ON A CERTAIN CLASS OF ANALYTIC FUNCTIONS WITH COMPLEX ORDER DEFINED BY SALAGEAN OPERATOR

M.K. AOUF, F.M. AL-OBOUDI and M.M. HAIDAN

Abstract. We introduce a class, namely $R_{\alpha}^{n}(b, \beta)(b \neq 0$, complex, $0<\beta \leq 1$, $n \in N_{0}=\{0,1,2, \ldots\}$ and $0 \leq \alpha<1$) of analytic functions defined by using Hadamard product $\left(D^{n} f * S_{\alpha}\right)(z)$ of the differential operator $D^{n} f(z)=z+$ $\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}$ and $S_{\alpha}(z)=\frac{z}{(1-z)^{2(1-\alpha)}}$ and satisfying the condition

$$
\left|\frac{\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1}{2 \beta\left[\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1+b\right]-\left[\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1\right]}\right|<1, \quad z \in U
$$

In this paper we determine a sufficient condition, coefficient estimates, maximization of $\left|a_{3}-\mu a_{2}^{2}\right|$ over the class $R_{\alpha}^{n}(b, \beta)$, distortion theorem and an argument theorem for the class $R_{\alpha}^{n}(b, \beta)$. Further we prove that some of the subclasses of $R_{\alpha}^{n}(b, \beta)$ are closed under convolution.
MSC 2000. 30C45.
Key words. Analytic, distortion, convolution.

1. INTRODUCTION

Let A denote the class of functions of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the unit disc $U=\{z:|z|<1\}$. Also let S denote the subclass of A consisting of analytic and univalent functions $f(z)$ in U. We use Ω to denote the class of bounded analytic functions $\omega(z)$ in U which satisfy the conditions $\omega(0)=0$ and $|\omega(z)| \leq|z|$ for $z \in U$. If the function $f(z) \in A$ satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)\right\}>0, \quad z \in U \tag{1.2}
\end{equation*}
$$

then it is well known that $f(z)$ is univalent in U. We denote the class of such functions by R. This class was introduced and studied by MacGregor [13].

Let R_{α} denotes the class of functions $f(z) \in A$ that satisfy the condition

$$
\begin{equation*}
\operatorname{Re}\left\{f^{\prime}(z)\right\}>\alpha, \quad 0 \leq \alpha<1, \quad z \in U \tag{1.3}
\end{equation*}
$$

The class R_{α} was studied by Ezrohi [5]. Clearly $R_{0} \equiv R$.
A function $f(z) \in S$ is said to be starlike of order α if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha, \quad z \in U \tag{1.4}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1)$. We denote the class of all starlike functions of order α by $S^{*}(\alpha)$.

Now, the function

$$
\begin{equation*}
S_{\alpha}(z)=\frac{z}{(1-z)^{2(1-\alpha)}} \tag{1.5}
\end{equation*}
$$

is the well-known extremal function for the class $S^{*}(\alpha)$ (see [20]).
Setting

$$
\begin{equation*}
C(\alpha, k)=\frac{\prod_{p=2}^{k}(p-2 \alpha)}{(k-1)!} \quad(k \geq 2) \tag{1.6}
\end{equation*}
$$

$S_{\alpha}(z)$ can be written in the form

$$
\begin{equation*}
S_{\alpha}(z)=z+\sum_{k=2}^{\infty} C(\alpha, k) z^{k} . \tag{1.7}
\end{equation*}
$$

Then we note that $C(\alpha, k)$ is a decreasing function in α and satisfies

$$
\lim _{k \rightarrow \infty} C(\alpha, k)= \begin{cases}\infty, & \alpha<\frac{1}{2} \\ 1, & \alpha=\frac{1}{2} \\ 0, & \alpha>\frac{1}{2}\end{cases}
$$

Let $(f * g)(z)$ be the convolution or Hadamard product of two functions $f(z)$ and $g(z)$, that is, $f(z)$ is given by (1.1) and $g(z)$ is given by

$$
\begin{equation*}
g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}, \tag{1.8}
\end{equation*}
$$

then

$$
\begin{equation*}
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k} . \tag{1.9}
\end{equation*}
$$

For a function $f(z) \in S$, we define

$$
\begin{array}{r}
D^{0} f(z)=f(z), \\
D^{1} f(z)=D f(z)=z f^{\prime}(z), \tag{1.11}
\end{array}
$$

and

$$
\begin{equation*}
D^{n} f(z)=D\left(D^{n-1} f(z)\right) \quad(n \in N=\{1,2, \ldots\}) . \tag{1.12}
\end{equation*}
$$

It is easy to see that

$$
\begin{equation*}
D^{n} f(z)=z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k}, \quad n \in N_{0}=N \cup\{0\} \tag{1.13}
\end{equation*}
$$

The differential operator D^{n} was introduced by Salagean [21].

In this paper, we introduce the class $R_{\alpha}^{n}(b, \beta)$ of functions $f(z) \in A$, defined as follows:

Definition 1. Let $f(z) \in A$; and let $b \neq 0$, complex, $0<\beta \leq 1, n \in N_{0}$ and $0 \leq \alpha<1$. Then $f(z)$ is said to be in the class $R_{\alpha}^{n}(b, \beta)$ if it satisfies the condition

$$
\begin{equation*}
\left|\frac{\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1}{2 \beta\left[\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1+b\right]-\left[\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1\right]}\right|<1, \tag{1.14}
\end{equation*}
$$

for all $z \in U$.
We note that $R_{\frac{1}{2}}^{0}(1,1) \equiv R, \quad R_{\frac{1}{2}}^{0}(1-\rho, 1) \equiv R_{\rho}(0 \leq \rho<1)$ and

$$
R_{\frac{1}{2}}^{0}(b, \beta)=\left\{f(z) \in A:\left|\frac{f^{\prime}(z)-1}{2 \beta\left(f^{\prime}(z)-1+b\right)-\left(f^{\prime}(z)-1\right)}\right|<1, z \in U\right\} .
$$

By taking different values of b, β, n and α, the class $R_{\alpha}^{n}(b, \beta)$ reduces to various well known subclasses of R; for example,
(1) $R_{\frac{1}{2}}^{0}(b, 1)=R(b)$ (Abdul Halim [1]);
(2) $R_{\frac{1}{2}}^{0}\left((1-\rho) \mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, \beta\right)=R^{\lambda}(\rho, \beta) \quad\left(|\lambda|<\frac{\pi}{2}, 0 \leq \rho<1,0<\beta \leq 1\right)$ (Ahuja [2]);
(3) $R_{\frac{1}{2}}^{0}\left(\frac{2 \beta(1-\rho) \mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda}{1+\beta}, \frac{1+\beta}{2}\right)=R_{\rho, \beta}^{\lambda} \quad\left(|\lambda|<\frac{\pi}{2}, 0 \leq \rho<1,0<\right.$ $\beta \leq 1)$ (Maköwka [14] and Gopalakrishna and Umarani [9]);
(4) $R_{\frac{1}{2}}^{0}\left(\frac{2 \gamma}{1+\gamma}, \frac{1+\gamma}{2}\right)=R(\gamma) \quad(0<\gamma \leq 1)$ (Padmanabhan [19] and Caplinger and Causey [3]);
(5) $R_{\frac{1}{2}}^{0}\left(1, \frac{1}{2}\right)=R^{*}$ (MacGregor [12]);
(6) $R_{\frac{1}{1}}^{0}\left(\sigma, \frac{1}{2}\right)=R^{*}(\sigma)(0<\sigma \leq 1)$ (Goel [6]);
(7) $R_{\frac{1}{2}}^{0}\left(1, \frac{2 \delta-1}{2 \delta}\right)=S(\delta)\left(\delta>\frac{1}{2}\right)($ Goel $[7,8])$;
(8) $R_{\frac{1}{2}}^{0}\left(1-a-d, \frac{1-a+d}{2 d}\right)=S(a, d)(a+d \geq 1, d \leq a \leq d+1)$ (Chen [4] and Owa [18]);
(9) $R_{\frac{1}{2}}^{0}\left(\sigma \mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, \frac{1}{2}\right)=\left(R_{1}^{\lambda}\right)^{\sigma} \quad\left(|\lambda|<\frac{\pi}{2}, 0<\sigma \leq 1\right)($ Mogra [16]);
(10) $R_{\frac{1}{2}}^{0}\left(\frac{2 \gamma}{1+\gamma} \mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, \frac{1+\gamma}{2}\right)=\left(R_{1}^{\lambda}\right)_{\gamma} \quad\left(|\lambda|<\frac{\pi}{2}, 0<\gamma \leq 1\right)$ (Mogra [16]);
(11) $R_{\frac{1}{2}}^{0}\left(\frac{2(1-\rho) \beta}{1+\beta}, \frac{1+\beta}{2}\right)=R(\rho, \beta) \quad(0 \leq \rho<1,0<\beta \leq 1)$ (Juneja and Mogra [10]);
(12) $R_{\frac{1}{2}}^{0}(1-\rho, \beta)=R_{1}(\rho, \beta) \quad(0 \leq \rho<1,0<\beta \leq 1)($ Mogra [15]);
(13) $R_{\frac{1}{2}}^{0}\left((1-\rho) \mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, 1\right)=R_{\rho}^{\lambda} \quad\left(|\lambda|<\frac{\pi}{2}, 0 \leq \rho<1\right)$ (Ahuja [2]);
(14) $R_{\frac{1}{2}}^{0}\left(\mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, \frac{2-\cos \lambda}{2}\right)=R^{* \lambda}$ (Ahuja [2]);
(15) $R_{\frac{1}{2}}^{0}\left(\mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, \frac{2 \delta-1}{2 \delta}\right)=R_{\delta}^{* \lambda} \quad\left(|\lambda|<\frac{\pi}{2}, \delta>\frac{1}{2}\right)$ (Ahuja [2]);
(16) $R_{\frac{1}{2}}^{0}\left(\mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, 1-\rho\right)=R^{* \lambda}(\rho) \quad\left(|\lambda|<\frac{\pi}{2}, 0 \leq \rho<1\right)$ (Ahuja [2]).

We further, observe that by special choices of b and β our class $R_{\alpha}^{n}(b, \beta)$ give rise to the following new subclasses of R :
(1) $R_{\alpha}^{n}(b, 1)=R_{\alpha}^{n}(b)$

$$
=\left\{f(z) \in A: \operatorname{Re}\left\{1+\frac{1}{b}\left(\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1\right)\right\}>0, z \in U\right\}
$$

(2) $R_{\alpha}^{n}\left(1-\rho, \frac{1}{2}\right)=R_{\alpha}^{* n}(\rho)$

$$
=\left\{f(z) \in A:\left|\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1\right|<1-\rho, 0 \leq \rho<1, z \in U\right\}
$$

(3) $R_{\alpha}^{n}\left(b, \frac{2 \delta-1}{2 \delta}\right)=R_{\alpha}^{n}(b, \delta)$

$$
=\left\{f(z) \in A:\left|\frac{b-1+\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)}{b}-\delta\right|<\delta, \quad \delta>\frac{1}{2}, \quad z \in U\right\}
$$

(4) $R_{\alpha}^{n}\left((1-\rho) \mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, \frac{2 \delta-1}{2 \delta}\right)=R_{\alpha, \delta}^{* n, \lambda}(\rho)$

$$
\begin{aligned}
= & \left\{f(z) \in A:\left|\frac{\mathrm{e}^{\mathrm{i} \lambda}\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-\rho \cos \lambda-\mathrm{i} \sin \lambda}{(1-\rho) \cos \lambda}-\delta\right|<\delta\right. \\
& \left.|\lambda|<\frac{\pi}{2}, \quad 0 \leq \rho<1, \delta>\frac{1}{2}, z \in U\right\}
\end{aligned}
$$

(5) $R_{\alpha}^{n}\left((1-\rho) \mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, 1-\xi\right)=R_{\alpha}^{* n, \lambda}(\xi, \rho)$

$$
\begin{aligned}
= & \left\{f(z) \in A:\left|\frac{\mathrm{e}^{\mathrm{i} \lambda}\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-\rho \cos \lambda-\mathrm{i} \sin \lambda}{(1-\rho) \cos \lambda}-\frac{1}{2 \xi}\right|<\frac{1}{2 \xi},\right. \\
& \left.|\lambda|<\frac{\pi}{2}, 0 \leq \rho<1,0 \leq \xi<1, z \in U\right\}
\end{aligned}
$$

(6) $R_{\alpha}^{n}\left((1-\rho) \sigma \mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, \frac{1}{2}\right)=\left(R_{\alpha, 1}^{n, \lambda}(\rho)\right)^{\sigma}$

$$
\begin{aligned}
= & \left\{f(z) \in A:\left|\frac{\mathrm{e}^{\mathrm{i} \lambda}\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-\rho \cos \lambda-\mathrm{i} \sin \lambda}{(1-\rho) \cos \lambda}-1\right|<\sigma\right. \\
& \left.|\lambda|<\frac{\pi}{2}, 0 \leq \rho<1,0<\sigma \leq 1, z \in U\right\}
\end{aligned}
$$

(7) $R_{\alpha}^{n}\left([(1-a)+d] \mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, \frac{(1-a)+d}{2 d}\right)=R_{\alpha}^{n, \lambda}(a, d)$

$$
\begin{aligned}
= & \left\{f(z) \in A:\left|\frac{\mathrm{e}^{\mathrm{i} \lambda}\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-\mathrm{i} \sin \lambda}{\cos \lambda}-a\right|<d\right. \\
& \left.|\lambda|<\frac{\pi}{2}, a+d>1, d \leq a \leq d+1, z \in U\right\}
\end{aligned}
$$

(8) $R_{\alpha}^{n}\left([(1-m)-M](1-\rho) \mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, \frac{(1-m)+M}{2 M}\right)=R_{\alpha, m, M}^{n, \lambda}(\rho)$

$$
\begin{aligned}
= & \left\{f(z) \in A:\left|\frac{\mathrm{e}^{\mathrm{i} \lambda}\left(D f * S_{\alpha}\right)^{\prime}(z)-\rho \cos \lambda-\mathrm{i} \sin \lambda}{(1-\rho) \cos \lambda}-m\right|<M\right. \\
& \left.|\lambda|<\frac{\pi}{2}, 0 \leq \rho<1, \quad|m-1|<M \leq m, m>\frac{1}{2}, \quad z \in U\right\}
\end{aligned}
$$

2. A SUFFICIENT CONDITION

THEOREM 1. The function $f(z)$ defined by (1.1) is in the class $R_{\alpha}^{n}(b, \beta)$, if for $b \neq 0$, complex, $n \in N_{0}$, and $0 \leq \alpha<1$,

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right| \leq \frac{\beta|b|}{1-\beta} \tag{2.1}
\end{equation*}
$$

whenever $\beta \in\left(0, \frac{1}{2}\right]$, and

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right| \leq|b| \tag{2.2}
\end{equation*}
$$

whenever $\beta \in\left[\frac{1}{2}, 1\right]$, holds.
Proof. Let $|z|=r<1$, and suppose $0<\beta \leq \frac{1}{2}$. Then

$$
\begin{aligned}
& \left|\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1\right|-\mid 2 \beta\left[\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1+b\right] \\
- & {\left[\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1\right]\left|=\left|\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k) a_{k} z^{k-1}\right|\right.} \\
- & \left|2 \beta b-(1-2 \beta) \sum_{k=2}^{\infty} k^{n+1} C(\alpha, k) a_{k} z^{k-1}\right| \leq \sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right| r^{k-1} \\
- & \left\{2 \beta|b|-(1-2 \beta) \sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right| r^{k-1}\right\} \\
\leq & 2\left[(1-\beta) \sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right|-\beta|b|\right]
\end{aligned}
$$

The last quantity is nonpositive by (2.1), so that $f(z) \in R_{\alpha}^{n}(b, \beta)$. Next, we assume that (2.2) holds for $\frac{1}{2} \leq \beta \leq 1$. Then

$$
\begin{aligned}
& \left|\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1\right|-\mid 2 \beta\left[\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1+b\right] \\
- & {\left[\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1\right]\left|=\left|\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k) a_{k} z^{k-1}\right|\right.} \\
- & \left|2 \beta b-(1-2 \beta) \sum_{k=2}^{\infty} k^{n+1} C(\alpha, k) a_{k} z^{k-1}\right| \\
\leq & 2 \beta\left[\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right|-|b|\right] \leq 0 .
\end{aligned}
$$

This proves that $f(z) \in R_{\alpha}^{n}(b, \beta)$, hence the theorem.
We note that

$$
f(z)=z+\frac{\beta b}{(1-\beta) k^{n+1} C(\alpha, k)} z^{k} \quad(k \geq 2),
$$

is an extremal function with respect to the first part of the theorem and

$$
f(z)=z+\frac{b}{k^{n+1} C(\alpha, k)} z^{k} \quad(k \geq 2),
$$

is an extremal function with respect to the second part of the theorem, since

$$
\left|\frac{\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1}{2 \beta\left[\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1+b\right]-\left[\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1\right]}\right|=1
$$

for $z=1, b \neq 0$, complex, $0<\beta \leq 1, n \in N_{0}, 0 \leq \alpha<1$, and $k \geq 2$.
We also observe that the converse of the above theorem may not be true. For example, consider the function $\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)$ defined by

$$
\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)=\frac{1-(2 \beta-1-2 \beta b) z}{1-(2 \beta-1) z}
$$

It is easily seen that $f(z) \in R_{\alpha}^{n}(b, \beta)$ but

$$
\begin{aligned}
& \sum_{k=2}^{\infty} \frac{k^{n+1} C(\alpha, k)(1-\beta)}{\beta|b|}\left|a_{k}\right| \\
= & \sum_{k=2}^{\infty} \frac{k^{n+1} C(\alpha, k)(1-\beta)}{\beta|b|} \cdot \frac{2 \beta|b|(2 \beta-1)^{k-2}}{k^{n+1} C(\alpha, k)} \\
= & \sum_{k=2}^{\infty} 2(1-\beta)(2 \beta-1)^{k-2} \geq 1,
\end{aligned}
$$

for $b \neq 0$, complex, $0<\beta \leq \frac{1}{2}, n \in N_{0}$, and $0 \leq \alpha<1$, and also

$$
\begin{aligned}
\sum_{k=2}^{\infty} \frac{k^{n+1} C(\alpha, k)}{|b|}\left|a_{k}\right| & =\sum_{k=2}^{\infty} \frac{k^{n+1} C(\alpha, k)}{|b|} \frac{2 \beta|b|(2 \beta-1)^{k-2}}{k^{n+1} C(\alpha, k)} \\
& =\sum_{k=2}^{\infty} 2 \beta(2 \beta-1)^{k-2} \geq 1
\end{aligned}
$$

for $b \neq 0$, complex, $\frac{1}{2} \leq \beta \leq 1, n \in N_{0}, 0 \leq \alpha<1$ and $z \in U$.
Corollary 2. Let the function $f(z)$ defined by (1.1) be analytic in U. If for $b \neq 0$, complex, $n \in N_{0}$, and $0 \leq \alpha<1$,

$$
\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right| \leq|b|,
$$

then $f(z)$ belongs to $R_{\alpha}^{n}(b)$.
Corollary 3. Let the function $f(z)$ defined by (1.1) be analytic in U. If for $b \neq 0$, complex, $n \in N_{0}$, and $0 \leq \alpha<1$,

$$
\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right| \leq(2 \delta-1)|b|,
$$

whenever $\frac{1}{2}<\delta \leq 1$, and

$$
\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right| \leq|b|,
$$

whenever $\delta \geq 1$, then $f(z)$ belongs to $R_{\alpha}^{n}(b, \delta)$.
Corollary 4. Let the function $f(z)$ defined by (1.1) be analytic in U. If for $n \in N_{0}, 0 \leq \alpha<1,|\lambda|<\frac{\pi}{2}$, and $0 \leq \rho<1$

$$
\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right| \leq(2 \delta-1)(1-\rho) \cos \lambda,
$$

whenever $\frac{1}{2}<\delta \leq 1$, and

$$
\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right| \leq(1-\rho) \cos \lambda,
$$

whenever $\delta \geq 1$, then $f(z)$ belongs to $R_{\alpha}^{* n, \lambda}(\rho)$.
Corollary 5. Let the function $f(z)$ defined by (1.1) be analytic in U. If for $n \in N_{0}, 0 \leq \alpha<1,|\lambda|<\frac{\pi}{2}, 0 \leq \rho<1$ and $0 \leq \xi<1$,

$$
\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right| \leq\left(\frac{1-\xi}{\xi}\right)(1-\rho) \cos \lambda,
$$

whenever $\frac{1}{2} \leq \xi<1$, and

$$
\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right| \leq(1-\rho) \cos \lambda,
$$

whenever $0 \leq \xi \leq \frac{1}{2}$, then $f(z)$ belongs to $R_{\alpha, \delta}^{* n, \lambda}(\xi, \rho)$.
Corollary 6. Let the function $f(z)$ defined by (1.1) be analytic in U. If for $n \in N_{0}, 0 \leq \alpha<1,|\lambda|<\frac{\pi}{2}, 0 \leq \rho<1$ and $0<\sigma \leq 1$,

$$
\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k)\left|a_{k}\right| \leq(1-\rho) \sigma \cos \lambda
$$

then $f(z)$ belongs to $\left(R_{\alpha, 1}^{n, \lambda}(\rho)\right)^{\sigma}$.

3. COEFFICIENT ESTIMATES

Theorem 7. Let the function $f(z)$ defined by (1.1) be in the class $R_{\alpha}^{n}(b, \beta)$. Then

$$
\begin{equation*}
\left|a_{k}\right| \leq \frac{2 \beta|b|}{k^{n+1} C(\alpha, k)} \quad(k \geq 2) \tag{3.1}
\end{equation*}
$$

The result is sharp.
Proof. Since $f(z) \in R_{\alpha}^{n}(b, \beta)$, we have from Schwarz's lemma [17]

$$
\begin{equation*}
\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)=\frac{1+(2 \beta-1-2 \beta b) \omega(z)}{1+(2 \beta-1) \omega(z)} \tag{3.2}
\end{equation*}
$$

where $\omega(z)=\sum_{k=1}^{\infty} t_{k} z^{k} \in \Omega$. From (3.2), we have

$$
\begin{align*}
& {\left[2 \beta b+(2 \beta-1) \sum_{k=2}^{\infty} k^{n+1} C(\alpha, k) a_{k} z^{k-1}\right]\left[\sum_{k=1}^{\infty} t_{k} z^{k}\right] } \\
= & -\sum_{k=2}^{\infty} k^{n+1} C(\alpha, k) a_{k} z^{k-1} . \tag{3.3}
\end{align*}
$$

Equality corresponding coefficients on both sides of (3.3) we find that the coefficient a_{k} on the right of (3.3) depends only on $a_{2}, a_{3}, \ldots, a_{k-1}$ on the left of (3.3). Therefore, for $k \geq 2$, (3.3) yields

$$
\begin{align*}
& {\left[2 \beta b+(2 \beta-1) \sum_{k=2}^{m-1} k^{n+1} C(\alpha, k) a_{k} z^{k-1}\right] \omega(z) } \\
= & -\sum_{k=2}^{m} k^{n+1} C(\alpha, k) a_{k} z^{k-1}-\sum_{k=m+1}^{\infty} b_{k} z^{k-1}, \tag{3.4}
\end{align*}
$$

where $\sum_{k=m+1}^{\infty} b_{k} z^{k-1}$ converges in U. Then, since $|\omega(z)|<1$ by using Parseval's identity [17], we obtain

$$
\begin{align*}
& \sum_{k=2}^{m} k^{2(n+1)}(C(\alpha, k))^{2}\left|a_{k}\right|^{2} r^{2(k-1)}+\sum_{k=m+1}^{\infty}\left|b_{k}\right|^{2} r^{2(k-1)} \\
\leq & 4 \beta^{2}|b|^{2}+(2 \beta-1)^{2} \sum_{k=2}^{m-1} k^{2(n+1)}(C(\alpha, k))^{2}\left|a_{k}\right|^{2} r^{2(k-1)} . \tag{3.5}
\end{align*}
$$

Taking the limit as r approaches 1 , we have

$$
\begin{aligned}
& \sum_{k=2}^{m} k^{2(n+1)}(C(\alpha, k))^{2}\left|a_{k}\right|^{2} \\
\leq & 4 \beta^{2}|b|^{2}+(2 \beta-1)^{2} \sum_{k=2}^{m-1} k^{2(n+1)}(C(\alpha, k))^{2}\left|a_{k}\right|^{2} .
\end{aligned}
$$

Thus

$$
\begin{align*}
& m^{2(n+1)}(C(\alpha, m))^{2}\left|a_{m}\right|^{2} \\
\leq & 4 \beta^{2}|b|^{2}+(2 \beta-1)^{2} \sum_{k=2}^{m-1} k^{2(n+1)}(C(\alpha, k))^{2}\left|a_{k}\right|^{2} \tag{3.6}
\end{align*}
$$

Since $0<\beta \leq 1$, (3.6) yields $m^{2(n+1)}(C(\alpha, m))^{2}\left|a_{m}\right|^{2} \leq 4 \beta^{2}|b|^{2}$ which implies $\left|a_{m}\right| \leq \frac{2 \bar{\beta}|b|}{m^{n+1} C(\alpha, m)} \quad(m \geq 2)$.

The following example shows that the inequality (3.1) is sharp.

Example 1. Let

$$
\begin{equation*}
\left(D^{n} f * S_{\alpha}\right)(z)=\int_{0}^{z} \frac{1-(2 \beta-1-2 \beta b) t^{k-1}}{1-(2 \beta-1) t^{k-1}} \mathrm{~d} t \tag{3.7}
\end{equation*}
$$

where $b \neq 0$, complex, $0<\beta \leq 1, n \in N_{0}$ and $0 \leq \alpha<1$. Then it is easy to see that

$$
\left|\frac{\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1}{2 \beta\left[\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1+b\right]-\left[\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1\right]}\right|<1 \quad(z \in U)
$$

which proves that $f(z) \in R_{\alpha}^{n}(b, \beta)$. Then the function $\left(D^{n} f * S_{\alpha}\right)(z)$ has the expansion

$$
\left(D^{n} f * S_{\alpha}\right)(z)=z+\frac{2 \beta b}{k} z^{k}+\ldots \quad(z \in U)
$$

which shows that the estimate (3.1) is sharp.

On replacing the pair (b, β), in turn, by the pairs $(b, 1),\left(b, \frac{2 \delta-1}{2 \delta}\right)\left(\delta>\frac{1}{2}\right)$, $\left((1-\rho) \mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, \frac{2 \delta-1}{2 \delta}\right)\left(|\lambda|<\frac{\pi}{2}, 0 \leq \rho<1, \delta>\frac{1}{2}\right),\left((1-\rho) \mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, 1-\xi\right)$ $\left(0 \leq \rho<1,|\lambda|<\frac{\pi}{2}, 0 \leq \xi<1\right)$ and $\left((1-\rho) \sigma \mathrm{e}^{-\mathrm{i} \lambda} \cos \lambda, \frac{1}{2}\right) \quad\left(|\lambda|<\frac{\pi}{2}, 0 \leq \rho<\right.$ $1,0<\sigma \leq 1$) in Theorem 2 we obtain, respectively, the coefficient estimates for the classes $R_{\alpha}^{n}(b), R_{\alpha}^{n}(b, \delta), R_{\alpha, \delta}^{* n, \lambda}(\rho), R_{\alpha}^{* n, \lambda}(\xi, \rho)$ and $\left(R_{\alpha, 1}^{n, \lambda}(\rho)\right)^{\sigma}$; which we state in the following corollaries:

Corollary 8. Let the function $f(z)$ defined by (1.1) be in $R_{\alpha}^{n}(b)$. Then $\left|a_{k}\right| \leq \frac{2|b|}{k C(\alpha, k)}(k \geq 2)$. The result is sharp.

Corollary 9. Let the function $f(z)$ defined by (1.1) be in $R_{\alpha}^{n}(b, \delta)$. Then $\left|a_{k}\right| \leq \frac{\left(\frac{2 \delta-1}{\delta}\right)|b|}{k^{n+1} C(\alpha, k)}(k \geq 2)$. The result is sharp.

Corollary 10. Let the function $f(z)$ defined by (1.1) be in $R_{\alpha, \delta}^{* n, \lambda}(\rho)$. Then $\left|a_{k}\right| \leq\left(\frac{2 \delta-1}{\delta}\right) \frac{(1-\rho) \cos \lambda}{k^{n+1} C(\alpha, k)} \quad(k \geq 2)$. The result is sharp.

Corollary 11. Let the function $f(z)$ defined by (1.1) be in $R_{\alpha}^{* n, \lambda}(\xi, \rho)$. Then $\left|a_{k}\right| \leq \frac{2(1-\xi)}{k^{n+1} C(\alpha, k)}(1-\rho) \cos \lambda(k \geq 2)$. The result is sharp.

Corollary 12. Let the function $f(z)$ defined by (1.1) be in $\left(R_{\alpha, 1}^{* n, \lambda}(\rho)\right)^{\sigma}$. Then $\left|a_{k}\right| \leq \frac{(1-\rho) \sigma \cos \lambda}{k^{n+1} C(\alpha, k)} \quad(k \geq 2)$. The result is sharp.

REmark 1. By taking appropriate values of b, β, n, and α in Theorem 2 we obtain the corresponding results established by Maköwka [14], Padmanabhan [19], Caplinger and Causey [3], Goel [7], MacGregor [12,13], Ahuja [1], Chen [4], Owa [18], Mogra [15], Gopalakrishna and Umarani [9], and Juneja and Mogra [10].

4. MAXIMIZATION OF $\left|A_{3}-\mu A_{2}^{2}\right|$

We shall need in our discussion the following lemma [11]:
LEMMA 13. Let $\omega(z)=\sum_{m=1}^{\infty} t_{m} z^{m} \in \Omega$, if μ is any complex number, then

$$
\begin{equation*}
\left|t_{2}-\mu t_{1}^{2}\right| \leq \max \{1,|\mu|\} \tag{4.1}
\end{equation*}
$$

Equality may be attained with the functions $\omega(z)=z^{2}$ and $\omega(z)=z$ for $|\mu|<1$ and $|\mu| \geq 1$, respectively.

THEOREM 14. Let the function $f(z)$ defined by (1.1) be in the class $R_{\alpha}^{n}(b, \beta)$, $\beta \neq \frac{1}{2}$, then for any complex number μ, we have

$$
\begin{equation*}
\left|a_{3}-\mu a_{2}^{2}\right| \leq \frac{2 \beta|b|}{3^{n+1} C(\alpha, 3)} \max \{1,|d|\} \tag{4.2}
\end{equation*}
$$

where

$$
\begin{equation*}
d=\frac{-2^{2 n+1}(C(\alpha, 2))^{2}(2 \beta-1)+3^{n+1} C(\alpha, 3) \mu \beta b}{2^{2 n+1}(C(\alpha, 2))^{2}} . \tag{4.3}
\end{equation*}
$$

The result is sharp.
Proof. Since $f(z) \in R_{\alpha}^{n}(b, \beta)$, we have

$$
\begin{equation*}
\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)=\frac{1+(2 \beta-1-2 \beta b) \omega(z)}{1+(2 \beta-1) \omega(z)}, \tag{4.4}
\end{equation*}
$$

where $\omega(z)=\sum_{m=1}^{\infty} t_{m} z^{m} \in \Omega$. From (4.4), we get

$$
\begin{align*}
\omega(z)= & -\frac{\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1}{2 \beta\left[\left(D^{n} f * S_{a}\right)^{\prime}(z)-1+b\right]-\left[\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1\right]} \\
= & -\frac{1}{2 \beta b}\left\{2^{n+1} C(\alpha, 2) a_{2} z+\right. \\
& {\left.\left[3^{n+1} C(\alpha, 3) a_{3}+\frac{2^{2(n+1)}(C(\alpha, 2))^{2}(1-2 \beta)}{2 \beta b} a_{2}^{2}\right] z^{2}+\ldots\right\} . } \tag{4.5}
\end{align*}
$$

$$
a_{2}=\frac{-\beta b}{2^{n} C(\alpha, 2)} t_{1},
$$

and

$$
\begin{equation*}
a_{3}=\frac{2 \beta b}{3^{n+1} C(\alpha, 3)}\left[(2 \beta-1) t_{1}^{2}-t_{2}\right] . \tag{4.7}
\end{equation*}
$$

Using (4.6), (4.7) and (4.1), we get the result. Since (4.1) is sharp, (4.2) is also sharp.

Remark 2. Taking appropriate values of b and β in Theorem 3, we get the corresponding results for the classes $R_{\alpha}^{n}(b), R_{\alpha}^{n}(b, \delta), R_{\alpha, \delta}^{* n, \lambda}(\rho), R_{\alpha}^{* n, \lambda}(\xi, \rho)$ and $\left(R_{\alpha, 1}^{n, \lambda}(\rho)\right)^{\sigma}$.

5. DISTORTION THEOREM

We now turn to an investigation of distortion properties of $R_{\alpha}^{n}(b, \beta)$.
Theorem 15. Let the function $f(z)$ defined by (1.1) be in the class $R_{\alpha}^{n}(b, \beta)$. Then for $\beta \neq \frac{1}{2}$ and $z \in U$,
$(5.1)\left|\left(D^{n} f * S_{\alpha}\right)(z)\right| \leq \int_{0}^{|z|} \frac{1+2 \beta|b| t+(2 \beta-1)[2 \beta \operatorname{Re}(b)-(2 \beta-1)] t^{2}}{1-(2 \beta-1)^{2} t^{2}} \mathrm{~d} t$,
and
$(5.2)\left|\left(D^{n} f * S_{\alpha}\right)(z)\right| \geq \int_{0}^{|z|} \frac{1-2 \beta|b| t+(2 \beta-1)[2 \beta \operatorname{Re}(b)-(2 \beta-1)] t^{2}}{1-(2 \beta-1)^{2} t^{2}} \mathrm{~d} t$.
For $\beta=\frac{1}{2}$, the above estimates reduce to $\left|\left(D^{n} f * S_{\alpha}\right)(z)\right| \leq r+\frac{|b|}{2} r^{2}$ and $\left|\left(D^{n} f * S_{\alpha}\right)(z)\right| \geq r-\frac{|b|}{2} r^{2}(|z|=r)$. The bounds are sharp.

Proof. Since $f(z) \in R_{\alpha}^{n}(b, \beta)$ we observe that the condition (1.14) coupled with an application of Schwarz's lemma [17], implies $\left|\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-\zeta\right|<\Re$, where
$(5.3) \zeta=\frac{1-(2 \beta-1)[2 \beta-1-2 \beta \operatorname{Re}(b)] r^{2}+2 \mathrm{i} \beta(2 \beta-1) \operatorname{Im}(b) r^{2}}{1-(2 \beta-1)^{2} r^{2}}$,
and

$$
\begin{equation*}
\Re=\frac{2 \beta|b| r}{1-(2 \beta-1)^{2} r^{2}} \quad(|z|=r) . \tag{5.4}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\leq \operatorname{Re}\left\{\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)\right\} \leq \frac{1+2 \beta|b| r+(2 \beta-1)[2 \beta \operatorname{Re}(b)-(2 \beta-1)] r^{2}}{1-(2 \beta-1)^{2} r^{2}} . \tag{5.5}
\end{equation*}
$$

If

$$
g(z)=\frac{1+2 \beta|b| z+(2 \beta-1)[2 \beta \operatorname{Re}(b)-(2 \beta-1)] z^{2}}{1-(2 \beta-1)^{2} z^{2}}, \beta \neq \frac{1}{2},
$$

then, since $g(0)=1=\left.\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)\right|_{z=0}$ and $g(z)$ is univalent in U, it follows that $\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)$ is subordinate to $g(z)$. Hence

$$
\begin{equation*}
\left|\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)\right| \leq \frac{1+2 \beta|b| r+(2 \beta-1)[2 \beta \operatorname{Re}(b)-(2 \beta-1)] r^{2}}{1-(2 \beta-1)^{2} r^{2}} . \tag{5.6}
\end{equation*}
$$

In view of

$$
|f(z)|=\left|\int_{0}^{z} f^{\prime}(s) \mathrm{d} s\right| \leq \int_{0}^{|z|}\left|f^{\prime}\left(t \mathrm{e}^{\mathrm{i} \theta}\right)\right| \mathrm{d} t,
$$

and with the aid of (5.6) we may write

$$
\left|\left(D^{n} f * S_{\alpha}\right)(z)\right| \leq \int_{0}^{|z|} \frac{1+2 \beta|b| t+(2 \beta-1)[2 \beta \operatorname{Re}(b)-(2 \beta-1)] t^{2}}{1-(2 \beta-1)^{2} t^{2}} \mathrm{~d} t .
$$

Further, by using (5.5) we obtain

$$
\begin{aligned}
\left|\left(D^{n} f * S_{\alpha}\right)(z)\right| & \geq \int_{0}^{|z|} \operatorname{Re}\left(\left(D^{n} f * S_{\alpha}\right)^{\prime}\left(t \mathrm{e}^{\mathrm{i} \theta}\right)\right) \mathrm{d} t \\
& \geq \int_{0}^{|z|} \frac{1-2 \beta|b| t+(2 \beta-1)[2 \beta \operatorname{Re}(b)-(2 \beta-1)] t^{2}}{1-(2 \beta-1)^{2} t^{2}} \mathrm{~d} t
\end{aligned}
$$

The following example shows that the inequalities (5.1) and (5.2) are sharp.

Example 2. Let
$(5.7)\left(D^{n} f * S_{\alpha}\right)(z)=\int_{0}^{z} \frac{1+2 \beta|b| t+(2 \beta-1)[2 \beta \operatorname{Re}(b)-(2 \beta-1)] t^{2}}{1-(2 \beta-1)^{2} t^{2}} \mathrm{~d} t$,
where $b \neq 0$, complex, $0<\beta \leq 1, \beta \neq \frac{1}{2}, n \in N_{0}$ and $0 \leq \alpha<1$. It is easy to verify that $f(z) \in R_{\alpha}^{n}(b, \beta)$, and that the equalities in (5.1) and (5.2) are attained for $z= \pm r$.

Remark 3. (1) Taking appropriate values of b and β in Theorem 4, we get the distortion theorems for functions in the classes $R_{\alpha}^{n}(b), R_{\alpha}^{* n}(\rho), R_{\alpha}^{n}(b, \delta)$, $R_{\alpha, \delta}^{* n, \lambda}(\rho), R_{\alpha}^{* n, \lambda}(\xi, \rho),\left(R_{\alpha, 1}^{n, \lambda}(\rho)\right)^{\sigma}, R_{\alpha}^{n, \lambda}(a, d)$, and $R_{\alpha, m, M}^{n, \lambda}(\rho)$.
(2) The result in Theorem 4 can be used to solve the problem concerning the radii of $R_{\alpha}^{n}(b, \beta)$ in $R_{\alpha}^{n}(1,1)=R_{\alpha}^{n}$.

Theorem 16. Let $n \in N_{0}$. If $f(z) \in R_{\alpha}^{n}(b, \beta), \beta \neq \frac{1}{2}$, then $f(z) \in$ $R_{\alpha}^{n}(1,1)=R_{\alpha}^{n}$ for $|z|<\dot{r}$, where

$$
\dot{r}=\frac{1}{\beta|b|+\sqrt{\beta^{2}|b|^{2}-(2 \beta-1)[1-2 \beta+2 \beta \operatorname{Re}(b)]}} .
$$

This result is sharp. An extremal function is given in (5.7).
Proof. Let $f(z) \in R_{\alpha}^{n}(b, \beta)$. Then according to Theorem 4 for $|z|=$ $r<1,\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)$ lies in the closed disc with the center at the point $\frac{1-(2 \beta-1)[2 \beta-1-2 \beta b] r^{2}}{1-(2 \beta-1)^{2} r^{2}}$ and radius $\frac{2 \beta|b| r}{1-(2 \beta-1)^{2} r^{2}}$. It can be shown that this disc lies in the right-half plane if $r<\dot{r}$. This completes the proof of Theorem 5.

6. AN ARGUMENT THEOREM

Theorem 17. Let the function $f(z)$ defined by (1.1) be in the class $R_{\alpha}^{n}(b, \beta)$. Then for $|z|=r, 0 \leq r<1$,

$$
\begin{equation*}
\left|\arg \left(D^{n} f * S_{\alpha}\right)^{\prime}(z)\right| \leq \sin ^{-1}\left\{\frac{2 \beta|b| r^{2}}{\sqrt{a^{2}+d^{2}}}\right\} \tag{6.1}
\end{equation*}
$$

where $a=1-(2 \beta-1)[2 \beta-1-2 \beta \operatorname{Re}(b)] r^{2}$ and $d=2 \beta(2 \beta-1) \operatorname{Im}(b) r^{2}$. The result is sharp.

Proof. By using the similar arguments as in the proof of Theorem 4, it follows that $\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)$ assumes values in the circle of Appolonius whose center is at the point ζ and radius is \Re, where ζ and \Re are given by (5.3) and (5.4), respectively. Thus $\left|\arg \left(D^{n} f * S_{\alpha}\right)^{\prime}(z)\right|$ attains its maximum at points where a ray from the origin is tangent to the circle that is, when

$$
\arg \left(D^{n} f * S_{\alpha}\right)^{\prime}(z)= \pm \sin ^{-1}\left\{\frac{2 \beta|b| r}{\sqrt{a^{2}+d^{2}}}\right\},
$$

where a and d are given as above. The equality in (6.1) holds for the function of the form

$$
\left(D^{n} f * S_{\alpha}\right)(z)=\int_{0}^{z} \frac{1-\eta[2 \beta-1-2 \beta b] t}{1-(2 \beta-1) \eta t} \mathrm{~d} t,
$$

with suitably chosen η, where $|\eta|=1$.
Remark 4. For suitable values of b and β we obtain the argument theorems for functions in the classes $R_{\alpha}^{n}(b), R_{\alpha}^{n}(b, \delta), R_{\alpha, \delta}^{* n, \lambda}(\rho), R_{\alpha}^{* n, \lambda}(\xi, \rho)$ and $\left(R_{\alpha, 1}^{n, \lambda}(\rho)\right)^{\sigma}$.

7. CONVEX SET

Theorem 18. If $f(z)$ and $g(z)$ belong to the class $R_{\alpha}^{n}(b)$, then $t f(z)+$ $(1-t) g(z), 0 \leq t \leq 1$, belongs to the class $R_{\alpha}^{n}(b)$.

Proof. Since $f(z)$ and $g(z)$ belong to the class $R_{\alpha}^{n}(b)$, we have

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left(\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1\right)\right\}>0 \tag{7.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{1}{b}\left(\left(D^{n} g * S_{\alpha}\right)^{\prime}(z)-1\right)\right\}>0 \tag{7.2}
\end{equation*}
$$

for $b \neq 0$, complex, $n \in N_{0}$ and $0 \leq \alpha<1$. Using (7.1) and (7.2), it follows that

$$
\begin{aligned}
& \operatorname{Re}\left\{1+\frac{1}{b}\left[t\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)+(1-t)\left(D^{n} g * S_{\alpha}\right)^{\prime}(z)-1\right]\right\} \\
= & t \operatorname{Re}\left\{1+\frac{1}{b}\left(\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)-1\right)\right\} \\
+ & (1-t) \operatorname{Re}\left\{1+\frac{1}{b}\left(\left(D^{n} g * S_{\alpha}\right)^{\prime}(z)-1\right)\right\}>0,
\end{aligned}
$$

for all $z \in U$. This proves that $t f(z)+(1-t) g(z) \in R_{\alpha}^{n}(b)$.
Theorem 19. If $f(z)$ and $g(z)$ belong to the class $R_{\alpha}^{n}(b, \delta)$, then $t f(z)+$ $(1-t) g(z), 0 \leq t \leq 1$, belongs to the class $R_{\alpha}^{n}(b, \delta)$.

Proof. Since $f(z)$ and $g(z)$ belong to the class $R_{\alpha}^{n}(b, \delta)$, we have

$$
\begin{equation*}
\left|\frac{b-1+\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)}{b}-\delta\right|<\delta, \tag{7.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\frac{b-1+\left(D^{n} g * S_{\alpha}\right)^{\prime}(z)}{b}-\delta\right|<\delta, \tag{7.4}
\end{equation*}
$$

for $b \neq 0$, complex, $n \in N_{0}, 0 \leq \alpha<1$ and $\delta>\frac{1}{2}$. Using (7.3) and (7.4), it follows that

$$
\begin{aligned}
& \left|\frac{b-1+\left[t\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)+(1-t)\left(D^{n} g * S_{\alpha}\right)^{\prime}(z)\right]}{b}-\delta\right| \\
\leq & t\left|\frac{b-1+\left[t\left(D^{n} f * S_{\alpha}\right)^{\prime}(z)\right]}{b}-\delta\right| \\
+ & (1-t)\left|\frac{b-1+\left(D^{n} g * S_{\alpha}\right)^{\prime}(z)}{b}-\delta\right| \\
< & t \delta+(1-t) \delta=\delta,
\end{aligned}
$$

for all $z \in U$. This proves that $t f(z)+(1-t) g(z) \in R_{\alpha}^{n}(b, \delta)$.
The following result can also be proved on the similar lines:
Theorem 20. If $f(z)$ and $g(z)$ belong to the class $R_{\alpha}^{* n, \lambda}(\xi, \rho)$, then $t f(z)+$ $(1-t) g(z), 0 \leq t \leq 1$, belongs to the same class $R_{\alpha}^{* n, \lambda}(\xi, \rho)$.

REFERENCES

[1] Abdul Halim, S., On a class of functions of complex order, Tamkang J. Math., 30 (1999), no. 2, 147-153.
[2] Ahuja, O.P., Univalent functions whose derivatives have a positive real part, Rend. Mat., (7) 2 (1982), no. 1, 173-187.
[3] Caplinger, T.R. and Causey, W.M., A class of univalent functions, Proc. Amer. Math. Soc., 39 (1973), 357-361.
[4] Chen, M.P., A class of univalent functions, Soochow J. Math., 6 (1980), 49-57.
[5] Ezrohi, T.G., Certain estimates in special classes of univalent functions in the unit circle $|z|<1$, Dopovidi Akad. Nauk. Ukrain RSR (1965), 984-988.
[6] Goel, R.M., A class of univalent functions with fixed second coefficients, J. Math. Sci., 4 (1969), 85-92.
[7] Goel, R.M., A class of univalent functions whose derivatives have positive real part in the unit disc, Nieuw Arch. Voor Wisk., 3 (1967), no. 15, 55-63.
[8] Goel, R.M., A class of analytic functions whose derivatives have positive real part in the unit disc, Indian J. Math., 13 (1971), 141-145.
[9] Goalakrishna, H.S. and Umarami, P.G., Coefficient estimates for some classes of spiral-like functions, Indian J. Pure Appl. Math., 11 (1980), no. 8, 1011-1017.
[10] Juneja, O.P. and Mogra, M.L., A class of univalent functions, Bull. Sci. Math. 2^{c}, 103 (1979), 435-447.
[11] Keogh, F.R. and Merkes, E.P., A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.
[12] MacGregor, T.H., A class of univalent functions, Proc. Amer. Math. Soc., 15 (1964), 311-317.
[13] MacGregor, T.H., Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104 (1962), 532-537.
[14] Maköwka, B., On some subclasses of univalent functions, Zesz. Nauk. Polit. Lodzkiej, 9 (1977), 71-76.
[15] Mogra, M.L., On a class of univalent functions whose derivatives have a positive real part, Riv. Mat. Univ. Parma, 4 (1981), no. 7, 163-172.
[16] Mogra, M.L., On a special class of p-valent analytic functions, Bull. Inst. Math. Acad. Sinica, 14 (1986), no. 1, 51-65.
[17] Nehari, Z., Conformal Mapping, McGraw-Hill Book Co., Inc., 1952.
[18] Owa, S., A class of univalent functions, Indian J. Math., 26 (1984), 179-188.
[19] Padmanabhan, K.S., On a certain class of functions whose derivative have a positive real part in the unit disc, Ann. Polon. Math., 23 (1970), 73-81.
[20] Robertson, M.S., On the theory of univalent functions, Ann. Math., 37 (1936), 374408.
[21] Salagean, G.S., Subclasses of univalent functions, Lecture Notes in Math., 1013 (1983), Springer-Verlag, pp. 362-372.

Received December 20, 2004
Mathematics Department
Girls College of Education
Science Sections
Jeddah, Saudi Arabia
Mathematics Department
Girls College of Education
Science Sections
Riyadh, Saudi Arabia
E-mail: fma34@yahoo.com
Mathematics Department
Girls College of Education
Science Sections
Abha, Saudi Arabia
E-mail: majbh2001@yahoo.com

