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SOME REMARKS ON DIFFERENTIAL INCLUSIONS
WITH STATE CONSTRAINTS

AURELIAN CERNEA

Abstract. We prove the existence of solutions to lipschitzean integrodifferential
inclusions viable in a closed set contained in R". Using this result we study
the infinitesimal properties of functions which are nonincreasing along all the
trajectories of a differential inclusion.

MSC 2000. 34A60.
Key words. Lipschitzean set-valued maps, differential inclusions, viable solu-
tions, generalized derivatives.

1. INTRODUCTION

In the viability theory for differential inclusions there are several papers de-
voted to the case when the values of the multifunction that define the differen-
tial inclusion are not convex. The main assumption is that the multifunction
is (locally) lipschitzean in the state variable ([1], [3], [8], [9], etc.). In [3] it is
proved the existence of solutions to the differential inclusion 2’ € F(t, x) viable
in a compact subset of finite dimensional space and continuously depending
on an initial point from this subset. This result was extended in [8] to the
case of a family of differential inclusions and a family of viability constraints
in separable metric spaces. Using the Filippov technique ([6]), the result in
[8] contains also a Filippov-Gronwall type inequality.

In this paper we adapt the idea of Goncharov to the more general problem
of integrodifferential inclusions. In the particular case of differential inclu-
sions our result improve the (Filippov type) estimations in [8]. In the stability
theory of nonlinear systems the second Lyapunov method consists in find a
function W with several properties. An essential property is the following
monotonicity condition: the map W o z(.) is nonincreasing for any admissible
trajectory z. In a recent paper ([2]) the situation when the system is described
by an autonomous differential inclusion is considered. More exactly, it is given
a characterization of the monotonicity condition presented above in terms of
contingent derivatives, when W is lower semicontinuous and the multifunc-
tion that define the differential inclusion is locally lipschitzean and compact
valued. Using our viability result, we extend the result of Bacciotti, Ceragioli
and Mazzi ([2]) to the case of differential inclusions whose trajectories are con-
strained to a given closed set. The paper is organized as follows: in Section
2 we present the notations and definitions to be used in the sequel. Section 3
is devoted to the existence of viable solutions and in Section 4 we provide a
characterization of the monotonicity of the Lyapunov function.
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2. PRELIMINARIES

In this paper we shall be concerned with the absolutely continuous solutions
x(.) : [0,T] — R™ of the integrodifferential inclusion

(2.1) ¥ € F(t,z,V(z)(t), =z(0)=um€S,

satisfying state constraints of the form

(2.2) z(t) € S, Vtel0,T],

where F(.,.,.) : [0,T] x S x R" — P(R") (with P(R"™) we denote the fam-
ily of all subsets of R™) is a given set-valued map, V(.) : C([0,T],R") —
C([0,T], R™) is a nonlinear (integral) operator (with C([0,7], R") we denote
the space of all continuous functions z : [0,7] — R"™ endowed with the norm
lz()llc = supiepo,r l|z(t)]]) and S C R™ is a given set. Denote by I the in-
terval [0,7], T > 0 and by AC(I, R") the space of all absolutely continuous
functions endowed with the norm ||z(.)||ac = ||z(0)|] + fOT |2’ (t)||dt and by
LY(I, R™) the space of Lebesgue integrable mappings endowed with the norm
llu()]h = f(;f llu(t)||dt. If A C R™ then by co(A) (resp. c¢o(A)) we denote

the convex (resp. closed convex) hull of A. We recall that on P(R") the
generalized Hausdorff-Pompeiu metric is defined by

di (A, B) = max{d*(4, B),d* (B, A)}, d*(A,B)=sup{d(a,B);a € A},

where d(a, B) = infyep d(a, b). B
The contingent cone to the set Y C R™ at the point y € Y (the closure of
Y') is defined by

K,)Y ={ve R";3sp, — 0+, vy, »v: z+ sp0, € Y}
The Clarke’s tangent cone to the set Y at the point y € Y is defined by
C,Y = {v € R"¥(2m, sm) — (4,04), 2y €Y, Iy €Y : y’”s;xm Y
m
Finally, we recall that given a function f : R™ — R, its lower right contin-

gent directional derivative at a point x € R™ and in the direction w € R" is
defined by

Q;}f(a?;w) = hll(?iﬂ?_f)w flx+ hz;L) — f(:v)

In what follows we assume the following hypothesis.

HYPOTHESIS 2.1. i) S C R"™ is closed.
ii) There exists M > 0 such that

[V (z1)(#) = V(z2) (0[] < M|a(t) —z2(B)]l,  VE € I, Vai(.), 22() € C(, R").

iii) F(.,.,.): I xS x R" — P(R") has nonempty closed values and for any
x €S,y € R" F(.,z,y) is measurable
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iv) There exists L(.) € L*(I, R) such that, for allt € I, and for all x1, x5 €
S? Y1,Y2 € R"

du (F(tx1,01), F(t, 22, 92)) < L) (21 = 22| + [l = v2l])-

v) F(t,z,y) C K,SVx € S,y € R", a.e. t €.
vi) There exists y(.) € AC(I,R") and p(.) € L(I, R) such that

d(y'(t), F(t.9(t), V(9)(®)) < p(t) a.e. (I),

where the measurable function g(.): I — S is such that
ly(®) —g(@®l = d(y(#),5) a.e. ().
We shall use the notations: Lq(t) = (1 + M)L(t), m(t) = fg Ly(s)ds, t € 1.
3. VIABLE SOLUTIONS OF LIPSCHITZEAN DIFFERENTIAL INCLUSIONS

The main result of this section is the following.

THEOREM 3.1. We assume that Hypothesis 2.1 is satisfied.
Then, for any xog € S there exists x(.) € AC(I, R") a solution to the problem
(2.1)—(2.2) such that for any t € I one has

(3.1) / ||z’ (s s)||ds

t e3m(t) _
< 2 [0 p(syas + %{d@(m, ) +1ly(0) = olll
Proof. Define zo(t) = x(t), go(t) = g(t) and p(t) = d(y ) + fo

t € I. Denote by Ilg(z) = {y € S;||ly — z|| = d(x,5)} the prOJectlon of the
point x to the set S.

Let us note that according to Theorem 4.3.8 in [5] (see also Proposition 2.2
n [8]) if F(¢,.,.) is locally lipschitzean, then the condition

F(t,x,y) C K;S, Vxe€S,yeR" aetel
is equivalent to
F(t,z,y) Cc C,S, YxeS,yeR", aetel.
Then, the mapping ho(t) = d(zo(t),S), t € I is absolutely continuous and
its derivative satisfies, by Lemma 1 in [9] and Hypothesis 2.1 v)

Ho(t) = Jim S [d(eo(t) +32h(0), S) — d(zo(t). 5]

< inf o d(ap(t), CgS) < d(x(t), F(t, go(t), V(go(1)) < p().
g€lls(zo(t))

Therefore,

(3:2) dao(t).5) = o) < d(ao(0). 5)+ | (ah(5). Fls.0(). V) (5)) ) s
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Applying a well known consequence of the Kuratowski and Ryll-Nardzewski
selection theorem (e.g. Theorem 1.14.2 in [1]) there exists a measurable func-
tion fo(.) : I — R™ such that

fo(t) € F(t, 90(t),V(g0)(t)) a.e. (I),
I26(6) = oDl = d((8), F(t, 90(t), V(eo)(1))) ace. (1).
We define .
z1(t) = xo +/ fo(s)ds, tel
0
and we take g;(.) : [ — R"™ measurable such that

lz1 () = g1(8)|| = d(21(2),5)  a.e. (I).
Put

m@=£Tm@+AEWM%HM®—m@L$WW“WM&

t
mszwﬂmw+m@+Ap@w+M@—m@.
We prove next that, for ¢ € I,

(3.3) 2 (8) — ()] < p(0),
(3.4) d(21(t), ) < pu(t),
(3.5) Az} (£), F(t, 91(6), V(91)(8))) < Br (1)

The inequality (3.3) is obvious. From Hypothesis 2.1 v), as in the proof of
(3.2), we obtain

t

(3.6) Awr(6).5) < [ (16,0109, V(o) () )ds.

0
On the other hand, one has

(37) @0tV (e)0) = d(folt), Ft.a1(0).V(e)(®) <
< L®[lg1(t) = go(®)] + Mllg1(t) = go(®)[[] < L1 (B)[|[92(2) — 21 ()] +
[|21(8) = 2o (O[] + [|zo(t) — g0 (DI < L1(®)[d(x1(2), S) + [|l22(8) — 20 (t)]] + po(t)]
< La(0) [ater(018) + 1n0) ~ ol + [ ploas + m(0)].
0
Therefore, from (3.6) it follows

ammasALmﬂwmwa+M@—mHA

S

p@hu+m@ﬂds
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and applying the Gronwall inequality we obtain
d(z1(t),5) < p1(t),

i.e. (3.4) and from (3.7) we get (3.5).
Define, now, the sequences of continuous mappings px, Ox : I — R™ by the
following recursive relations

38 o= [ t [ms) <[ ﬁk<u>du] Li(3)em®-mO) s

(3.9) Ba(t) = L1(0) | u(0) + pa s / s

We claim that there exist sequences xg(.), gx(.) : I — R™ with z4(0) = xo,
x(.) is absolutely continuous, gi(.) is measurable and such that, for all t € T

(310) b () = 2Bl = (k1) F(t 9u(8). V(g) (1)) < Bi(t),

(3.11) |k (t) — gr ()] = d(z(t), S) < pr(t),

Suppose that the mappings x(.), gx(.) are already constructed for some
k> 1. Let fi(.): I — R™ be measurable such that

fe(t) € F(t, g (1), V(gr)(t)) a.e. (I),

I25.(8) = Ful®)]l = (4 (D), Pt u(6), V(ge)(1))) ace. (D).
We define

¢
Tp41(t) = 2o +/ fe(s)ds, tel
0
and we take gx+1(.) : I — R™ measurable such that
211 () = ger (DI = d(zr11(£), 5),  a.e. (I).
From Hypothesis 2.1 v), as in the proof of (3.2), we obtain
¢
(3812)  d(zka(t),s) < /0 A(h01(5), F (5, 9141(5), V(g41)(5)) ) ds.

At the same time we have

(5:13) d(her (0. Pt 9001,V (30)(0)) < LOQ+ 3D lga (1) — (D)
< Li@Olgrs1(t) — g1 (O] + |[op1 () — 2 (O] + [lzx(t) — gr(D)]]]
< Ly(t) (d($k+1 / Br(s)ds + pi(t ))

Therefore, from (3.12) it follows

An(0:) < [ La05) [aaesn(0).9)+ [ Butu)duc+ pu(s) as
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and applying the Gronwall inequality we get, for all t €
d(zk41(8),5) < pra(t)
and from (3.12) we infer, for all ¢ € [
41 (), F(t g1 (0 V(91 (1)) < B (0
From (3.8) and (3.9) we deduce that for k > 2
P(t) = Br(t), a.e. ().
Hence, from (3.8) we find that
¢
(3.14) pre1(t) =2 / pre(s)L(s)e™O) s tel k> 1.
0

According to the definition of p;(.) one may write

mi)= [ [po<s> o " plu)du + [[y(0) a:o||] Li(s)emO-mC)ds <

T
406(0),5)+2 [ pls)ds + () = ol (€ = 1) = o,
Then, by induction we find that

m(e) (2m(1)F !

(k=1 "~

The estimation in (3.15) implies the convergence of the series Y, <, pr(t),

t € I. Taking into account (3.10) we conclude that the sequence xj(.) is

Cauchy in the Banach space AC(I, R™) and therefore it converges to some

function z(.) € AC(I,R"), z(0) = xo. From (3.11) z(t) € S Vt € I and
gk (t) — x(t) as k — oo Vt € I. Using (3.11) one may write successively

(3.15) pr(t) < mpe kE>1,tel.

/O (x/(s),F(t,x(s),V(x)(s))>dS
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Passing with & — oo, from the last estimation, since F'(.,.,.) has closed
values we infer that 2/(t) € F(t,x(t),V(x)(t)) a.e. (I), i.e. x(.) is solution to
problem (2.1)—(2.2).

It remains to prove the estimation in (3.1). We have, for ¢t € I

t
J 1) =y ©lids < llon) = 2Ollacirny + 3 pute)
0 k>1
Therefore, fg 2" (s) — y'(s)[|ds < X(2), Vt € I, where 3(t) = 33~ pr(t).
By (3.15) the mapping X(.) is the solution of the integral equation

Y(t) = p1(t) + /Ot 2%(s) L(s)e™ () s,

or, equivalently 3(.) is solution to the following Cauchy problem associated to
an affine scalar equation

(3.16) S(t) = 3B()L(t) + pi(t) — p1(t)L(2),  E(0) =0.

An elementary computation shows that

2 [t 1
S(t) = 2 /0 O _ 1] (5)ds + 2pr(t), tel,

3 3
which can be rewrite in the form
9 [t S eBm(z‘,) -1
£(t) = 5 [ (SO~ dp(ads + = Hd(y(0), 5) + [10) = o]
0
and the proof of theorem is complete. O

4. MONOTONICITY CONDITIONS FOR DIFFERENTIAL INCLUSIONS

In what follows we consider the next version of problem (2.1)—(2.2) in which
F does not depends on the first and third variable.

(4.1) ¥ € F(x), z(0)=z0€S8,

(4.2) z(t)e S, VYtel:=I[0,T].
In this case Hypothesis 2.1 becomes:

HYPOTHESIS 4.1. i) S C R"™ is closed.
ii) F(.): S — P(R™) has nonempty and closed values.
iii) There exists L > 0 such that, for all z,y € S

dg (F(2), F(y)) < Ll|z - y]|.
iv) F(z) C K;S Vx € S.
v) There exists y(.) € AC(I, R") and p(.) € L*(I, R) such that
dy'(®), F(g(t)) < p(t) ae. (I),
where the measurable function g(.) : I — S is such that
ly(t) =9Il = d(y(?),S) a.e. (I).
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The corresponding variant of Theorem 3.1 is:

THEOREM 4.2. Assume that Hypothesis 4.1 is satisfied.
Then, for any xo € S there exists x(.) € AC(I, R") a solution to the problem
(4.1)-(4.2) such that for any t € I one has

(43) / Io/(s) =/ () ds < 5 [ P00~ p(sjase

=L a0).9) + [15(0) ]

REMARK 4.3. We note that according to Theorem 3.1 in [8] under similar
hypothesis, for any € > 0 there exists a mapping z.(.) € AC(I, R"™) solution
0 (4.1)—(4.2) such that for all t € I

(4.4) / 12(s) — /(s)]|ds <

+

/ S(L(t — 5))p(s)ds + S(LE)[e + d(y(0), ) + [[y(0) — zo ],

where ¢ : [0,00) — [0,00) is some nonexplicitely defined, continuous, nonde-
creasing functlon which does not depend on the data of the problem. Obvi-

ously, an estimation of the type in (4.3) cannot be obtained from the estimation
n (4.4).

We will need the following relaxation result, which is an autonomous, finite
dimensional and nonparametrized version of Theorem 6.1 in [8].

THEOREM 4.4. Assume that Hypothesis 4.1 is satisfied and F' is compact
valued. Then, for any € > 0 and any 2(.) € AC(I, R") solution to the problem

(4.4) 2 ecoF(z), =z(0)=2 €S,

(4.5) z(t)e S, Vtelo,T],
there exists x.(.) € AC(I, R™) solution to the problem (4.1)-(4.2) such that for
any t € I one has

|lze(t) — z(D)I] < e.

We recall that a mapping V : S € R™ — R is called nonincreasing along
the function z : I — S if

11 <ty — V(.%'(tl)) > V(l’(tQ))
We are now able to prove the main result of this section.

THEOREM 4.5. Let W : S C R" — R be a lower semicontinuous func-
tion and let F : S — P(R™) be a compact valued multifunction that satisfies
Hypothesis 4.1 i)-iv). Then the following statements are equivalent:

a) W is nonincreasing along the solutions of (4.1)—(4.2),

b) sup,cp() DicW (i) < 0 ¥ € 5,
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C) SUPyecoF () QJIQW("L‘a u) <0Vzes.

Proof. Obviously ¢) = b). The implication b) = a) is a consequence of
Theorem 4.6 in [10]. It remains to prove a) = c).

By contradiction, we assume that there exists xg € S and ug € coF(xp)
such that DLW (xo;ug) > 0. Since coF(.) is L-lipschitzean (e.g. Proposition
1.3.6 in [1]) we can apply the Filippov existence theorem (e.g. [5], p. 615) and
find that there exists y(.) € AC(I, R") solution to the problem

y €coF(y), y(0)= =0,

that, in addition, satisfy ¢/(0) = .
According to Theorem 4.3.8 in [5] (see also Proposition 2.2 in [8]) the con-
dition iv) in Hypothesis 4.1 is equivalent to

coF(z) C K;S, Vzelb.

So, we can apply Theorem 4.2 with p(t) = Ld(y(¢),S) and deduce that
there exists z(.) € AC(I, R") solution to (4.4)—(4.5) such that

/ 12/(s) — o/ (s)]|ds < > / @09 _1lp(s)ds, Vi€ I.

In particular,

Since p(0) = 0 and
2(t) —zo  y(t) —zo
t t

we infer that 2/(0) = ¢/(0) = uo.
Therefore, there exists z(.) solution to (4.4)—(4.5) such that 2’(0) = uo.
On the other hand, one has

W(z(h)) = W((0))

2 3LT 1
<z —1]-
< gle I3

t
/ p(s)ds, Vtel.
0

W (o + h2=20) _ py7 ()

OO g 0T
> liminf Wizo + hu) = W(zo) = Q}W(xo; ug) > 0.
h—0+,u—ug h

Hence, for 7 > 0 there exists o, > 0 such that
W(z(r)) > W(z(0)) + o, = W(zo) + 0.
Since W (.) is lower semicontinuous, there exists €, > 0 such that
|z — 2(7)|| < €6 = W(x) > W(z(1)) — 0.

We apply now Theorem 4.4 and we find that there exists z(.) : [0,7] — R"
solution to (4.1)—(4.2) such that

||ze, (t) — 2(t)|| < €, Vt€0,7].



48 A. Cernea 10

In particular, ||z, (7) — 2(7)|| < €5-
Thus,

W(xe, (1)) > W(2(1)) — 07 > —07 + W(x0) + 07 = W(x0) = W(2x,(0)),

ie. W(ze, (1)) > W(ze,(0)), which contradicts the hypothesis that W is
nonincreasing along the solutions of (4.1)—(4.2). O

REMARK 4.6. If S = R"™ then Theorem 4.5 yields Theorem 1.2 in [2].

There are several papers devoted to the study of the monotonicity of solu-
tions of differential inclusions. The first result in the framework of differential
inclusions is due to Frankowska ([7]). In Theorem 3.1 in [7] it is proved that
if S = R" and Sup,ccor(a) Q;}W(:U; v) < 0 then W is nonincreasing along the
solutions of (4.1)—(4.2). Mirica (Theorem 4.6 in [10]) proved that S C R"
is locally closed and F' satisfies a local dissipativity property (instead of lip-
schitzianity) then condition b) implies a). In [5] a result similar to the one in
Theorem 4.5 is proved in the case S = R™ and F' is convex valued; this result
was extended afterwards in [2] to the nonconvex case.

For a complete discussion and for several refinements and extensions to state
constrained differential inclusions of the results in [2] we refer to our paper [4].
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