)(U).

Then, for every y ∈ V, there exists x ∈ U such that y ∈ F (x) and z0 ∈
G(x)∩(−Z+) and, from the Definition 5, we obtain that y−y0 ∈ Y \(− intY+),
so V − y0 ⊂ Y \(− intY+), which means that there is a neighborhood V0 of 0,
such that V0 ⊂ Y \(− intY+), whence V0∩ (− intY+) = ∅. Let q ∈ intY+; since
V0 is absorbing, we can find an ε ∈ (0, 1), with −εq ∈ V0; but 0 ∈ Y+ and the
convexity of Y+ ensures that εq ∈ intY+, whence

−εq ∈ V0 ∩ (− intY+).

This contradiction proves that (F × G)(U) is not a neighborhood of (y0, z0).
For the multifunction F × G the conclusion of Corollary 1 is false, so the
hypothesis a) of this corollary is not satisfied (the others are true). We obtain
that there exist y∗ ∈ Y ∗ and z∗ ∈ Z∗, (y∗, z∗) 6= (0, 0) such that

0 ∈ D∗(F ×G)(x0, y0, z0)(y∗, z∗)

which means
(0,−y∗,−z∗) ∈ N(Gr(F ×G), (x0, y0, z0)).

Consider now an element (v, w) ∈ D(F ×G)(x0, y0, z0)(X); there is an u ∈ X,
such that (u, v, w) ∈ T (Gr(F × G), (x0, y0, z0)), so by definitions, y∗(v) +
z∗(w) ≥ 0. �

Remark 5. It is interesting to observe that in [4] and [10] a similar con-
clusion is obtained (of course, with other coderivatives) using convexity con-
ditions. In our result we did not use any convexity conditions.
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1990.
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