THE SINE FUNCTIONAL EQUATION ON 2-DIVISIBLE GROUPS

ILIE COROVEI

Abstract. We solve the functional equation $f : G \to K$, $f(xy)f(xy^{-1}) = f^2(x) - f^2(y)$ in the case of a group G divisible by 2 and of a field K with char $K \neq 2$. **MSC 2000.** 39B50.

Key words. Functional equation, 2-divisible group.

Consider the sine functional equation

(1)
$$f: G \to K, \quad f(xy)f(xy^{-1}) = f^2(x) - f^2(y)$$

where G is a group and K is a field of characteristic different from 2.

Several papers deal with the sine equation when G is an abelian group. See, e.g., the monographs [1] and [2] by Aczél and by Aczél and Dhombres for references and results.

THEOREM 1. [2, Theorem 14] Let K be a quadratically closed field with char $K \neq 2$. Let G be an abelian group divisible by 2. The general solutions $f: G \to K$ of (1) are given by

(2)
$$f(x) = a \frac{g(x) - g(x^{-1})}{2}$$

and

(3)
$$f(x) = \beta(x),$$

where g is a homomorphism from G into the multiplicative group of K, β is a homomorphism from G into the additive group of K and a is an arbitrary element of K.

In the particular cases [1, Theorem p. 137] or [2, Corollary 15], it is known that the general solutions $f : \mathbb{R} \to \mathbb{C}$ or $f : \mathbb{R} \to \mathbb{R}$ of (1) in the class of functions measurable on a proper interval are given by

$$f(x) = a \sinh cx, \quad f(x) = cx$$

and, respectively,

$$f(x) = a \sinh cx$$
, $f(x) = a \sin cx$, $f(x) = cx$,

where a and c are complex or real constants, respectively.

There are only few results in the literature on the sine functional equation in non-abelian groups. The author has solved in [3] and [4] the equation (1) in a special non-abelian group.

I.	Corove	2i
. .	001010	1

THEOREM 2. [3, Theorem 3] Let G be a group whose elements are of odd order and K be a quadratically field with char $K \neq 0$. Then the general solutions $f: G \to K$ of (1) are given by (2) and (3).

If G is a cyclic group and K is the field of complex numbers, Pl. Kannappan in [5] has proved that for a solution f of the form (2) the homomorphism g is unique.

In this paper we solve the equation (1) in the case when G is a group divisible by 2 and K is supposed to be a field with char $K \neq 2$, hence this result is a generalization of the results from [2] and [3].

We notice that $f(x) \equiv 0$ is a trivial solution of (1). In the sequel we shall consider only the solutions not identically zero.

If $f : G \to K$ is a solution of the equation (1) then f has the following properties:

$$(4) f(e) = 0$$

where e is the neutral element of G, and

(5)
$$f(x) = -f(x^{-1}), \quad \forall \ x \in G,$$

that is, f is an odd function.

Indeed, taking x = y = e in (1) we obtain (4) and for x = e in (1) we get

$$f(y)[f(y) + f(y^{-1})] = 0.$$

If $f(y) \neq 0$, then (5) follows from this equality. Setting y^{-1} for y in (1) and taking x = e, by f(y) = 0 and by (4) we obtain $f(y^{-1}) = 0$. Hence (5) is true for all $x \in G$.

LEMMA 1. If G is a group, K is a field and $f: G \to K$ is a solution of the equation (1), then $A_f(G) = \{x | x \in G, f(x) = 0\}$ is a normal subgroup of G (see [3, Lemma 1]).

Proof. We will show that

(6)
$$\forall x, y \in A_f(G) \Rightarrow xy^{-1} \in A_f(G),$$

i.e. $A_f(G)$ is a subgroup of G.

From (5) we have that $x \in A_f \Rightarrow x^{-1} \in A_f(G)$. Putting $y = x^2, x \in A_f(G)$ in (1) we get $f(x^3)f(x^{-1}) = f^2(x) - f^2(x^2) = 0$, hence $x^2 \in A_f$.

From (1) we get $f(yx)f(yx^{-1}) = f^2(y) - f^2(x) = 0$, for $x, y \in A_f(G)$, therefore $yx^{-1} \in A_f$ implies $(yx^{-1}) = xy^{-1} \in A_f$ and (6) is true, for $yx \in A_f(G)$. Using (1) we obtain

$$\begin{split} f^2(x^{-1}y^{-1}) - f^2(xy^{-1}) &= f(x^{-1}y^{-1}xy^{-1})f(x^{-1}y^{-1}yx^{-1}) = \\ &= f(x^{-1}y^{-1}xy^{-1})f(x^{-2}). \end{split}$$

But $x^{-1}y^{-1} = (yx)^{-1} \in A_f(G)$ and $x^{-1} \in A_f(G)$, hence $xy^{-1} \in A_f(G)$ and (6) is true in this case, too.

Now we show that $A_f(G)$ is a normal subgroup. To this end, we prove first that

(7)
$$xy \in A_f(G) \Rightarrow yx \in A_f(G).$$

Since f(xy) = 0, from (1) we have

(8)
$$f^2(x) = f^2(y).$$

Using (1), (5) and (8) we get $f(x^{-1}y^{-1})f(x^{-1}y) = f^2(x^{-1}) - f^2(y) = 0$ and $f(yx)f(yx^{-1}) = f^2(y) - f^2(x) = 0$, hence we have $f(yx)f(x^{-1}y) = 0$ and $f(yx)f(yx^{-1}) = 0$.

If $yx \in A_f(G)$, (7) is true. It remains to prove (7) if $x^{-1}y \in A_f(G)$ and $yx^{-1} \in A_f(G)$.

From (1) we have

(9)
$$f^2(y^{-1}) - f^2(yxy^{-1}) = f(xy^{-1})f(x^{-1}y^{-1}) = f(yx^{-1})f(yx) = 0.$$

Using (1), (8) and (9) we obtain

(10)
$$f^{2}(yxy^{-1}) - f^{2}(x) = f(yxy^{-1}x)f(yxy^{-1}x^{-1}) = 0$$

and

$$f^{2}(xy) - f^{2}(yx) = f(xy^{2}x)f(xyx^{-1}y^{-1}).$$

(G) we deduce

Since $xy \in A_f(G)$ we deduce

(11)
$$-f^{2}(yx) = f(xy^{2}x)f(xyx^{-1}y^{-1}).$$

Because $y^{-1}x = (x^{-1}y)^{-1} \in A_f(G)$ we have

(12)
$$f^2(yx) - f^2(y^{-1}x) = f^2(yx) = f(yxy^{-1}x)f(y^2).$$

From (11) and (12) we obtain

$$f^{4}(yx) = f(yxy^{-1}x^{-1})f(yxy^{-1}x)f(y^{2})f(xy^{2}x)$$

and, in view of (10), this yields f(yx) = 0, i.e. $yx \in A_f(G)$ and (7) is true for all $x, y \in G$.

Let $u \in A_f(G)$ and $x \in G$. By (7) we can write $0 = f(u) = f(x^{-1}xu) = f(xux^{-1})$, yielding $xux^{-1} \in A_f(G)$.

LEMMA 2. Let G be a 2-divisible group and K be a field. If $f: G \to K$ is a solution of the sine equation, then

(13)
$$f(u) = 0, \quad \forall u \in G'.$$

Proof. Interchanging x with y in (1) we obtain

$$f(yx)f(yx^{-1}) = f^2(y) - f^2(x).$$

But $(yx^{-1})^{-1} = xy^{-1}$ and using (5) this equality becomes

$$f(yx)f(xy^{-1}) = f^2(x) - f^2(y)$$

From this equality and (1) it follows that

(14)
$$[f(xy) - f(yx)]f(xy^{-1}) = 0, \quad \forall \ x, y \in G.$$

Hence, f(xy) = f(yx) or $f(xy^{-1}) = 0$, for every $x, y \in G$. If f(xy) = f(yx), replacing x by xy and y by yx in (1), we get

$$f(xyx^{-1}y^{-1})f(xy^2x) = 0$$

Therefore for any $x, y \in G$ we have three possibilities:

i) $xyx^{-1}y^{-1} \in A_f(G);$

ii) $xy^2x \in A_f(G);$

iii) $xy^{-1} \in A_f(G)$.

G being a 2-divisible group there exist $u, v \in G$ such that $u^2 = x$ and $v^2 = y$. Now for $u, v \in G$ we have three possibilities:

i) $uvu^{-1}v^{-1} \in A_f(G)$. Then $(uvu^{-1}v^{-1})(vu^{-1}v^{-1}u) = uvu^{-2}v^{-1}u = u^2vu^{-2}v^{-1} \in A_f(G)$, which implies $(vu^{-2}v^{-1}u^2)(u^{-2}v^{-1}u^2v) = vu^{-2}v^{-2}u^2v = v^2u^{-2}v^{-2}u^2 \in A_f$ and therefore $yx^{-1}y^{-1}x \in A_f(G)$.

ii) $uv^2u \in A_f(G)$. Then $u^2v^2 \in A_f(G)$, so that $xy \in A_f(G)$. Hence we have $xy(yx)^{-1} \in A_f(G)$ and therefore $xyx^{-1}y^{-1} \in A_f(G)$.

iii) $uv^{-1} \in A_f(G)$. Then $uv^{-1}u^{-1}v \in A_f(G)$, hence this case reduces to case i).

THEOREM 3. Let G be a group divisible by 2 such that G' is a 2-divisible subgroup of G and K be a quadratically closed field with char $K \neq 2$. If $f: G \to K$ is a solution of the sine equation (1), then f has the form (2) or (3).

Proof. From Lemmas 1 and 2 we have

$$f^{2}(xu) - f^{2}(xu^{-1}) = f(xuxu^{-1})f(xu^{2}x^{-1}) = 0$$

Hence $f^2(xu) = f^2(xu^{-1}), \forall x \in G, \forall u \in G'$. Setting xu for x we have $f^2(xu^2) = f^2(x)$. Since G' is 2-divisible we have $f^2(xu) = f^2(x)$ for all $x \in G$ and $u \in G'$.

REFERENCES

- ACZÉL, J., Lectures on Functional Equations and Their Applications, Academic Press, New York and London, 1966.
- [2] ACZÉL, J. and DHOMBRES, J., Functional Equations in Several Variables, Cambridge University Press, Cambridge, 1989.
- [3] COROVEI, I., The sine functional equation for groups, Mathematica (Cluj), 25(48) (1983), 11–19.
- [4] COROVEI, I., Functional equation $f(xy) + g(xy^{-1}) = h(x)k(y)$ on nilpotent groups, Automat. Comput. Appl. Math., **11** (2002), 55–68.
- [5] KANNAPPAN, PL., On cosine and sine functional equations, Ann. Polon. Math., 20 (1968), 245–249.

Received April 22, 2004

Technical University Department of Mathematics Str. C. Daicoviciu nr. 15 400020 Cluj-Napoca, Romania