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ON A CLASS OF ANALYTIC FUNCTIONS WITH POSITIVE
COEFFICIENTS DEFINED BY CONVOLUTION

MASLINA DARUS, N. MARIKKANNAN and V. RAVICHANDRAN

Abstract. Let g(z) = z +
P∞

n=2 bnzn, bn > 0 be a fixed analytic function
defined on ∆ = {z; |z| < 1}. In the present investigation, we introduce the class
of functions f = z +

P∞
n=2 anzn, an ≥ 0 satisfying

<
�

z(f ∗ g)′(z)

(f ∗ g)(z)

�
< α (z ∈ ∆; 1 < α < 3/2)

and obtain the coefficient inequality, coefficient estimate, distortion theorem,
and a closure theorem. Also we consider a radius problem. Our result contains
several new results as special cases.
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1. INTRODUCTION AND DEFINITIONS

Let T be the class of all analytic univalent functions

f(z) = z −
∞∑

n=2

anzn (an ≥ 0; z ∈ ∆ = {z; |z| < 1}).

A function f(z) ∈ T is called a function with negative coefficients. The sub-
class of T consisting of starlike functions of order α, denoted by TS∗(α), is
studied by Silverman [6]. Several other class of starlike functions with nega-
tive coefficients were studied; e.g., see [1]. For two analytic functions f(z) =
z +

∑∞
n=2 anzn and g(z) = z +

∑∞
n=2 bnzn, the convolution (or Hadamard

product) of f and g, denoted by f ∗ g or (f ∗ g)(z), is defined to be function
(f ∗ g)(z) = z +

∑∞
n=2 anbnzn. Let g(z) = z +

∑∞
n=2 bnzn be a fixed analytic

function in ∆ with bn > 0, (n ≥ 2). Using convolution, Ali et al. [2] (see also
[4]) have studied a more general class of multivalent functions which includes
the class TSg(α) defined by

TS∗g (α) =
{

f ∈ T : <
(

z(f ∗ g)′(z)
(f ∗ g)(z)

)
> α (0 ≤ α < 1; z ∈ ∆)

}
.

Ravichandran and Sivaprasad Kumar [5] have studied a similar class of mero-
morphic functions. Note that several well-known subclasses of functions are
special cases of the class TS∗g (α) for suitable choices of g(z). When g(z) =
z/(1− z), the class TS∗g (α) is the class TS∗(α) of starlike functions with neg-
ative coefficients of order α introduced and studied by Silverman [6]. When
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g(z) = z/(1− z)2, the class TS∗g (α) is the class of convex functions with nega-
tive coefficients of order α introduced and studied by Silverman [6]. The class
Tλ(α) studied by Ahuja [1] is a special case of TS∗g (α) when g(z) = z/(1−z)λ+1.
Let A denote the class of all analytic functions f(z) with f(0) = 0 = f ′(0)−1.
The class M(α) defined by

M(α) =
{

f ∈ A : <
(

zf ′(z)
f(z)

)
< α (1 < α < 3/2; z ∈ ∆)

}
was investigated by Uralegaddi et al. [7]. A subclass of M(α) was recently
investigated by Owa and Srivastava [3].

In this paper, we introduce a more general class PMg(α) of analytic func-
tion with positive coefficient motivated by M(α) and the earlier work of Ali
et al. [2]. For the newly defined class PMg(α), we obtain the coefficient in-
equality, coefficient estimate, distortion theorem, and a closure theorem. Also
we compute the radius of starlikeness of order β and the radius of convexity
of order β for the functions in the class PMg(α). Our result contains several
results as special cases.

Definition 1. Let P be the class of all analytic functions

(1) f(z) = z +
∞∑

n=2

anzn (an ≥ 0).

Let

(2) g(z) = z +
∞∑

n=2

bnzn (bn > 0)

be a fixed analytic function in ∆. Define the class PMg(α) by

PMg(α) =
{

f ∈ P : <
(

z(f ∗ g)′(z)
(f ∗ g)(z)

)
< α (1 < α < 3/2; z ∈ ∆).

}
When g(z) = z/(1−z), the class PMg(α) reduces to the subclass PM(α) =

P ∩ M(α). When g(z) = z/(1 − z)λ+1, the class PMg(α) reduces to the
following class Pλ(α)

Pλ(α) =
{

f ∈ P : <
(

z(Dλf(z))′

Dλf(z)

)
< α, (λ > −1, 1 < α < 3/2; z ∈ ∆)

}
,

where Dλ denotes the Ruscheweyh derivative of order λ. When g(z) = z +∑∞
n=2 nmzn, the class of function PMg(α) reduces to the class PMm(α) where

PMm(α) =
{

f ∈ P : <
(

z(Dmf(z))′

Dmf(z)

)
< α (1 < α < 3/2;m ≥ 0; z ∈ ∆)

}
,

where Dm denotes the Salagean derivative of order m. Also we have

PM(α) ≡ P0(α) ≡ PM0(α).
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2. COEFFICIENT INEQUALITIES

Throughout the paper, we assume that the function f(z) is given by the
equation (1) and g(z) is given by (2). We first prove a necessary and sufficient
condition for functions to be in the class PMg(α) in the following:

Theorem 1. A function f ∈ PMg(α) if and only if

(3)
∞∑

n=2

(n− α)anbn ≤ α− 1 (1 < α < 3/2).

Proof. If f ∈ PMg(α), then (3) follows from

<
(

z(f ∗ g)′(z)
(f ∗ g)(z)

)
< α

by letting z → 1− through real values. To prove the converse, assume that
(3) holds. Then by making use of (3), we obtain∣∣∣∣ z(f ∗ g)′(z)− (f ∗ g)(z)
z(f ∗ g)′(z)− (2α− 1)(f ∗ g)(z)

∣∣∣∣ ≤ ∑∞
n=2(n− 1)anbn

2(α− 1)−
∑∞

n=2[n− (2α− 1)]anbn
≤ 1

or, equivalently, f ∈ PMg(α). �

Corollary 1. A function f ∈ Pλ(α) if and only if
∞∑

n=2

(n− α)anBn(λ) ≤ α− 1 (1 < α < 3/2),

where

(4) Bn(λ) =
(λ + 1)(λ + 2) · · · (λ + n− 1)

(n− 1)!
.

Corollary 2. A function f ∈ PMm(α) if and only if
∞∑

n=2

(n− α)annm ≤ α− 1 (1 < α < 3/2).

Our next Theorem gives an estimate for the coefficient of functions in the
class PMg(α).

Theorem 2. If f ∈ PMg(α), then

an ≤
α− 1

(n− α)bn

with the equality only for functions of the form

fn(z) = z +
α− 1

(n− α)bn
zn.
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Proof. Let f ∈ PMg(α). By making use of the inequality (3) for f ∈
PMg(α), we have

(n− α)anbn ≤
∞∑

n=2

(n− α)anbn ≤ α− 1

or an ≤ α−1
(n−α)bn

. Clearly for

fn(z) = z +
α− 1

(n− α)bn
zn ∈ PMg(α),

we have an = α−1
(n−α)bn

. �

Corollary 3. If f ∈ Pλ(α), then

an ≤
α− 1

(n− α)Bn(λ)
with the equality only for functions of the form

fn(z) = z +
α− 1

(n− α)Bn(λ)
zn,

where Bn(λ) is given by (4).

Corollary 4. If f ∈ PMm(α), then

an ≤
α− 1

(n− α)nm

with the equality only for functions of the form

fn(z) = z +
α− 1

(n− α)nm
zn.

3. GROWTH THEOREM

We now prove the growth theorem for the functions in the class PMg(α).

Theorem 3. If f ∈ PMg(α), then

r − α− 1
(2− α)b2

r2 ≤ |f(z)| ≤ r +
α− 1

(2− α)b2
r2, |z| = r < 1,

provided bn ≥ b2. The result is sharp for

f(z) = z +
α− 1

(2− α)b2
z2.

Proof. By making use of the inequality (3) for f ∈ PMg(α) together with

(2− α)b2 ≤ (n− α)bn,

we obtain

b2(2− α)
∞∑

n=2

an ≤
∞∑

n=2

(n− α)anbn ≤ α− 1
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or

(5)
∞∑

n=2

an ≤
α− 1

(2− α)b2
.

By using (5) for the function f(z) = z +
∑∞

n=2 anzn ∈ PMg(α), we have

|f(z)| ≤ r +
∞∑

n=2

anrn (|z| = r)

≤ r + r2
∞∑

n=2

an

≤ r + r2 α− 1
(2− α)b2

and similarly we have

|f(z)| ≥ r− r2 α− 1
(2− α)b2

· �

Corollary 5. If f ∈ Pλ(α), then

r − α− 1
(2− α)(λ + 1)

r2 ≤ |f(z)| ≤ r +
α− 1

(2− α)(λ + 1)
r2 (|z| = r).

The result is sharp for

f(z) = z +
α− 1

(2− α)(λ + 1)
z2.

Corollary 6. If f ∈ PMm(α), then

r − α− 1
(2− α)2m

r2 ≤ |f(z)| ≤ r +
α− 1

(2− α)2m
r2 (|z| = r).

The result is sharp for

f(z) = z +
α− 1

(2− α)2m
z2.

4. CLOSURE THEOREMS

Let the functions Fk(z) be given by

(6) Fk(z) = z +
∞∑

n=2

fn,kz
n (k = 1, 2, ...,m).

We shall now prove the following closure theorems for the class PMg(α).

Theorem 4. Let the function Fk(z) defined by (6) be in the class PMg(α)
for every k = 1, 2, ...,m. Then the function f(z) defined by

f(z) = z +
∞∑

n=2

anzn (an ≥ 0)
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belongs to the class PMg(α), where an = 1
m

∑m
k=1 fn,k (n = 1, 2, . . .).

Proof. Since Fk(z) ∈ PMg(α), it follows from Theorem 1 that

(7)
∞∑

n=2

(n− α)gnfn,k ≤ α− 1

for every k = 1, 2, ..,m. Hence
∞∑

n=2

(n− α)gnan =
∞∑

n=2

(n− α)gn

(
1
m

m∑
k=1

fn,k

)

=
1
m

m∑
k=1

( ∞∑
n=2

(n− α)gnfn,k

)
≤ α− 1.

By Theorem 1, it follows that f(z) ∈ PMg(α). �

Theorem 5. The class PMg(α) is closed under convex linear combination.

Proof. Let the function Fk(z), k = 1, 2, given by (6) be in the class PMg(α).
Then it is enough to show that the function

H(z) = λF1(z) + (1− λ)F2(z) (0 ≤ λ ≤ 1)

is also in the class PMg(α). Since for 0 ≤ λ ≤ 1

H(z) = z +
∞∑

n=1

[λfn,1 + (1− λ)fn,2],

we observe that
∞∑

n=2

(n− α)gn[λfn,1 + (1− λ)fn,2]

= λ

∞∑
n=2

(n− α)gnfn,1 + (1− λ)
∞∑

n=2

(n− α)gnfn,2

≤ α− 1.

By Theorem 1, we have H(z) ∈ PMg(α). �

Theorem 6. Let F1(z) = z and Fn(z) = z + α−1
(n−α)gn

zn for n=2,3,. . . .
Then f(z) ∈ PMg(α) if and only if f(z) can be expressed in the form f(z) =∑∞

n=1 λnFn(z) where λn ≥ 0 and
∑∞

n=1 λn = 1.

Proof. Let

f(z) =
∞∑

n=1

λnFn(z)

= z +
∞∑

n=2

λn(α− 1)
(n− α)gn

zn.
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Then
∞∑

n=2

λn(α− 1)
(n− α)gn

(n− α)gn

(α− 1)
=

∞∑
n=2

λn = 1− λ1 ≤ 1.

By Theorem 1, we have f(z) ∈ PMg(α).
Conversely, let f(z) ∈ PMg(α). From Theorem 2, we have

fn ≤
α− 1

(n− α)gn
for n = 2, 3, . . . .

Therefore we may take

λn =
(n− α)gnfn

α− 1
for n = 2, 3, . . .

and

λ1 = 1−
∞∑

n=2

λn.

Then f(z) =
∑∞

n=1 λnFn(z). �

5. RADIUS PROBLEM

In this section, we find the radius of starlikeness of order β and the radius
of convexity of order β for functions in the class PMg(α).

Theorem 7. If f ∈ PMg(α) (1 < α ≤ 3/2), then f is starlike of order β
(0 ≤ β < 1) in |z| < r(β, α, g) where

r(β, α, g) = inf
n≥2

[
(1− β)(n− α)
(α− 1)(n− β)

bn

]1/(n−1)

.

Proof. It is enough to show that

(8)
∞∑

n=2

n− β

1− β
an|z|n−1 < 1

which will imply that ∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ < 1− β.

The inequality (8) follows if
n− β

1− β
an|z|n−1 ≤ n− α

α− 1
anbn

and this proves the result. �

We have the following:

Corollary 7. If f ∈ PMg(α) (1 < α ≤ 3/2), then f is convex of order β
(0 ≤ β < 1) in |z| < r(β, α, g) where

r(β, α, g) = inf
n≥2

[
(1− β)(n− α)
n(α− 1)(n− β)

bn

]1/(n−1)

.
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