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SOME REMARKS ON DIFFERENTIAL INCLUSIONS
WITH STATE CONSTRAINTS
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Abstract. We prove the existence of solutions to lipschitzean integrodifferential
inclusions viable in a closed set contained in Rn. Using this result we study
the infinitesimal properties of functions which are nonincreasing along all the
trajectories of a differential inclusion.
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1. INTRODUCTION

In the viability theory for differential inclusions there are several papers de-
voted to the case when the values of the multifunction that define the differen-
tial inclusion are not convex. The main assumption is that the multifunction
is (locally) lipschitzean in the state variable ([1], [3], [8], [9], etc.). In [3] it is
proved the existence of solutions to the differential inclusion x′ ∈ F (t, x) viable
in a compact subset of finite dimensional space and continuously depending
on an initial point from this subset. This result was extended in [8] to the
case of a family of differential inclusions and a family of viability constraints
in separable metric spaces. Using the Filippov technique ([6]), the result in
[8] contains also a Filippov-Gronwall type inequality.

In this paper we adapt the idea of Goncharov to the more general problem
of integrodifferential inclusions. In the particular case of differential inclu-
sions our result improve the (Filippov type) estimations in [8]. In the stability
theory of nonlinear systems the second Lyapunov method consists in find a
function W with several properties. An essential property is the following
monotonicity condition: the map W ◦ x(.) is nonincreasing for any admissible
trajectory x. In a recent paper ([2]) the situation when the system is described
by an autonomous differential inclusion is considered. More exactly, it is given
a characterization of the monotonicity condition presented above in terms of
contingent derivatives, when W is lower semicontinuous and the multifunc-
tion that define the differential inclusion is locally lipschitzean and compact
valued. Using our viability result, we extend the result of Bacciotti, Ceragioli
and Mazzi ([2]) to the case of differential inclusions whose trajectories are con-
strained to a given closed set. The paper is organized as follows: in Section
2 we present the notations and definitions to be used in the sequel. Section 3
is devoted to the existence of viable solutions and in Section 4 we provide a
characterization of the monotonicity of the Lyapunov function.
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2. PRELIMINARIES

In this paper we shall be concerned with the absolutely continuous solutions
x(.) : [0, T ] → Rn of the integrodifferential inclusion

(2.1) x′ ∈ F (t, x, V (x)(t)), x(0) = x0 ∈ S,

satisfying state constraints of the form

(2.2) x(t) ∈ S, ∀t ∈ [0, T ],

where F (., ., .) : [0, T ] × S × Rn → P(Rn) (with P(Rn) we denote the fam-
ily of all subsets of Rn) is a given set-valued map, V (.) : C([0, T ], Rn) →
C([0, T ], Rn) is a nonlinear (integral) operator (with C([0, T ], Rn) we denote
the space of all continuous functions x : [0, T ] → Rn endowed with the norm
||x(.)||C = supt∈[0,T ] ||x(t)||) and S ⊂ Rn is a given set. Denote by I the in-
terval [0, T ], T > 0 and by AC(I, Rn) the space of all absolutely continuous
functions endowed with the norm ||x(.)||AC = ||x(0)|| +

∫ T
0 ||x′(t)||dt and by

L1(I,Rn) the space of Lebesgue integrable mappings endowed with the norm
||u(.)||1 =

∫ T
0 ||u(t)||dt. If A ⊂ Rn then by co(A) (resp. co(A)) we denote

the convex (resp. closed convex) hull of A. We recall that on P(Rn) the
generalized Hausdorff-Pompeiu metric is defined by

dH(A,B) = max{d∗(A,B),d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},

where d(a,B) = infb∈B d(a, b).
The contingent cone to the set Y ⊂ Rn at the point y ∈ Y (the closure of

Y ) is defined by

KyY = {v ∈ Rn;∃sm → 0+, ∃vm → v : x + smvm ∈ Y }.

The Clarke’s tangent cone to the set Y at the point y ∈ Y is defined by

CyY = {v ∈ Rn;∀(xm, sm) → (y, 0+), xm ∈ Y, ∃ym ∈ Y :
ym − xm

sm
→ v}.

Finally, we recall that given a function f : Rn → R, its lower right contin-
gent directional derivative at a point x ∈ Rn and in the direction w ∈ Rn is
defined by

D+
Kf(x;w) = lim inf

h→0+,v→w

f(x + hv)− f(x)
h

.

In what follows we assume the following hypothesis.

Hypothesis 2.1. i) S ⊂ Rn is closed.
ii) There exists M ≥ 0 such that

||V (x1)(t)− V (x2)(t)|| ≤ M ||x1(t)− x2(t)||, ∀t ∈ I,∀x1(.), x2(.) ∈ C(I, Rn).

iii) F (., ., .) : I × S ×Rn → P(Rn) has nonempty closed values and for any
x ∈ S, y ∈ Rn F (., x, y) is measurable
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iv) There exists L(.) ∈ L1(I, R) such that, for all t ∈ I, and for all x1, x2 ∈
S, y1, y2 ∈ Rn

dH(F (t, x1, y1), F (t, x2, y2)) ≤ L(t)(||x1 − x2||+ ||y1 − y2||).
v) F (t, x, y) ⊂ KxS ∀x ∈ S, y ∈ Rn, a.e. t ∈ I.
vi) There exists y(.) ∈ AC(I, Rn) and p(.) ∈ L1(I, R) such that

d(y′(t), F (t, g(t), V (g)(t))) ≤ p(t) a.e. (I),

where the measurable function g(.) : I → S is such that

||y(t)− g(t)|| = d(y(t), S) a.e. (I).

We shall use the notations: L1(t) = (1 + M)L(t), m(t) =
∫ t
0 L1(s)ds, t ∈ I.

3. VIABLE SOLUTIONS OF LIPSCHITZEAN DIFFERENTIAL INCLUSIONS

The main result of this section is the following.

Theorem 3.1. We assume that Hypothesis 2.1 is satisfied.
Then, for any x0 ∈ S there exists x(.) ∈ AC(I,Rn) a solution to the problem

(2.1)–(2.2) such that for any t ∈ I one has

(3.1)
∫ t

0
||x′(s)− y′(s)||ds

≤ 2
3

∫ t

0
[e3(m(t)−m(s)) − 1]p(s)ds +

e3m(t) − 1
3

[d(y(0), S) + ||y(0)− x0||].

Proof. Define x0(t) = x(t), g0(t) = g(t) and ρ(t) = d(y(0), S) +
∫ t
0 p(s)ds,

t ∈ I. Denote by ΠS(x) = {y ∈ S; ||y − x|| = d(x, S)} the projection of the
point x to the set S.

Let us note that according to Theorem 4.3.8 in [5] (see also Proposition 2.2
in [8]) if F (t, ., .) is locally lipschitzean, then the condition

F (t, x, y) ⊂ KxS, ∀x ∈ S, y ∈ Rn, a.e.t ∈ I

is equivalent to

F (t, x, y) ⊂ CxS, ∀x ∈ S, y ∈ Rn, a.e.t ∈ I.

Then, the mapping h0(t) = d(x0(t), S), t ∈ I is absolutely continuous and
its derivative satisfies, by Lemma 1 in [9] and Hypothesis 2.1 v)

h′0(t) = lim
δ→0+

1
δ
[d(x0(t) + δx′0(t), S)− d(x0(t), S)]

≤ inf
g∈ΠS(x0(t))

d(x′0(t), CgS) ≤ d(x′0(t), F (t, g0(t), V (g0(t))) ≤ p(t).

Therefore,

(3.2) d(x0(t), S) = h0(t) ≤ d(x0(0), S)+
∫ t

0
d
(
x′0(s), F (s, g0(s), V (g0)(s))

)
ds
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= d(y(0), S) +
∫ t

0
p(s)ds = ρ0(t).

Applying a well known consequence of the Kuratowski and Ryll-Nardzewski
selection theorem (e.g. Theorem 1.14.2 in [1]) there exists a measurable func-
tion f0(.) : I → Rn such that

f0(t) ∈ F (t, g0(t), V (g0)(t)) a.e. (I),

||x′0(t)− f0(t)|| = d
(
x′0(t), F (t, g0(t), V (g0)(t))

)
a.e. (I).

We define

x1(t) = x0 +
∫ t

0
f0(s)ds, t ∈ I

and we take g1(.) : I → Rn measurable such that

||x1(t)− g1(t)|| = d(x1(t), S) a.e. (I).

Put

ρ1(t) =
∫ t

0

[
ρ0(s) +

∫ s

0
p(u)du + ||y(0)− x0||

]
L1(s)em(t)−m(s)ds,

β1(t) = L1(t)
[
ρ0(t) + ρ1(t) +

∫ t

0
p(s)ds + ||y(0)− x0||

]
.

We prove next that, for t ∈ I,

(3.3) ||x′1(t)− x′0(t)|| ≤ p(t),

(3.4) d(x1(t), S) ≤ ρ1(t),

(3.5) d(x′1(t), F (t, g1(t), V (g1)(t))) ≤ β1(t).

The inequality (3.3) is obvious. From Hypothesis 2.1 v), as in the proof of
(3.2), we obtain

(3.6) d(x1(t), S) ≤
∫ t

0
d
(
x′1(s), F (s, g1(s), V (g1)(s))

)
ds.

On the other hand, one has

(3.7) d(x′1(t), F (t, g1(t), V (g1)(t))) = d
(
f0(t), F (t, g1(t), V (g1)(t))

)
≤

≤ L(t)[||g1(t)− g0(t)||+ M ||g1(t)− g0(t)||] ≤ L1(t)[||g1(t)− x1(t)||+
||x1(t)−x0(t)||+ ||x0(t)− g0(t)||] ≤ L1(t)[d(x1(t), S)+ ||x1(t)−x0(t)||+ ρ0(t)]

≤ L1(t)
[
d(x1(t), S) + ||y(0)− x0||+

∫ t

0
p(s)ds + ρ0(t)

]
.

Therefore, from (3.6) it follows

d(x1(t), S) ≤
∫ t

0
L1(s)

[
d(x1(s), S) + ||y(0)− x0||+

∫ s

0
p(u)du + ρ0(s)

]
ds
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and applying the Gronwall inequality we obtain

d(x1(t), S) ≤ ρ1(t),

i.e. (3.4) and from (3.7) we get (3.5).
Define, now, the sequences of continuous mappings ρk, βk : I → Rn by the

following recursive relations

(3.8) ρk+1(t) =
∫ t

0

[
ρk(s) +

∫ s

0
βk(u)du

]
L1(s)em(t)−m(s)ds,

(3.9) βk+1(t) = L1(t)
[
ρk(t) + ρk+1(t) +

∫ t

0
βk(s)ds

]
.

We claim that there exist sequences xk(.), gk(.) : I → Rn with xk(0) = x0,
xk(.) is absolutely continuous, gk(.) is measurable and such that, for all t ∈ I

(3.10) ||x′k+1(t)− x′k(t)|| = d
(
x′k(t), F (t, gk(t), V (gk)(t))

)
≤ βk(t),

(3.11) ||xk(t)− gk(t)|| = d(xk(t), S) ≤ ρk(t),

Suppose that the mappings xk(.), gk(.) are already constructed for some
k ≥ 1. Let fk(.) : I → Rn be measurable such that

fk(t) ∈ F (t, gk(t), V (gk)(t)) a.e. (I),

||x′k(t)− fk(t)|| = d
(
x′k(t), F (t, gk(t), V (gk)(t))

)
a.e. (I).

We define

xk+1(t) = x0 +
∫ t

0
fk(s)ds, t ∈ I

and we take gk+1(.) : I → Rn measurable such that

||xk+1(t)− gk+1(t)|| = d(xk+1(t), S), a.e. (I).

From Hypothesis 2.1 v), as in the proof of (3.2), we obtain

(3.12) d(xk+1(t), S) ≤
∫ t

0
d
(
x′k+1(s), F (s, gk+1(s), V (gk+1)(s))

)
ds.

At the same time we have

(3.13) d
(
x′k+1(t), F (t, gk+1(t), V (gk+1)(t))

)
≤ L(t)(1 + M)||gk+1(t)− gk(t)||

≤ L1(t)[||gk+1(t)− xk+1(t)||+ ||xk+1(t)− xk(t)||+ ||xk(t)− gk(t)||]

≤ L1(t)
(

d(xk+1(t), S) +
∫ t

0
βk(s)ds + ρk(t)

)
.

Therefore, from (3.12) it follows

d(xk+1(t), S) ≤
∫ t

0
L1(s)

[
d(xk+1(s), S) +

∫ s

0
βk(u)du + ρk(s)

]
ds
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and applying the Gronwall inequality we get, for all t ∈ I

d(xk+1(t), S) ≤ ρk+1(t)

and from (3.12) we infer, for all t ∈ I

d
(
x′k+1(t), F (t, gk+1(t), V (gk+1)(t))

)
≤ βk+1(t).

From (3.8) and (3.9) we deduce that for k ≥ 2

ρ′k(t) = βk(t), a.e. (I).

Hence, from (3.8) we find that

(3.14) ρk+1(t) = 2
∫ t

0
ρk(s)L1(s)em(t)−m(s)ds, t ∈ I, k ≥ 1.

According to the definition of ρ1(.) one may write

ρ1(t) =
∫ t

0

[
ρ0(s) +

∫ s

0
p(u)du + ||y(0)− x0||

]
L1(s)em(t)−m(s)ds ≤

[
d(y(0), S) + 2

∫ T

0
p(s)ds + ||y(0)− x0||

]
(em(T ) − 1) =: m0.

Then, by induction we find that

(3.15) ρk(t) ≤ m0em(t) (2m(t))k−1

(k − 1)!
, k ≥ 1, t ∈ I.

The estimation in (3.15) implies the convergence of the series
∑

k≥1 ρk(t),
t ∈ I. Taking into account (3.10) we conclude that the sequence xk(.) is
Cauchy in the Banach space AC(I, Rn) and therefore it converges to some
function x(.) ∈ AC(I,Rn), x(0) = x0. From (3.11) x(t) ∈ S ∀t ∈ I and
gk(t) → x(t) as k →∞ ∀t ∈ I. Using (3.11) one may write successively

∫ t

0
d
(
x′(s), F (t, x(s), V (x)(s))

)
ds

≤
∫ t

0

[
d(x′k(s), x

′(s)) + d
(
x′k(s), F (s, gk(s), V (gk)(s))

)
+ dH

(
F (s, gk(s), V (gk)(s)), F (s, xk(s), V (xk)(s))

)]
ds

≤
∫ t

0

[
||x′k(s)− x′(s)||+ L1(s)||xk(s)− gk(s)||+

+ d
(
x′k(s), F (t, gk(s), V (gk)(s))

)]
ds ≤ ||xk(.)− x(.)||AC(I,Rn)

+
∫ t

0
L(s)||xk(s)− gk(s)||ds + ρk(t).
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Passing with k → ∞, from the last estimation, since F (., ., .) has closed
values we infer that x′(t) ∈ F (t, x(t), V (x)(t)) a.e. (I), i.e. x(.) is solution to
problem (2.1)–(2.2).

It remains to prove the estimation in (3.1). We have, for t ∈ I∫ t

0
||x′(s)− y′(s)||ds ≤ ||xk(.)− x(.)||AC(I,Rn) +

∑
k≥1

ρk(t).

Therefore,
∫ t
0 ||x

′(s)− y′(s)||ds ≤ Σ(t), ∀t ∈ I, where Σ(t) =
∑

k≥1 ρk(t).
By (3.15) the mapping Σ(.) is the solution of the integral equation

Σ(t) = ρ1(t) +
∫ t

0
2Σ(s)L(s)em(t)−m(s)ds,

or, equivalently Σ(.) is solution to the following Cauchy problem associated to
an affine scalar equation

(3.16) Σ′(t) = 3Σ(t)L(t) + ρ′1(t)− ρ1(t)L(t), Σ(0) = 0.

An elementary computation shows that

Σ(t) =
2
3

∫ t

0
[e3(m(t)−m(s)) − 1]ρ′1(s)ds +

1
3
ρ1(t), t ∈ I,

which can be rewrite in the form

Σ(t) =
2
3

∫ t

0
[e3(m(t)−m(s)) − 1]p(s)ds +

e3m(t) − 1
3

[d(y(0), S) + ||y(0)− x0||]

and the proof of theorem is complete. �

4. MONOTONICITY CONDITIONS FOR DIFFERENTIAL INCLUSIONS

In what follows we consider the next version of problem (2.1)–(2.2) in which
F does not depends on the first and third variable.

(4.1) x′ ∈ F (x), x(0) = x0 ∈ S,

(4.2) x(t) ∈ S, ∀t ∈ I := [0, T ].

In this case Hypothesis 2.1 becomes:

Hypothesis 4.1. i) S ⊂ Rn is closed.
ii) F (.) : S → P(Rn) has nonempty and closed values.
iii) There exists L > 0 such that, for all x, y ∈ S

dH(F (x), F (y)) ≤ L||x− y||.
iv) F (x) ⊂ KxS ∀x ∈ S.
v) There exists y(.) ∈ AC(I,Rn) and p(.) ∈ L1(I,R) such that

d(y′(t), F (g(t))) ≤ p(t) a.e. (I),

where the measurable function g(.) : I → S is such that

||y(t)− g(t)|| = d(y(t), S) a.e. (I).
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The corresponding variant of Theorem 3.1 is:

Theorem 4.2. Assume that Hypothesis 4.1 is satisfied.
Then, for any x0 ∈ S there exists x(.) ∈ AC(I, Rn) a solution to the problem

(4.1)–(4.2) such that for any t ∈ I one has

(4.3)
∫ t

0
||x′(s)− y′(s)||ds ≤ 2

3

∫ t

0
[e3L(t−s) − 1]p(s)ds+

+
e3Lt − 1

3
[d(y(0), S) + ||y(0)− x0||].

Remark 4.3. We note that according to Theorem 3.1 in [8] under similar
hypothesis, for any ε > 0 there exists a mapping xε(.) ∈ AC(I, Rn) solution
to (4.1)–(4.2) such that for all t ∈ I

(4.4)
∫ t

0
||x′ε(s)− y′(s)||ds ≤∫ t

0
φ(L(t− s))p(s)ds + φ(Lt)[ε + d(y(0), S) + ||y(0)− x0||],

where φ : [0,∞) → [0,∞) is some nonexplicitely defined, continuous, nonde-
creasing function which does not depend on the data of the problem. Obvi-
ously, an estimation of the type in (4.3) cannot be obtained from the estimation
in (4.4).

We will need the following relaxation result, which is an autonomous, finite
dimensional and nonparametrized version of Theorem 6.1 in [8].

Theorem 4.4. Assume that Hypothesis 4.1 is satisfied and F is compact
valued. Then, for any ε > 0 and any z(.) ∈ AC(I,Rn) solution to the problem

(4.4) z′ ∈ coF (z), z(0) = z0 ∈ S,

(4.5) z(t) ∈ S, ∀t ∈ [0, T ],

there exists xε(.) ∈ AC(I, Rn) solution to the problem (4.1)–(4.2) such that for
any t ∈ I one has

||xε(t)− z(t)|| ≤ ε.

We recall that a mapping V : S ⊂ Rn → R is called nonincreasing along
the function x : I → S if

t1 < t2 =⇒ V (x(t1)) ≥ V (x(t2)).

We are now able to prove the main result of this section.

Theorem 4.5. Let W : S ⊂ Rn → R be a lower semicontinuous func-
tion and let F : S → P(Rn) be a compact valued multifunction that satisfies
Hypothesis 4.1 i)–iv). Then the following statements are equivalent:

a) W is nonincreasing along the solutions of (4.1)–(4.2),
b) supu∈F (x) D+

KW (x;u) ≤ 0 ∀x ∈ S,



9 Differential inclusions 47

c) supu∈coF (x) D+
KW (x;u) ≤ 0 ∀x ∈ S.

Proof. Obviously c) ⇒ b). The implication b) ⇒ a) is a consequence of
Theorem 4.6 in [10]. It remains to prove a) ⇒ c).

By contradiction, we assume that there exists x0 ∈ S and u0 ∈ coF (x0)
such that D+

KW (x0;u0) > 0. Since coF (.) is L-lipschitzean (e.g. Proposition
1.3.6 in [1]) we can apply the Filippov existence theorem (e.g. [5], p. 615) and
find that there exists y(.) ∈ AC(I,Rn) solution to the problem

y′ ∈ coF (y), y(0) = x0,

that, in addition, satisfy y′(0) = u0.
According to Theorem 4.3.8 in [5] (see also Proposition 2.2 in [8]) the con-

dition iv) in Hypothesis 4.1 is equivalent to

coF (x) ⊂ KxS, ∀x ∈ S.

So, we can apply Theorem 4.2 with p(t) = Ld(y(t), S) and deduce that
there exists z(.) ∈ AC(I, Rn) solution to (4.4)–(4.5) such that∫ t

0
||z′(s)− y′(s)||ds ≤ 2

3

∫ t

0
[e3L(t−s) − 1]p(s)ds, ∀t ∈ I.

In particular,

||z(t)− y(t)|| ≤ 2
3
[e3LT − 1]

∫ t

0
p(s)ds, ∀t ∈ I.

Since p(0) = 0 and∥∥∥∥z(t)− x0

t
− y(t)− x0

t

∥∥∥∥ ≤ 2
3
[e3LT − 1]

1
t

∫ t

0
p(s)ds, ∀t ∈ I.

we infer that z′(0) = y′(0) = u0.
Therefore, there exists z(.) solution to (4.4)–(4.5) such that z′(0) = u0.
On the other hand, one has

lim inf
h→0+

W (z(h))−W (z(0))
h

= lim inf
h→0+

W (x0 + h z(h)−x0

h )−W (x0)
h

≥ lim inf
h→0+,u→u0

W (x0 + hu)−W (x0)
h

= D+
KW (x0;u0) > 0.

Hence, for τ > 0 there exists στ > 0 such that

W (z(τ)) > W (z(0)) + στ = W (x0) + στ .

Since W (.) is lower semicontinuous, there exists εσ > 0 such that

||x− z(τ)|| < εσ =⇒ W (x) > W (z(τ))− στ .

We apply now Theorem 4.4 and we find that there exists xεσ(.) : [0, τ ] → Rn

solution to (4.1)–(4.2) such that

||xεσ(t)− z(t)|| < εσ, ∀t ∈ [0, τ ].
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In particular, ||xεσ(τ)− z(τ)|| < εσ.
Thus,

W (xεσ(τ)) > W (z(τ))− στ > −στ + W (x0) + στ = W (x0) = W (xεσ(0)),

i.e. W (xεσ(τ)) > W (xεσ(0)), which contradicts the hypothesis that W is
nonincreasing along the solutions of (4.1)–(4.2). �

Remark 4.6. If S = Rn then Theorem 4.5 yields Theorem 1.2 in [2].
There are several papers devoted to the study of the monotonicity of solu-

tions of differential inclusions. The first result in the framework of differential
inclusions is due to Frankowska ([7]). In Theorem 3.1 in [7] it is proved that
if S = Rn and supv∈coF (x) D+

KW (x; v) ≤ 0 then W is nonincreasing along the
solutions of (4.1)–(4.2). Mirică (Theorem 4.6 in [10]) proved that S ⊂ Rn

is locally closed and F satisfies a local dissipativity property (instead of lip-
schitzianity) then condition b) implies a). In [5] a result similar to the one in
Theorem 4.5 is proved in the case S = Rn and F is convex valued; this result
was extended afterwards in [2] to the nonconvex case.

For a complete discussion and for several refinements and extensions to state
constrained differential inclusions of the results in [2] we refer to our paper [4].
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