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ON A CERTAIN CLASS OF ANALYTIC FUNCTIONS
WITH COMPLEX ORDER DEFINED BY SALAGEAN OPERATOR

M.K. AOUF, F.M. AL-OBOUDI and M.M. HAIDAN

Abstract. We introduce a class, namely Rn
α (b, β)(b 6= 0, complex, 0 < β ≤ 1,

n ∈ N0 = {0, 1, 2, . . . } and 0 ≤ α < 1) of analytic functions defined by using
Hadamard product (Dnf ∗ Sα)(z) of the differential operator Dnf (z) = z +
∞P

k=2

knakzk and Sα (z) =
z

(1− z)2(1−α)
and satisfying the condition

�
�
�
�
�

(Dnf ∗ Sα)′ (z)− 1

2β
�
(Dnf ∗ Sα)′ (z)− 1 + b

�
−
�
(Dnf ∗ Sα)′ (z)− 1

�

�
�
�
�
�
< 1, z ∈ U.

In this paper we determine a sufficient condition, coefficient estimates, max-
imization of

�
�a3 − µa2

2

�
� over the class Rn

α (b, β), distortion theorem and an ar-
gument theorem for the class Rn

α (b, β). Further we prove that some of the
subclasses of Rn

α (b, β) are closed under convolution.
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1. INTRODUCTION

Let A denote the class of functions of the form:

f (z) = z +
∞∑

k=2

akz
k,(1.1)

which are analytic in the unit disc U = {z : |z| < 1}. Also let S denote the
subclass of A consisting of analytic and univalent functions f (z) in U . We use
Ω to denote the class of bounded analytic functions ω (z) in U which satisfy
the conditions ω (0) = 0 and |ω (z)| ≤ |z| for z ∈ U . If the function f (z) ∈ A
satisfies the condition

Re
{
f ′ (z)

}
> 0, z ∈ U,(1.2)

then it is well known that f (z) is univalent in U . We denote the class of such
functions by R. This class was introduced and studied by MacGregor [13].

Let Rα denotes the class of functions f (z) ∈ A that satisfy the condition

Re
{
f ′ (z)

}
> α, 0 ≤ α < 1, z ∈ U.(1.3)

The class Rα was studied by Ezrohi [5]. Clearly R0 ≡ R.
A function f (z) ∈ S is said to be starlike of order α if and only if

Re
{

zf ′ (z)
f (z)

}
> α, z ∈ U,(1.4)
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for some α (0 ≤ α < 1). We denote the class of all starlike functions of order
α by S∗ (α).

Now, the function

Sα (z) =
z

(1− z)2(1−α)
(1.5)

is the well-known extremal function for the class S∗ (α) (see [20]).
Setting

C (α, k) =

k∏
p=2

(p− 2α)

(k − 1)!
(k ≥ 2) ,(1.6)

Sα (z) can be written in the form

Sα (z) = z +
∞∑

k=2

C (α, k) zk.(1.7)

Then we note that C (α, k) is a decreasing function in α and satisfies

lim
k→∞

C (α, k) =


∞ , α < 1

2

1 , α = 1
2

0 , α > 1
2

·

Let (f ∗ g) (z) be the convolution or Hadamard product of two functions
f (z) and g (z), that is, f (z) is given by (1.1) and g (z) is given by

g (z) = z +
∞∑

k=2

bkz
k,(1.8)

then

(f ∗ g) (z) = z +
∞∑

k=2

akbkz
k.(1.9)

For a function f (z) ∈ S, we define

D0f (z) = f (z) ,(1.10)
D1f (z) = Df (z) = zf ′ (z) ,(1.11)

and

Dnf (z) = D
(
Dn−1f (z)

)
(n ∈ N = {1, 2, . . . }) .(1.12)

It is easy to see that

Dnf (z) = z +
∞∑

k=2

knakz
k, n ∈ N0 = N ∪ {0} .(1.13)

The differential operator Dn was introduced by Salagean [21].
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In this paper, we introduce the class Rn
α (b, β) of functions f (z) ∈ A, defined

as follows:

Definition 1. Let f (z) ∈ A; and let b 6= 0, complex, 0 < β ≤ 1, n ∈ N0

and 0 ≤ α < 1. Then f (z) is said to be in the class Rn
α (b, β) if it satisfies the

condition∣∣∣∣∣ (Dnf ∗ Sα)′ (z)− 1
2β

[
(Dnf ∗ Sα)′ (z)− 1 + b

]
−

[
(Dnf ∗ Sα)′ (z)− 1

]∣∣∣∣∣ < 1,(1.14)

for all z ∈ U .

We note that R0
1
2

(1, 1) ≡ R, R0
1
2

(1− ρ, 1) ≡ Rρ (0 ≤ ρ < 1) and

R0
1
2

(b, β) =
{

f (z) ∈ A :
∣∣∣∣ f ′ (z)− 1
2β (f ′ (z)− 1 + b)− (f ′ (z)− 1)

∣∣∣∣ < 1, z ∈ U

}
.

By taking different values of b, β, n and α, the class Rn
α (b, β) reduces to

various well known subclasses of R; for example,
(1) R0

1
2

(b, 1) = R (b) (Abdul Halim [1]);

(2) R0
1
2

(
(1− ρ) e−iλ cos λ, β

)
= Rλ (ρ, β) (|λ| < π

2
, 0 ≤ ρ < 1, 0 < β ≤ 1)

(Ahuja [2]);

(3) R0
1
2

(
2β (1− ρ) e−iλ cos λ

1 + β
,
1 + β

2

)
= Rλ

ρ,β (|λ| <
π

2
, 0 ≤ ρ < 1, 0 <

β ≤ 1) (Maköwka [14] and Gopalakrishna and Umarani [9]);

(4) R0
1
2

(
2γ

1 + γ
,
1 + γ

2

)
= R (γ) (0 < γ ≤ 1)(Padmanabhan [19] and

Caplinger and Causey [3]);
(5) R0

1
2

(
1, 1

2

)
= R∗ (MacGregor [12]);

(6) R0
1
2

(
σ, 1

2

)
= R∗ (σ) (0 < σ ≤ 1) (Goel [6]);

(7) R0
1
2

(
1, 2δ−1

2δ

)
= S (δ) (δ > 1

2) (Goel [7, 8]);

(8) R0
1
2

(
1− a− d,

1− a + d

2d

)
= S (a, d) (a+d ≥ 1, d ≤ a ≤ d+1) (Chen

[4] and Owa [18]);

(9) R0
1
2

(
σe−iλ cos λ,

1
2

)
=

(
Rλ

1

)σ (|λ| < π

2
, 0 < σ ≤ 1) (Mogra [16]);

(10) R0
1
2

(
2γ

1 + γ
e−iλ cos λ,

1 + γ

2

)
=

(
Rλ

1

)
γ

(|λ| <
π

2
, 0 < γ ≤ 1) (Mogra

[16]);

(11) R0
1
2

(
2 (1− ρ) β

1 + β
,
1 + β

2

)
= R (ρ, β) (0 ≤ ρ < 1, 0 < β ≤ 1) (Juneja

and Mogra [10]);
(12) R0

1
2

(1− ρ, β) = R1 (ρ, β) (0 ≤ ρ < 1, 0 < β ≤ 1) (Mogra [15]);
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(13) R0
1
2

(
(1− ρ) e−iλ cos λ, 1

)
= Rλ

ρ (|λ| < π

2
, 0 ≤ ρ < 1) (Ahuja [2]);

(14) R0
1
2

(
e−iλ cos λ,

2− cos λ

2

)
= R∗λ (Ahuja [2]);

(15) R0
1
2

(
e−iλ cos λ,

2δ − 1
2δ

)
= R∗λ

δ (|λ| < π

2
, δ >

1
2
) (Ahuja [2]);

(16) R0
1
2

(
e−iλ cos λ, 1− ρ

)
= R∗λ (ρ) (|λ| < π

2
, 0 ≤ ρ < 1) (Ahuja [2]).

We further, observe that by special choices of b and β our class Rn
α (b, β)

give rise to the following new subclasses of R:

(1) Rn
α (b, 1) = Rn

α (b)

=
{

f (z) ∈ A : Re
{

1 +
1
b

(
(Dnf ∗ Sα)′ (z)− 1

)}
> 0, z ∈ U

}
;

(2) Rn
α

(
1− ρ, 1

2

)
= R∗n

α (ρ)

=
{
f (z) ∈ A :

∣∣(Dnf ∗ Sα)′ (z)− 1
∣∣ < 1− ρ, 0 ≤ ρ < 1, z ∈ U

}
;

(3) Rn
α

(
b,

2δ − 1
2δ

)
= Rn

α (b, δ)

=
{

f (z) ∈ A :
∣∣∣∣b− 1 + (Dnf ∗ Sα)′ (z)

b
− δ

∣∣∣∣ < δ, δ >
1
2
, z ∈ U

}
;

(4) Rn
α

(
(1− ρ) e−iλ cos λ,

2δ − 1
2δ

)
= R∗n,λ

α,δ (ρ)

=
{

f (z) ∈ A :
∣∣∣∣eiλ (Dnf ∗ Sα)′ (z)− ρ cos λ− i sinλ

(1− ρ) cos λ
− δ

∣∣∣∣ < δ,

|λ| < π

2
, 0 ≤ ρ < 1, δ >

1
2
, z ∈ U

}
;

(5) Rn
α

(
(1− ρ) e−iλ cos λ, 1− ξ

)
= R∗n,λ

α (ξ, ρ)

=
{

f (z) ∈ A :
∣∣∣∣eiλ (Dnf ∗ Sα)′ (z)− ρ cos λ− i sinλ

(1− ρ) cos λ
− 1

2ξ

∣∣∣∣ <
1
2ξ

,

|λ| < π

2
, 0 ≤ ρ < 1, 0 ≤ ξ < 1, z ∈ U

}
;

(6) Rn
α

(
(1− ρ) σe−iλ cos λ, 1

2

)
=

(
Rn,λ

α,1 (ρ)
)σ

=
{

f (z) ∈ A :
∣∣∣∣eiλ (Dnf ∗ Sα)′ (z)− ρ cos λ− i sinλ

(1− ρ) cos λ
− 1

∣∣∣∣ < σ,

|λ| < π

2
, 0 ≤ ρ < 1, 0 < σ ≤ 1, z ∈ U

}
;
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(7) Rn
α

(
[(1− a) + d] e−iλ cos λ,

(1− a) + d

2d

)
= Rn,λ

α (a, d)

=
{

f (z) ∈ A :
∣∣∣∣eiλ (Dnf ∗ Sα)′ (z)− i sinλ

cos λ
− a

∣∣∣∣ < d,

|λ| < π

2
, a + d > 1, d ≤ a ≤ d + 1, z ∈ U

}
;

(8) Rn
α

(
[(1−m)−M ] (1− ρ) e−iλ cos λ,

(1−m) + M

2M

)
= Rn,λ

α,m,M (ρ)

=
{

f (z) ∈ A :
∣∣∣∣eiλ (Df ∗ Sα)′ (z)− ρ cos λ− i sinλ

(1− ρ) cos λ
−m

∣∣∣∣ < M,

|λ| < π

2
, 0 ≤ ρ < 1, |m− 1| < M ≤ m, m >

1
2
, z ∈ U

}
.

2. A SUFFICIENT CONDITION

Theorem 1. The function f (z) defined by (1.1) is in the class Rn
α (b, β), if

for b 6= 0, complex, n ∈ N0, and 0 ≤ α < 1,
∞∑

k=2

kn+1C (α, k) |ak| ≤
β |b|
1− β

,(2.1)

whenever β ∈ (0, 1
2 ], and

∞∑
k=2

kn+1C (α, k) |ak| ≤ |b| ,(2.2)

whenever β ∈ [12 , 1], holds.

Proof. Let |z| = r < 1, and suppose 0 < β ≤ 1
2 . Then∣∣(Dnf ∗ Sα)′ (z)− 1

∣∣− ∣∣2β
[
(Dnf ∗ Sα)′ (z)− 1 + b

]
−

[
(Dnf ∗ Sα)′ (z)− 1

]∣∣ =

∣∣∣∣∣
∞∑

k=2

kn+1C (α, k) akz
k−1

∣∣∣∣∣
−

∣∣∣∣∣2βb− (1− 2β)
∞∑

k=2

kn+1C (α, k) akz
k−1

∣∣∣∣∣ ≤
∞∑

k=2

kn+1C (α, k) |ak| rk−1

−

{
2β |b| − (1− 2β)

∞∑
k=2

kn+1C (α, k) |ak| rk−1

}

≤ 2

[
(1− β)

∞∑
k=2

kn+1C (α, k) |ak| − β |b|

]
.
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The last quantity is nonpositive by (2.1), so that f (z) ∈ Rn
α (b, β). Next, we

assume that (2.2) holds for 1
2 ≤ β ≤ 1. Then∣∣(Dnf ∗ Sα)′ (z)− 1

∣∣− ∣∣2β
[
(Dnf ∗ Sα)′ (z)− 1 + b

]
−

[
(Dnf ∗ Sα)′ (z)− 1

]∣∣ =

∣∣∣∣∣
∞∑

k=2

kn+1C (α, k) akz
k−1

∣∣∣∣∣
−

∣∣∣∣∣2βb− (1− 2β)
∞∑

k=2

kn+1C (α, k) akz
k−1

∣∣∣∣∣
≤ 2β

[ ∞∑
k=2

kn+1C (α, k) |ak| − |b|

]
≤ 0.

This proves that f (z) ∈ Rn
α (b, β), hence the theorem. �

We note that

f (z) = z +
βb

(1− β) kn+1C (α, k)
zk (k ≥ 2) ,

is an extremal function with respect to the first part of the theorem and

f (z) = z +
b

kn+1C (α, k)
zk (k ≥ 2) ,

is an extremal function with respect to the second part of the theorem, since∣∣∣∣∣ (Dnf ∗ Sα)′ (z)− 1
2β

[
(Dnf ∗ Sα)′ (z)− 1 + b

]
−

[
(Dnf ∗ Sα)′ (z)− 1

]∣∣∣∣∣ = 1

for z = 1, b 6= 0, complex, 0 < β ≤ 1, n ∈ N0, 0 ≤ α < 1, and k ≥ 2.
We also observe that the converse of the above theorem may not be true.

For example, consider the function (Dnf ∗ Sα)′ (z) defined by

(Dnf ∗ Sα)′ (z) =
1− (2β − 1− 2βb) z

1− (2β − 1) z
.

It is easily seen that f (z) ∈ Rn
α (b, β) but

∞∑
k=2

kn+1C (α, k) (1− β)
β |b|

|ak|

=
∞∑

k=2

kn+1C (α, k) (1− β)
β |b|

· 2β |b| (2β − 1)k−2

kn+1C (α, k)

=
∞∑

k=2

2 (1− β) (2β − 1)k−2 ≥ 1,
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for b 6= 0, complex, 0 < β ≤ 1
2 , n ∈ N0, and 0 ≤ α < 1, and also

∞∑
k=2

kn+1C (α, k)
|b|

|ak| =
∞∑

k=2

kn+1C (α, k)
|b|

2β |b| (2β − 1)k−2

kn+1C (α, k)

=
∞∑

k=2

2β (2β − 1)k−2 ≥ 1,

for b 6= 0, complex, 1
2 ≤ β ≤ 1, n ∈ N0, 0 ≤ α < 1 and z ∈ U .

Corollary 2. Let the function f (z) defined by (1.1) be analytic in U . If
for b 6= 0, complex, n ∈ N0, and 0 ≤ α < 1,

∞∑
k=2

kn+1C (α, k) |ak| ≤ |b| ,

then f (z) belongs to Rn
α (b).

Corollary 3. Let the function f (z) defined by (1.1) be analytic in U . If
for b 6= 0, complex, n ∈ N0, and 0 ≤ α < 1,

∞∑
k=2

kn+1C (α, k) |ak| ≤ (2δ − 1) |b| ,

whenever 1
2 < δ ≤ 1, and

∞∑
k=2

kn+1C (α, k) |ak| ≤ |b| ,

whenever δ ≥ 1, then f (z) belongs to Rn
α (b, δ).

Corollary 4. Let the function f (z) defined by (1.1) be analytic in U . If
for n ∈ N0, 0 ≤ α < 1, |λ| < π

2 , and 0 ≤ ρ < 1
∞∑

k=2

kn+1C (α, k) |ak| ≤ (2δ − 1) (1− ρ) cos λ,

whenever 1
2 < δ ≤ 1, and

∞∑
k=2

kn+1C (α, k) |ak| ≤ (1− ρ) cos λ,

whenever δ ≥ 1, then f (z) belongs to R∗n,λ
α (ρ) .

Corollary 5. Let the function f (z) defined by (1.1) be analytic in U . If
for n ∈ N0, 0 ≤ α < 1, |λ| < π

2 , 0 ≤ ρ < 1 and 0 ≤ ξ < 1,

∞∑
k=2

kn+1C (α, k) |ak| ≤
(

1− ξ

ξ

)
(1− ρ) cos λ,
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whenever 1
2 ≤ ξ < 1, and

∞∑
k=2

kn+1C (α, k) |ak| ≤ (1− ρ) cos λ,

whenever 0 ≤ ξ ≤ 1
2 , then f (z) belongs to R∗n,λ

α,δ (ξ, ρ) .

Corollary 6. Let the function f (z) defined by (1.1) be analytic in U . If
for n ∈ N0, 0 ≤ α < 1, |λ| < π

2 , 0 ≤ ρ < 1 and 0 < σ ≤ 1,

∞∑
k=2

kn+1C (α, k) |ak| ≤ (1− ρ) σ cos λ,

then f (z) belongs to
(
Rn,λ

α,1 (ρ)
)σ

.

3. COEFFICIENT ESTIMATES

Theorem 7. Let the function f (z) defined by (1.1) be in the class Rn
α (b, β) .

Then

|ak| ≤
2β |b|

kn+1C (α, k)
(k ≥ 2) .(3.1)

The result is sharp.

Proof. Since f (z) ∈ Rn
α (b, β), we have from Schwarz’s lemma [17]

(Dnf ∗ Sα)′ (z) =
1 + (2β − 1− 2βb) ω (z)

1 + (2β − 1) ω (z)
,(3.2)

where ω (z) =
∞∑

k=1

tkz
k ∈ Ω. From (3.2), we have[

2βb + (2β − 1)
∞∑

k=2

kn+1C (α, k) akz
k−1

] [ ∞∑
k=1

tkz
k

]

= −
∞∑

k=2

kn+1C (α, k) akz
k−1.(3.3)

Equality corresponding coefficients on both sides of (3.3) we find that the
coefficient ak on the right of (3.3) depends only on a2, a3, . . . , ak−1 on the left
of (3.3). Therefore, for k ≥ 2, (3.3) yields[

2βb + (2β − 1)
m−1∑
k=2

kn+1C (α, k) akz
k−1

]
ω (z)

= −
m∑

k=2

kn+1C (α, k) akz
k−1 −

∞∑
k=m+1

bkz
k−1,(3.4)
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where
∞∑

k=m+1

bkz
k−1 converges in U . Then, since |ω (z)| < 1 by using Parseval’s

identity [17], we obtain
m∑

k=2

k2(n+1) (C (α, k))2 |ak|2 r2(k−1) +
∞∑

k=m+1

|bk|2 r2(k−1)

≤ 4β2 |b|2 + (2β − 1)2
m−1∑
k=2

k2(n+1) (C (α, k))2 |ak|2 r2(k−1).(3.5)

Taking the limit as r approaches 1, we have
m∑

k=2

k2(n+1) (C (α, k))2 |ak|2

≤ 4β2 |b|2 + (2β − 1)2
m−1∑
k=2

k2(n+1) (C (α, k))2 |ak|2 .

Thus

m2(n+1) (C (α, m))2 |am|2

≤ 4β2 |b|2 + (2β − 1)2
m−1∑
k=2

k2(n+1) (C (α, k))2 |ak|2 .(3.6)

Since 0 < β ≤ 1, (3.6) yields m2(n+1) (C (α, m))2 |am|2 ≤ 4β2 |b|2 which implies
|am| ≤ 2β|b|

mn+1C(α,m)
(m ≥ 2). �

The following example shows that the inequality (3.1) is sharp.

Example 1. Let

(Dnf ∗ Sα) (z) =

z∫
0

1− (2β − 1− 2βb) tk−1

1− (2β − 1) tk−1
dt,(3.7)

where b 6= 0, complex, 0 < β ≤ 1, n ∈ N0 and 0 ≤ α < 1. Then it is easy to
see that∣∣∣∣∣ (Dnf ∗ Sα)′ (z)− 1

2β
[
(Dnf ∗ Sα)′ (z)− 1 + b

]
−

[
(Dnf ∗ Sα)′ (z)− 1

]∣∣∣∣∣ < 1 (z ∈ U) ,

which proves that f (z) ∈ Rn
α (b, β). Then the function (Dnf ∗ Sα) (z) has the

expansion

(Dnf ∗ Sα) (z) = z +
2βb

k
zk + . . . (z ∈ U) ,

which shows that the estimate (3.1) is sharp.



12 M.K. Aouf, F.M. Al-Oboudi and M.M. Haidan 10

On replacing the pair (b, β), in turn, by the pairs (b, 1),
(
b, 2δ−1

2δ

) (
δ > 1

2

)
,(

(1− ρ) e−iλ cos λ, 2δ−1
2δ

)
(|λ| < π

2 , 0 ≤ ρ < 1, δ > 1
2),

(
(1− ρ) e−iλ cos λ, 1− ξ

)
(0 ≤ ρ < 1, |λ| < π

2 , 0 ≤ ξ < 1) and
(
(1− ρ) σe−iλ cos λ, 1

2

)
(|λ| < π

2 , 0 ≤ ρ <
1, 0 < σ ≤ 1) in Theorem 2 we obtain, respectively, the coefficient estimates
for the classes Rn

α (b), Rn
α (b, δ), R∗n,λ

α,δ (ρ), R∗n,λ
α (ξ, ρ) and

(
Rn,λ

α,1 (ρ)
)σ

; which
we state in the following corollaries:

Corollary 8. Let the function f (z) defined by (1.1) be in Rn
α (b). Then

|ak| ≤ 2|b|
kC(α,k) (k ≥ 2). The result is sharp.

Corollary 9. Let the function f (z) defined by (1.1) be in Rn
α (b, δ). Then

|ak| ≤
( 2δ−1

δ )|b|
kn+1C(α,k)

(k ≥ 2). The result is sharp.

Corollary 10. Let the function f (z) defined by (1.1) be in R∗n,λ
α,δ (ρ). Then

|ak| ≤
(

2δ−1
δ

) (1−ρ) cos λ
kn+1C(α,k)

(k ≥ 2). The result is sharp.

Corollary 11. Let the function f (z) defined by (1.1) be in R∗n,λ
α (ξ, ρ).

Then |ak| ≤ 2(1−ξ)
kn+1C(α,k)

(1− ρ) cos λ (k ≥ 2). The result is sharp.

Corollary 12. Let the function f (z) defined by (1.1) be in
(
R∗n,λ

α,1 (ρ)
)σ

.

Then |ak| ≤ (1−ρ)σ cos λ
kn+1C(α,k)

(k ≥ 2). The result is sharp.

Remark 1. By taking appropriate values of b, β, n, and α in Theorem 2 we
obtain the corresponding results established by Maköwka [14], Padmanabhan
[19], Caplinger and Causey [3], Goel [7], MacGregor [12,13], Ahuja [1], Chen
[4], Owa [18], Mogra [15], Gopalakrishna and Umarani [9], and Juneja and
Mogra [10].

4. MAXIMIZATION OF
∣∣A3 − µA2

2

∣∣
We shall need in our discussion the following lemma [11]:

Lemma 13. Let ω (z) =
∞∑

m=1
tmzm ∈ Ω, if µ is any complex number, then∣∣t2 − µt21
∣∣ ≤ max {1, |µ|} .(4.1)

Equality may be attained with the functions ω (z) = z2 and ω (z) = z for
|µ| < 1 and |µ| ≥ 1, respectively.

Theorem 14. Let the function f (z) defined by (1.1) be in the class Rn
α (b, β),

β 6= 1
2 , then for any complex number µ, we have∣∣a3 − µa2

2

∣∣ ≤ 2β |b|
3n+1C (α, 3)

max {1, |d|} ,(4.2)
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where

d =
−22n+1 (C (α, 2))2 (2β − 1) + 3n+1C (α, 3) µβb

22n+1 (C (α, 2))2
.(4.3)

The result is sharp.

Proof. Since f (z) ∈ Rn
α (b, β), we have

(Dnf ∗ Sα)′ (z) =
1 + (2β − 1− 2βb) ω (z)

1 + (2β − 1) ω (z)
,(4.4)

where ω (z) =
∞∑

m=1
tmzm ∈ Ω. From (4.4), we get

ω (z) = − (Dnf ∗ Sα)′ (z)− 1
2β

[
(Dnf ∗ Sa)

′ (z)− 1 + b
]
−

[
(Dnf ∗ Sα)′ (z)− 1

]
= − 1

2βb

{
2n+1C (α, 2) a2z +[

3n+1C (α, 3) a3 +
22(n+1) (C (α, 2))2 (1− 2β)

2βb
a2

2

]
z2 + . . .

}
.(4.5)

Now compare the coefficients of z and z2 on both sides of (4.5). We thus
obtain

a2 =
−βb

2nC (α, 2)
t1,(4.6)

and

a3 =
2βb

3n+1C (α, 3)
[
(2β − 1) t21 − t2

]
.(4.7)

Using (4.6), (4.7) and (4.1), we get the result. Since (4.1) is sharp, (4.2) is
also sharp. �

Remark 2. Taking appropriate values of b and β in Theorem 3, we get the
corresponding results for the classes Rn

α (b), Rn
α (b, δ), R∗n,λ

α,δ (ρ), R∗n,λ
α (ξ, ρ)

and
(
Rn,λ

α,1 (ρ)
)σ

.

5. DISTORTION THEOREM

We now turn to an investigation of distortion properties of Rn
α (b, β).

Theorem 15. Let the function f (z) defined by (1.1) be in the class Rn
α (b, β).

Then for β 6= 1
2 and z ∈ U ,

|(Dnf ∗ Sα) (z)| ≤
|z|∫
0

1 + 2β |b| t + (2β − 1) [2βRe (b)− (2β − 1)] t2

1− (2β − 1)2 t2
dt,(5.1)
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and

|(Dnf ∗ Sα) (z)| ≥
|z|∫
0

1− 2β |b| t + (2β − 1) [2βRe (b)− (2β − 1)] t2

1− (2β − 1)2 t2
dt.(5.2)

For β = 1
2 , the above estimates reduce to |(Dnf ∗ Sα) (z)| ≤ r + |b|

2 r2 and
|(Dnf ∗ Sα) (z)| ≥ r − |b|

2 r2 (|z| = r). The bounds are sharp.

Proof. Since f (z) ∈ Rn
α (b, β) we observe that the condition (1.14) coupled

with an application of Schwarz’s lemma [17], implies
∣∣(Dnf ∗ Sα)′ (z)− ζ

∣∣ < <,
where

ζ =
1− (2β − 1) [2β − 1− 2βRe (b)] r2 + 2iβ (2β − 1) Im (b) r2

1− (2β − 1)2 r2
,(5.3)

and

< =
2β |b| r

1− (2β − 1)2 r2
(|z| = r) .(5.4)

Hence we have

(5.5)
1− 2β |b| r + (2β − 1) [2βRe(b)− (2β − 1)] r2

1− (2β − 1)2 r2

≤ Re
{
(Dnf ∗ Sα)′ (z)

}
≤ 1 + 2β |b| r + (2β − 1) [2βRe(b)− (2β − 1)] r2

1− (2β − 1)2 r2
.

If

g (z) =
1 + 2β |b| z + (2β − 1) [2βRe(b)− (2β − 1)] z2

1− (2β − 1)2 z2
, β 6= 1

2
,

then, since g (0) = 1 = (Dnf ∗ Sα)′ (z) |z=0 and g (z) is univalent in U , it
follows that (Dnf ∗ Sα)′ (z) is subordinate to g (z). Hence

∣∣(Dnf ∗ Sα)′ (z)
∣∣ ≤ 1 + 2β |b| r + (2β − 1) [2βRe(b)− (2β − 1)] r2

1− (2β − 1)2 r2
.(5.6)

In view of

|f (z)| =

∣∣∣∣∣∣
z∫

0

f ′ (s) ds

∣∣∣∣∣∣ ≤
|z|∫
0

∣∣∣f ′ (teiθ
)∣∣∣ dt,

and with the aid of (5.6) we may write

|(Dnf ∗ Sα) (z)| ≤
|z|∫
0

1 + 2β |b| t + (2β − 1) [2βRe(b)− (2β − 1)] t2

1− (2β − 1)2 t2
dt.
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Further, by using (5.5) we obtain

|(Dnf ∗ Sα) (z)| ≥
|z|∫
0

Re
(
(Dnf ∗ Sα)′

(
teiθ

))
dt

≥
|z|∫
0

1− 2β |b| t + (2β − 1) [2βRe(b)− (2β − 1)] t2

1− (2β − 1)2 t2
dt.

The following example shows that the inequalities (5.1) and (5.2) are sharp.
�

Example 2. Let

(Dnf ∗ Sα) (z) =

z∫
0

1 + 2β |b| t + (2β − 1) [2βRe(b)− (2β − 1)] t2

1− (2β − 1)2 t2
dt,(5.7)

where b 6= 0, complex, 0 < β ≤ 1, β 6= 1
2 , n ∈ N0 and 0 ≤ α < 1. It is easy

to verify that f (z) ∈ Rn
α (b, β), and that the equalities in (5.1) and (5.2) are

attained for z = ±r.

Remark 3. (1) Taking appropriate values of b and β in Theorem 4, we get
the distortion theorems for functions in the classes Rn

α (b) , R∗n
α (ρ) , Rn

α (b, δ) ,

R∗n,λ
α,δ (ρ) , R∗n,λ

α (ξ, ρ) ,
(
Rn,λ

α,1 (ρ)
)σ

, Rn,λ
α (a, d), and Rn,λ

α,m,M (ρ).
(2) The result in Theorem 4 can be used to solve the problem concerning

the radii of Rn
α (b, β) in Rn

α (1, 1) = Rn
α.

Theorem 16. Let n ∈ N0. If f (z) ∈ Rn
α (b, β), β 6= 1

2 , then f (z) ∈
Rn

α (1, 1) = Rn
α for |z| < ŕ, where

ŕ =
1

β |b|+
√

β2 |b|2 − (2β − 1) [1− 2β + 2βRe (b)]
.

This result is sharp. An extremal function is given in (5.7).

Proof. Let f (z) ∈ Rn
α (b, β). Then according to Theorem 4 for |z| =

r < 1, (Dnf ∗ Sα)′ (z) lies in the closed disc with the center at the point
1− (2β − 1) [2β − 1− 2βb] r2

1− (2β − 1)2 r2
and radius

2β |b| r
1− (2β − 1)2 r2

. It can be shown

that this disc lies in the right-half plane if r < ŕ. This completes the proof of
Theorem 5. �

6. AN ARGUMENT THEOREM

Theorem 17. Let the function f (z) defined by (1.1) be in the class Rn
α (b, β).

Then for |z| = r, 0 ≤ r < 1,∣∣arg (Dnf ∗ Sα)′ (z)
∣∣ ≤ sin−1

{
2β |b| r2

√
a2 + d2

}
,(6.1)
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where a = 1 − (2β − 1) [2β − 1− 2βRe (b)] r2 and d = 2β (2β − 1) Im (b) r2.
The result is sharp.

Proof. By using the similar arguments as in the proof of Theorem 4, it
follows that (Dnf ∗ Sα)′ (z) assumes values in the circle of Appolonius whose
center is at the point ζ and radius is <, where ζ and < are given by (5.3) and
(5.4), respectively. Thus

∣∣arg (Dnf ∗ Sα)′ (z)
∣∣ attains its maximum at points

where a ray from the origin is tangent to the circle that is, when

arg (Dnf ∗ Sα)′ (z) = ± sin−1

{
2β |b| r√
a2 + d2

}
,

where a and d are given as above. The equality in (6.1) holds for the function
of the form

(Dnf ∗ Sα) (z) =

z∫
0

1− η [2β − 1− 2βb] t
1− (2β − 1) ηt

dt,

with suitably chosen η, where |η| = 1. �

Remark 4. For suitable values of b and β we obtain the argument theo-
rems for functions in the classes Rn

α (b) , Rn
α (b, δ) , R∗n,λ

α,δ (ρ) , R∗n,λ
α (ξ, ρ) and(

Rn,λ
α,1 (ρ)

)σ
.

7. CONVEX SET

Theorem 18. If f (z) and g (z) belong to the class Rn
α (b), then tf (z) +

(1− t) g (z) , 0 ≤ t ≤ 1, belongs to the class Rn
α (b).

Proof. Since f (z) and g (z) belong to the class Rn
α (b), we have

Re
{

1 +
1
b

(
(Dnf ∗ Sα)′ (z)− 1

)}
> 0,(7.1)

and

Re
{

1 +
1
b

(
(Dng ∗ Sα)′ (z)− 1

)}
> 0,(7.2)

for b 6= 0, complex, n ∈ N0 and 0 ≤ α < 1. Using (7.1) and (7.2), it follows
that

Re
{
1 + 1

b

[
t (Dnf ∗ Sα)′ (z) + (1− t) (Dng ∗ Sα)′ (z)− 1

]}
= tRe

{
1 + 1

b

(
(Dnf ∗ Sα)′ (z)− 1

)}
+ (1− t) Re

{
1 + 1

b

(
(Dng ∗ Sα)′ (z)− 1

)}
> 0,

for all z ∈ U . This proves that tf (z) + (1− t) g (z) ∈ Rn
α (b). �

Theorem 19. If f (z) and g (z) belong to the class Rn
α (b, δ), then tf (z) +

(1− t) g (z) , 0 ≤ t ≤ 1, belongs to the class Rn
α (b, δ).
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Proof. Since f (z) and g (z) belong to the class Rn
α (b, δ), we have∣∣∣∣b− 1 + (Dnf ∗ Sα)′ (z)

b
− δ

∣∣∣∣ < δ,(7.3)

and ∣∣∣∣b− 1 + (Dng ∗ Sα)′ (z)
b

− δ

∣∣∣∣ < δ,(7.4)

for b 6= 0, complex, n ∈ N0, 0 ≤ α < 1 and δ > 1
2 . Using (7.3) and (7.4), it

follows that ∣∣∣∣∣b− 1 +
[
t (Dnf ∗ Sα)′ (z) + (1− t) (Dng ∗ Sα)′ (z)

]
b

− δ

∣∣∣∣∣
≤ t

∣∣∣∣∣b− 1 +
[
t (Dnf ∗ Sα)′ (z)

]
b

− δ

∣∣∣∣∣
+ (1− t)

∣∣∣∣b− 1 + (Dng ∗ Sα)′ (z)
b

− δ

∣∣∣∣
< tδ + (1− t) δ = δ,

for all z ∈ U . This proves that tf (z) + (1− t) g (z) ∈ Rn
α (b, δ). �

The following result can also be proved on the similar lines:

Theorem 20. If f (z) and g (z) belong to the class R∗n,λ
α (ξ, ρ), then tf (z)+

(1− t) g (z) , 0 ≤ t ≤ 1, belongs to the same class R∗n,λ
α (ξ, ρ).
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