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Abstract. We prove that on any Riemannian supermanifold with a homoge-
neous (even or odd) metric there exists a single symmetric connection, com-
patible with the metric and there is provided an explicit global formula for it,
without using a coordinate system.
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1. INTRODUCTION

The supermanifolds were introduced in the early seventies and their origin
is closely related to theoretical physics. The first differential geometrical ap-
proach to supermanifolds ([6]) was also determined by physics, as its aim was
to construct a graded counterpart of the geometric prequantization. So far,
with the notable exception of the papers of Bejancu ([2], [3]), the Riemannian
geometry of supermanifolds have been approached only from a local point of
view (see, for instance, [5]). Bejancu ([3]), to our knowledge, was the first to
prove the existence and uniqueness of the Levi-Civita connection for an even
Riemannian supermanifold. However, he “guessed” the formula for the con-
nection by changing in a suitable way the signs in the classical formula. We will
show, in this paper, that the formula is, actually, imposed by the properties
of symmetry and compatibility with the metric of the connection. Moreover,
we will provide a proof for arbitrary homogeneous Riemannian metrics, not
necessarily even. It is surprising to see that odd Riemannian supermanifolds
appear to have been completely neglected so far in the literature. While the
even Riemannian supermanifolds are natural generalizations of the Riemann-
ian manifolds and share many common properties with these ones, the odd
Riemannian supermanifolds have no classical analogs, therefore they might be
more interesting for the understanding of the geometry of supermanifolds.

2. SUPERMANIFOLDS

The supermanifolds are, loosely speaking, natural generalizations of ordi-
nary manifolds, obtained by using both commuting and anti-commuting co-
ordinate functions. The global definition, however, is a little bit trickier and,
in fact, there are several definitions, not completely equivalent between them.
We shall use in this paper the definition given by Berezin and Leites in 1975
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([4]). We mention that in some places (see, for instance [6]) the Berezin-Leites
supermanifolds are called graded manifolds. As this is the only version we
shall use, there will be no danger of confusion, therefore we shall simply use
the term supermanifold.

We shall not enter here into any details regarding the definition of super-
manifolds, as they will play no role in our work. We will prefer, therefore, to
give only the definition, and let the reader consult the classical literature ([7],
[8], [1], [5]) for the rest.

Definition 1. Let k be one of the fields R or C. A supermanifold of di-
mension (m,n) is a pair M = (M,A), where M is an m-dimensional smooth
manifold and A is a sheaf of graded-commutative Z2-graded k-algebras (su-
peralgebras) on M such that, if C∞M is the sheaf of smooth functions on M ,
then

(i) there is an exact sequence of sheaves

0 → I → A π−→ C∞M → 0,

where, for any open set U ⊂ M , πU : A(U) → C∞(U) is a surjective
morphism of graded algebras, while I = A1+A2

1 is the sheaf of nilpotents
of the sheaf A.

(ii) I/I2 is a locally free of rank n over C∞M and A is locally-isomorphic,
as a sheaf of graded-commutative superalgebras, to the sheaf of exterior
algebras ΛC∞M (I/I2).

Remark 1. The second condition from the definition of the supermanifold
actually means that, locally, A can be written as

A(U) ' C∞(U)⊗ Λn,

where U ⊂ M is an open set, while Λn is a Grassmann algebra with n gener-
ators.

On an ordinary manifold M , a basic role is played by the algebra of smooth,
real-valued functions on M , C∞(M). On a supermanifold (M,A), on the other
hand, a similar role is played by the superalgebra of global sections of the sheaf
A, A(M). As we mentioned already, this is a Z2-graded algebra, which means
that it can be decomposed (as a module) into a direct sum

A = A0 ⊕A1.

The elements of Ai, i = 0, 1 are called homogeneous and their degree is also
called the parity. More specifically, the elements of A0 are called even, while
those of A1 are called odd. The parity of a homogeneous element f ∈ A is
denoted by |f |.

Using the superalgebra of global sections on a supermanifold, we can define
objects similar to those associated to an ordinary supermanifold.
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Definition 2. Let M = (M,A) be a supermanifold. A (graded) vector
field on M is a graded derivation of A(M), i.e. a linear map X : A → A
which satisfy the graded Leibniz rule:

X(f · g) = X(f) · g + (−1)|X||f |f ·X(g),

for any f, g ∈ A. Here X is even if it preserves the parity and is odd if it
reverse it.

It is easy to see that the set of all vector fields on a supermanifold has a
natural structure of Z2-graded A(M)-module that we will denote, as in the
case of manifolds, by X (M).

A very important operation with vector fields on a supermanifold is the
graded Lie brackets:

Definition 3. If X, Y ∈ X (M), their graded Lie bracket is defined by

[X, Y ](f) = X(Y (f))− (−1)|X||Y |Y (X(f)),

for any f ∈ A(M).

It is easy to check that for each pair of vector fields, their graded Lie bracket
(also called the super-commutator) is, indeed, a vector field. It is, equally, easy
to check that, unlike the ordinary Lie bracket, which is anti-commutative, the
graded Lie bracket is graded -anti-commutative, i.e. for each pair of vector
fields X, Y we have

[X, Y ] = −(−1)|X||Y |[Y, X].

3. CONNECTIONS ON SUPERMANIFOLDS

Definition 4. Let M ≡ (M,A) be a supermanifold and X (M) – the
supermodule of graded vector fields on M. A linear connection on M is an
even map

∇ : X (M)×X (M) → X (M), (X, Y ) → ∇XY

such that the following properties are fulfilled:
(1) ∇ is linear in the first argument: for any f1, f2 ∈ A(M) and X1, X2,

Y ∈ X (M), we have

∇f1X1+f2X2 = f1∇X1Y + f2∇X2Y ;

(2) ∇ is additive in the second argument: for any X, Y1, Y2 ∈ X (M) we
have

∇X(Y1 + Y2) = ∇XY1 +∇XY2;

(3) for any X ∈ ∇, ∇X verifies the graded Leibniz identity: for any f ∈
A(M) and Y ∈ ∇, X and f homogeneous, we have

∇X(f · Y ) = X(f) · Y + (−1)|X||f |f · ∇XY.
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4. RIEMANNIAN METRICS AND CONNECTIONS

Definition 5. A Riemannian metric on a supermanifold is a bilinear form
g : X (M)×X (M) → X (M), which is, also, subject to the further restrictions:

(i) symmetry: for any homogeneous vector fields X, Y ∈ X (M), we have

g(Y, X) = (−1)|X||Y |g(X, Y );

(ii) non-degeneracy: for any X ∈ X (M), the map Y → g(X, Y ) is a linear
isomorphism.

The existence of Riemannian metrics on supermanifold is a direct conse-
quence of the existence of a graded partition of unity and the proof is analo-
gous to the one from the non-graded case. Actually, it can be seen immediately
that the set of all Riemannian metrics on a given supermanifold carries a nat-
ural structure of Z2-graded space. Let us assume, hereafter, that g is a fixed,
homogeneous metric on the supermanifold M = (M,A).

We have to notice that the A(M)-module X (M) is, actually, a A(M)-
bimodule and, due to the connection between the left and the right structures
on it, we have, for the metric g, the following identities, for any homogeneous
f ∈ A(M) and X, Y ∈ X (M):

(i) g(f ·X, Y ) = (−1)|f ||g|g · g(X, Y );
(ii) g(X · f, Y ) = g(X, f · Y );
(iii) g(X, Y · f) = g(X, Y ) · f .

Definition 6. Let M be a supermanifold and g a Riemannian metric on
M. A linear connection ∇ on M is called

(i) symmetrical if, for any X, Y ∈ X (M) we have

∇XY = (−1)|X||Y |∇Y X + [X, Y ];

(ii) compatible with the metric if, for any X, Y, Z ∈ X (M) we have

g(∇XY, Z) = (−1)|X||g|Xg(Y, Z)− (−1)|X||Y |g(Y,∇XZ).

Theorem 1. On any homogeneous Riemannian supermanifold there exist
a unique symmetrical connection, compatible with the metric. This connection
is called, as in the classical Riemannian geometry, the Levi-Civita connection
associated with the given Riemannian metric.

Proof. We have

g(∇XY, Z) = (−1)|X||g|Xg(Y, Z)− (−1)|X||Y |g(Y,∇XZ)

= (−1)|X||g|Xg(Y, Z)− (−1)|X||Y |g(Y, [X, Z])− (−1)|X||Y |+|X||Z|g(Y,∇ZX)

= (−1)|X||g|Xg(Y, Z)− (−1)|X||Y |g(Y, [X, Z])

− (−1)|X||Y |+|X||Z|
[
(−1)|Z||Y |+|g|)Zg(Y, X)− (−1)|Z||Y |g(∇ZY, X)

]
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= (−1)|X||g|Xg(Y, Z)− (−1)|X||Y |g(Y, [X, Z])

− (−1)|X||Y |+|Y ||Z|+|Z||X|+|Z||g|Zg(Y, X) + (−1)|X||Y |+|Y ||Z|+|X||Z|g(∇ZY, X)

= (−1)|X||g|Xg(Y, Z)− (−1)|X||Y |g(Y, [X, Z])

− (−1)|X||Y |+|Y ||Z|+|Z||X|+|Z||g|Zg(Y, X) + (−1)|X||Y |+|Y ||Z|+|X||Z|g([Z, Y ], X)

+ (−1)|X||Y |+|X||Z|g(∇Y Z,X) = (−1)|X||g|Xg(Y, Z)− (−1)|X||Y |g(Y, [X, Z])

− (−1)|X||Y |+|Y ||Z|+|Z||X|+|Z||g|Zg(Y, X) + (−1)|X||Y |+|Y ||Z|+|X||Z|g([Z, Y ], X)

+ (−1)|X||Y |+|X||Z|
[
(−1)|Y ||g|Y g(Z,X)− (−1)|Y ||Z|g(Z,∇Y X)

]
= (−1)|X||g|Xg(Y, Z)− (−1)|X||Y |g(Y, [X, Z])

− (−1)|X||Y |+|Y ||Z|+|Z||X|+|Z||g|Zg(Y, X) + (−1)|X||Y |+|Y ||Z|+|X||Z|g([Z, Y ], X)

+ (−1)|X||Y |+|X||Z|+|Y ||g|Y g(Z,X)− (−1)|X||Y |+|Y ||Z|+|X||Z|g(Z,∇Y X)

= (−1)|X||g|Xg(Y, Z)− (−1)|X||Y |g(Y, [X, Z])

− (−1)|X||Y |+|Y ||Z|+|Z||X|+|Z||g|Zg(Y, X) + (−1)|X||Y |+|Y ||Z|+|X||Z|g([Z, Y ], X)

− (−1)|X||Y |+|X||Z|+|Y ||Z|g(Z, [Y, X])− (−1)|X||Z|+|Y ||Z|g(Z,∇XY )

+ (−1)|X||Y |+|X||Z|+|Y ||g|Y g(Z,X) = (−1)|X||g|Xg(Y, Z)

+ (−1)|X|(|Y |+|Z|)+|Y ||g|Y g(Z,X)− (−1)|Z|(|X|+|Y |)+|Z||g|Zg(X, Y )

+ g([X, Y ], Z)− (−1)|X|(|Y |+|Z|)g([Y, Z], X) + (−1)|Z|(|X|+|Y |)g([Z,X], Y )

− g(∇XY, Z),

whence

2 · g(∇XY, Z) = (−1)|X||g|Xg(Y, Z) + (−1)|X|(|Y |+|Z|)+|Y ||g|Y g(Z,X)

− (−1)|Z|(|X|+|Y |)+|Z||g|Zg(X, Y ) + g([X, Y ], Z)

− (−1)|X|(|Y |+|Z|)g([Y, Z], X) + (−1)|Z|(|X|+|Y |)g([Z,X], Y ).

(1)

In particular, for even Riemannian metrics we regain the formula (3.10) of
Bejancu’s paper ([3]), i.e.

2 · g(∇XY, Z) = Xg(Y, Z) + (−1)|X|(|Y |+|Z|)Y g(Z,X)

− (−1)|Z|(|X|+|Y |)Zg(X, Y ) + g([X, Y ], Z)

− (−1)|X|(|Y |+|Z|)g([Y, Z], X) + (−1)|Z|(|X|+|Y |)g([Z,X], Y ).

We mention, however, that Bejancu postulated this identity, while we obtained
it from the properties of the connection.

As the metric is nondegenerate, the formula (1) uniquely defines the con-
nection, provided it exists.

The existence proof is parallel to the similar proof from classical Riemannian
geometry. Namely, we take (1) as the definition of the Riemannian connection
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and then we prove that this formula gives, indeed, a symmetric connection
which is compatible with the Riemannian metric.

First of all, let us prove that the operator ∇ has the right parity, namely
zero. Clearly, this simply means that |∇XY | = |X|+ |Y |. But, in (1), the left
hand size has the parity |g|+ |∇XY |+ |Z|, while all the terms of the right hand
side have the parity |g| + |X| + |Y | + |Z|, which proves our claim. Linearity
in X and additivity in Y is no problem. To prove that ∇ is a connection we
still have to prove the graded Leibniz rule, in other words, we have to prove
the identity

(2) ∇X(f · Y ) = X(f) · Y + (−1)|X|·|f |f · ∇XY.

We start from the relation (1) and we get

2 · g(∇X(f · Y ), Z) = (−1)|X||g|Xg(f · Y, Z)

+ (−1)|X|(|f |+|Y |+|Z|)+(|f |+|Y |)|g|(f · Y )g(Z,X)

− (−1)|Z|(|X|+|f |+|Y |)+|Z||g|Zg(X, f · Y ) + g([X, f · Y ], Z)

− (−1)|X|(|Y |+|Z|)g([f · Y, Z], X)

+ (−1)|Z|(|X|+|f |+|Y |)g([Z,X], f · Y ).

(3)

We shall take out separately the six terms of the right hand side of the for-
mula (3) and we shall work them out independently. We have, thus,

(−1)|X||g|Xg(f · Y, Z) = (−1)|X||g|
[
X

(
(−1)|f ||g|f · g(Y, Z)

)]
= (−1)|g|(|X|+|f |)X(f) · g(Y, Z)

+ (−1)|g|(|X|+|f |)+|X||f |f ·Xg(Y, Z) = g(X(f) · Y, Z)

+ (−1)|g|(|X|+|f |)+|X||f |f ·Xg(Y, Z),

(4)

(−1)|X|(|f |+|Y |+|Z|)+(|f |+|Y |)|g|(f · Y )g(Z,X)

= (−1)|X|(|f |+|Y |+|Z|)+(|f |+|Y |)|g|f · Y g(Z,X),
(5)

(−1)|Z|(|X|+|f |+|Y |)+|Z||g|Zg(X, f · Y )

= (−1)|Z|(|X|+|f |+|Y |)+|Z||g|Zg(X · f, Y )

= (−1)|Z|(|X|+|f |+|Y |)+|Z||g|+|X||f |Zg(f ·X, Y )

= (−1)|Z|(|X|+|f |+|Y |+|g|)+|f |(|X|+|g|)Z [f · g(X, Y )]

= (−1)|Z|(|X|+|f |+|Y |+|g|)+|f |(|X|+|g|)Z(f) · g(X, Y )

+ (−1)|Z|(|X|+|Y |+|g|)+|f |(|X|+|g|)f · Zg(X, Y )

= (−1)|Z|(|X|+|f |+|Y |)+|f ||X|)g(Z(f) ·X, Y )

+ (−1)|Z|(|X|+|Y |+|g|)+|f |(|X|+|g|)f · Zg(X, Y ),

(6)
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g([X, f · Y ], Z) = g
(
X(f) · Y + (−1)|X||f |f · [X, Y ], Z

)
= g(X(f) · Y, Z) + (−1)|f |(|X|+|g|)f · g([X, Y ], Z),

(7)

(−1)|X|(|Y |+|Z|)g([f · Y, Z], X)

= (−1)|X|(|Y |+|Z|)g
(
−(−1)|Z|(|f |+|Y |)Z(f) · Y + f · [Y, Z], X

)
= −(−1)|X|(|Y |+|Z|)+|Z|(|f |+|Y |)g(Z(f) · Y, X)

+ (−1)|X|(|Y |+|Z|)+|g||f |f · g([Y, Z], X),

(8)

(−1)|Z|(|X|+|f |+|Y |)g([Z,X], f · Y )

= (−1)|Z|(|X|+|f |+|Y |)g([Z,X] · f, Y )

= (−1)|Z|(|X|+|Y |)+|f ||X|g(f · [Z,X], Y )

= (−1)|Z|(|X|+|Y |)+|f |(|X|+|g|)f · g([Z,X], Y ).

(9)

Now, substituting the relations (4)–(9) into (3), we get

2 · g(∇X(f · Y ), Z) = 2 · g(X(f) · Y, Z)

+ (−1)|X||f |+|g||f |f ·
[
(−1)|X||g|Xg(Y, Z)

+ (−1)|X|(|Y |+|Z|)+|Y ||g|Y g(Z,X)

− (−1)|Z|(|X|+|Y |)+|Z||g|Zg(X, Y )

+ g([X, Y ], Z)− (−1)|X|(|Y |+|Z|)g([Y, Z], X)

+(−1)|Z|(|X|+|Y |)g([Z,X], Y )
]

= 2 · g(X(f) · Y, Z) + (−1)|X||f |+|g||f |2 · f · g(∇XY, Z)

= 2 · g(X(f) · Y, Z) + (−1)|X||f |2 · g(f · ∇XY, Z)

= 2 · g(X(f) · Y + (−1)|X||f |f · ∇XY, Z),

hence

∇X(f ·Y ) = X(f)·Y +(−1)|X||f |f ·∇XY. �
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