THE SINE FUNCTIONAL EQUATION ON 2-DIVISIBLE GROUPS

ILIE COROVEI

Abstract

We solve the functional equation $f: G \rightarrow K, f(x y) f\left(x y^{-1}\right)=$ $f^{2}(x)-f^{2}(y)$ in the case of a group G divisible by 2 and of a field K with char $K \neq 2$.

MSC 2000. 39B50.
Key words. Functional equation, 2-divisible group.
Consider the sine functional equation

$$
\begin{equation*}
f: G \rightarrow K, \quad f(x y) f\left(x y^{-1}\right)=f^{2}(x)-f^{2}(y) \tag{1}
\end{equation*}
$$

where G is a group and K is a field of characteristic different from 2.
Several papers deal with the sine equation when G is an abelian group. See, e.g., the monographs [1] and [2] by Aczél and by Aczél and Dhombres for references and results.

Theorem 1. [2, Theorem 14] Let K be a quadratically closed field with char $K \neq 2$. Let G be an abelian group divisible by 2. The general solutions $f: G \rightarrow K$ of (1) are given by

$$
\begin{equation*}
f(x)=a \frac{g(x)-g\left(x^{-1}\right)}{2} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x)=\beta(x), \tag{3}
\end{equation*}
$$

where g is a homomorphism from G into the multiplicative group of K, β is a homomorphism from G into the additive group of K and a is an arbitrary element of K.

In the particular cases [1, Theorem p. 137] or [2, Corollary 15], it is known that the general solutions $f: \mathbb{R} \rightarrow \mathbb{C}$ or $f: \mathbb{R} \rightarrow \mathbb{R}$ of (1) in the class of functions measurable on a proper interval are given by

$$
f(x)=a \sinh c x, \quad f(x)=c x
$$

and, respectively,

$$
f(x)=a \sinh c x, \quad f(x)=a \sin c x, \quad f(x)=c x,
$$

where a and c are complex or real constants, respectively.
There are only few results in the literature on the sine functional equation in non-abelian groups. The author has solved in [3] and [4] the equation (1) in a special non-abelian group.

Theorem 2. [3, Theorem 3] Let G be a group whose elements are of odd order and K be a quadratically field with char $K \neq 0$. Then the general solutions $f: G \rightarrow K$ of (1) are given by (2) and (3).

If G is a cyclic group and K is the field of complex numbers, Pl. Kannappan in [5] has proved that for a solution f of the form (2) the homomorphism g is unique.

In this paper we solve the equation (1) in the case when G is a group divisible by 2 and K is supposed to be a field with char $K \neq 2$, hence this result is a generalization of the results from [2] and [3].

We notice that $f(x) \equiv 0$ is a trivial solution of (1). In the sequel we shall consider only the solutions not identically zero.

If $f: G \rightarrow K$ is a solution of the equation (1) then f has the following properties:

$$
\begin{equation*}
f(e)=0, \tag{4}
\end{equation*}
$$

where e is the neutral element of G, and

$$
\begin{equation*}
f(x)=-f\left(x^{-1}\right), \quad \forall x \in G, \tag{5}
\end{equation*}
$$

that is, f is an odd function.
Indeed, taking $x=y=e$ in (1) we obtain (4) and for $x=e$ in (1) we get

$$
f(y)\left[f(y)+f\left(y^{-1}\right)\right]=0 .
$$

If $f(y) \neq 0$, then (5) follows from this equality. Setting y^{-1} for y in (1) and taking $x=e$, by $f(y)=0$ and by (4) we obtain $f\left(y^{-1}\right)=0$. Hence (5) is true for all $x \in G$.

Lemma 1. If G is a group, K is a field and $f: G \rightarrow K$ is a solution of the equation (1), then $A_{f}(G)=\{x \mid x \in G, f(x)=0\}$ is a normal subgroup of G (see [3, Lemma 1]).
Proof. We will show that

$$
\begin{equation*}
\forall x, y \in A_{f}(G) \Rightarrow x y^{-1} \in A_{f}(G) \tag{6}
\end{equation*}
$$

i.e. $A_{f}(G)$ is a subgroup of G.

From (5) we have that $x \in A_{f} \Rightarrow x^{-1} \in A_{f}(G)$. Putting $y=x^{2}, x \in A_{f}(G)$ in (1) we get $f\left(x^{3}\right) f\left(x^{-1}\right)=f^{2}(x)-f^{2}\left(x^{2}\right)=0$, hence $x^{2} \in A_{f}$.

From (1) we get $f(y x) f\left(y x^{-1}\right)=f^{2}(y)-f^{2}(x)=0$, for $x, y \in A_{f}(G)$, therefore $y x^{-1} \in A_{f}$ implies $\left(y x^{-1}\right)=x y^{-1} \in A_{f}$ and (6) is true, for $y x \in$ $A_{f}(G)$. Using (1) we obtain

$$
\begin{gathered}
f^{2}\left(x^{-1} y^{-1}\right)-f^{2}\left(x y^{-1}\right)=f\left(x^{-1} y^{-1} x y^{-1}\right) f\left(x^{-1} y^{-1} y x^{-1}\right)= \\
=f\left(x^{-1} y^{-1} x y^{-1}\right) f\left(x^{-2}\right) .
\end{gathered}
$$

But $x^{-1} y^{-1}=(y x)^{-1} \in A_{f}(G)$ and $x^{-1} \in A_{f}(G)$, hence $x y^{-1} \in A_{f}(G)$ and (6) is true in this case, too.

Now we show that $A_{f}(G)$ is a normal subgroup. To this end, we prove first that

$$
\begin{equation*}
x y \in A_{f}(G) \Rightarrow y x \in A_{f}(G) . \tag{7}
\end{equation*}
$$

Since $f(x y)=0$, from (1) we have

$$
\begin{equation*}
f^{2}(x)=f^{2}(y) \tag{8}
\end{equation*}
$$

Using (1), (5) and (8) we get $f\left(x^{-1} y^{-1}\right) f\left(x^{-1} y\right)=f^{2}\left(x^{-1}\right)-f^{2}(y)=0$ and $f(y x) f\left(y x^{-1}\right)=f^{2}(y)-f^{2}(x)=0$, hence we have $f(y x) f\left(x^{-1} y\right)=0$ and $f(y x) f\left(y x^{-1}\right)=0$.

If $y x \in A_{f}(G),(7)$ is true. It remains to prove (7) if $x^{-1} y \in A_{f}(G)$ and $y x^{-1} \in A_{f}(G)$.

From (1) we have
(9) $\quad f^{2}\left(y^{-1}\right)-f^{2}\left(y x y^{-1}\right)=f\left(x y^{-1}\right) f\left(x^{-1} y^{-1}\right)=f\left(y x^{-1}\right) f(y x)=0$.

Using (1), (8) and (9) we obtain

$$
\begin{equation*}
f^{2}\left(y x y^{-1}\right)-f^{2}(x)=f\left(y x y^{-1} x\right) f\left(y x y^{-1} x^{-1}\right)=0 \tag{10}
\end{equation*}
$$

and

$$
f^{2}(x y)-f^{2}(y x)=f\left(x y^{2} x\right) f\left(x y x^{-1} y^{-1}\right) .
$$

Since $x y \in A_{f}(G)$ we deduce

$$
\begin{equation*}
-f^{2}(y x)=f\left(x y^{2} x\right) f\left(x y x^{-1} y^{-1}\right) \tag{11}
\end{equation*}
$$

Because $y^{-1} x=\left(x^{-1} y\right)^{-1} \in A_{f}(G)$ we have

$$
\begin{equation*}
f^{2}(y x)-f^{2}\left(y^{-1} x\right)=f^{2}(y x)=f\left(y x y^{-1} x\right) f\left(y^{2}\right) \tag{12}
\end{equation*}
$$

From (11) and (12) we obtain

$$
f^{4}(y x)=f\left(y x y^{-1} x^{-1}\right) f\left(y x y^{-1} x\right) f\left(y^{2}\right) f\left(x y^{2} x\right)
$$

and, in view of (10), this yields $f(y x)=0$, i.e. $y x \in A_{f}(G)$ and (7) is true for all $x, y \in G$.

Let $u \in A_{f}(G)$ and $x \in G$. By (7) we can write $0=f(u)=f\left(x^{-1} x u\right)=$ $f\left(x u x^{-1}\right)$, yielding $x u x^{-1} \in A_{f}(G)$.

Lemma 2. Let G be a 2-divisible group and K be a field. If $f: G \rightarrow K$ is a solution of the sine equation, then

$$
\begin{equation*}
f(u)=0, \quad \forall u \in G^{\prime} \tag{13}
\end{equation*}
$$

Proof. Interchanging x with y in (1) we obtain

$$
f(y x) f\left(y x^{-1}\right)=f^{2}(y)-f^{2}(x) .
$$

But $\left(y x^{-1}\right)^{-1}=x y^{-1}$ and using (5) this equality becomes

$$
f(y x) f\left(x y^{-1}\right)=f^{2}(x)-f^{2}(y) .
$$

From this equality and (1) it follows that

$$
\begin{equation*}
[f(x y)-f(y x)] f\left(x y^{-1}\right)=0, \quad \forall x, y \in G \tag{14}
\end{equation*}
$$

Hence, $f(x y)=f(y x)$ or $f\left(x y^{-1}\right)=0$, for every $x, y \in G$.
If $f(x y)=f(y x)$, replacing x by $x y$ and y by $y x$ in (1), we get

$$
f\left(x y x^{-1} y^{-1}\right) f\left(x y^{2} x\right)=0 .
$$

Therefore for any $x, y \in G$ we have three possibilities:
i) $x y x^{-1} y^{-1} \in A_{f}(G)$;
ii) $x y^{2} x \in A_{f}(G)$;
iii) $x y^{-1} \in A_{f}(G)$.
G being a 2-divisible group there exist $u, v \in G$ such that $u^{2}=x$ and $v^{2}=y$.
Now for $u, v \in G$ we have three possibilities:
i) $u v u^{-1} v^{-1} \in A_{f}(G)$. Then $\left(u v u^{-1} v^{-1}\right)\left(v u^{-1} v^{-1} u\right)=u v u^{-2} v^{-1} u=$ $u^{2} v u^{-2} v^{-1} \in A_{f}(G)$, which implies $\left(v u^{-2} v^{-1} u^{2}\right)\left(u^{-2} v^{-1} u^{2} v\right)=v u^{-2} v^{-2} u^{2} v=$ $v^{2} u^{-2} v^{-2} u^{2} \in A_{f}$ and therefore $y x^{-1} y^{-1} x \in A_{f}(G)$.
ii) $u v^{2} u \in A_{f}(G)$. Then $u^{2} v^{2} \in A_{f}(G)$, so that $x y \in A_{f}(G)$. Hence we have $x y(y x)^{-1} \in A_{f}(G)$ and therefore $x y x^{-1} y^{-1} \in A_{f}(G)$.
iii) $u v^{-1} \in A_{f}(G)$. Then $u v^{-1} u^{-1} v \in A_{f}(G)$, hence this case reduces to case i).

Theorem 3. Let G be a group divisible by 2 such that G^{\prime} is a 2 -divisible subgroup of G and K be a quadratically closed field with char $K \neq 2$. If $f: G \rightarrow K$ is a solution of the sine equation (1), then f has the form (2) or (3).

Proof. From Lemmas 1 and 2 we have

$$
f^{2}(x u)-f^{2}\left(x u^{-1}\right)=f\left(x u x u^{-1}\right) f\left(x u^{2} x^{-1}\right)=0
$$

Hence $f^{2}(x u)=f^{2}\left(x u^{-1}\right), \forall x \in G, \forall u \in G^{\prime}$. Setting $x u$ for x we have $f^{2}\left(x u^{2}\right)=f^{2}(x)$. Since G^{\prime} is 2-divisible we have $f^{2}(x u)=f^{2}(x)$ for all $x \in G$ and $u \in G^{\prime}$.

REFERENCES

[1] Aczél, J., Lectures on Functional Equations and Their Applications, Academic Press, New York and London, 1966.
[2] Aczél, J. and Dhombres, J., Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
[3] Corovei, I., The sine functional equation for groups, Mathematica (Cluj), 25(48) (1983), 11-19.
[4] Corover, I., Functional equation $f(x y)+g\left(x y^{-1}\right)=h(x) k(y)$ on nilpotent groups, Automat. Comput. Appl. Math., 11 (2002), 55-68.
[5] Kannappan, Pl., On cosine and sine functional equations, Ann. Polon. Math., 20 (1968), 245-249.

Technical University Department of Mathematics
Str. C. Daicoviciu nr. 15 400020 Cluj-Napoca, Romania

