MATHEMATICA, Tome 46 (69), N° 1, 2004, pp. 101-104

ON SOME PROPERTIES OF UNIVALENT FUNCTIONS IN THE UPPER HALF PLANE

NICOLAE N. PASCU and DORINA RĂDUCANU

Abstract

In this paper we obtain some inequalities concerning the modulus of univalent functions in the upper half-plane. MSC 2000. 30C45. Key words. Univalent functions, inequalities.

1. INTRODUCTION

Let D denote the upper half-plane, i.e.

$$
D=\{z \in \mathbb{C}: \operatorname{Im} z>0\}
$$

and let $H(D)$ denote the class of all analytic functions in D.
The following inequality has been obtained by N.N. Pascu and we will use it to prove our results.

Theorem 1. [1] Let $f \in H(D)$ be an univalent function in D. Then

$$
\begin{equation*}
\left|\mathrm{i}-\operatorname{Im} z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 2, \text { for all } z \in D . \tag{1}
\end{equation*}
$$

As a consequence of Theorem 1 we have
Theorem 2. Let $f \in H(D)$ be an univalent function in D such that $f(z) \neq$ 0 , for all $z \in D$. Then

$$
\begin{equation*}
(\operatorname{Im} z)\left|\frac{f^{\prime}(z)}{f(z)}\right| \leq 2, \text { for all } z \in D \tag{2}
\end{equation*}
$$

Proof. Since $f(z) \neq 0$, for all $z \in D$, the function

$$
\begin{equation*}
g(z)=\frac{1}{f(z)}, \quad z \in D \tag{3}
\end{equation*}
$$

is also analytic and univalent in D. It is easy to check that

$$
\begin{equation*}
\frac{2 f^{\prime}(z)}{f(z)}=\frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{g^{\prime \prime}(z)}{g^{\prime}(z)}, \quad z \in D \tag{4}
\end{equation*}
$$

We have

$$
\begin{aligned}
2(\operatorname{Im} z)\left|\frac{f^{\prime}(z)}{f(z)}\right| & =\left|\operatorname{Im} z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}-\operatorname{Im} z \frac{g^{\prime \prime}(z)}{g^{\prime}(z)}\right| \\
& =\left|-\mathrm{i}+\operatorname{Im} z \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}+\mathrm{i}-\operatorname{Im} z \frac{g^{\prime \prime}(z)}{g^{\prime}(z)}\right| \leq \\
& \leq\left|\mathrm{i}-\operatorname{Im} \frac{f^{\prime \prime}(z)}{f^{\prime}(z)}\right|+\left|\mathrm{i}-\operatorname{Im} z \frac{g^{\prime \prime}(z)}{g^{\prime}(z)}\right|, \quad z \in D
\end{aligned}
$$

Since both functions f and g satisfy the inequality (1) we obtain

$$
2(\operatorname{Im} z)\left|\frac{f^{\prime}(z)}{f(z)}\right| \leq 4, \quad z \in D
$$

and hence inequality (2) holds true.

2. SOME INEQUALITIES FOR THE MODULUS OF UNIVALENT FUNCTIONS IN D

If $f: D \rightarrow \mathbb{C}$ and $f(z) \neq 0, z \in D$ then it is easy to observe that

$$
\begin{equation*}
\frac{\partial}{\partial y}[\ln f(x+\mathrm{i} y)]=\mathrm{i} \frac{f^{\prime}(x+\mathrm{i} y)}{f(x+\mathrm{i} y)} \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial}{\partial x}[\ln f(x+\mathrm{i} y)]=\frac{f^{\prime}(x+\mathrm{i} y)}{f(x+\mathrm{i} y)} \tag{6}
\end{equation*}
$$

Using inequalities (5), (6) and Theorem 2 we obtain
Theorem 3. Let $f \in H(D)$ be an univalent function in D such that $f(z) \neq$ 0 , for all $z \in D$. Then

$$
\begin{equation*}
m(y) \leq\left|\frac{f(x+\mathrm{i} y)}{f(x+\mathrm{i})}\right| \leq M(y) \tag{7}
\end{equation*}
$$

where

$$
m(y)=\min \left\{y^{2}, \frac{1}{y^{2}}\right\}, \quad M(y)=\max \left\{y^{2}, \frac{1}{y^{2}}\right\}
$$

and

$$
\begin{equation*}
\mathrm{e}^{-2|x|} \leq\left|\frac{f(x+\mathrm{i})}{f(i)}\right| \leq \mathrm{e}^{2|x|} \tag{8}
\end{equation*}
$$

for all $x \in \mathbb{R}$ and $y>0$.
Proof. From (2) and (5) we obtain

$$
(\operatorname{Im} z)\left|-\mathrm{i} \frac{\partial}{\partial y}[\ln f(x+\mathrm{i} y)]\right| \leq 2
$$

or equivalently

$$
\left|\frac{\partial}{\partial y}[\ln |f(x+\mathrm{i} y)|]+\mathrm{i} \frac{\partial}{\partial y}[\arg f(x+\mathrm{i} y)]\right| \leq \frac{2}{y}
$$

This last inequality implies

$$
\left|\frac{\partial}{\partial y}[\ln |f(x+\mathrm{i} y)|]\right| \leq \frac{2}{y}, \text { for all } x \in \mathbb{R} \text { and } y>0 .
$$

If $y \in(0,1)$ we have

$$
-\int_{y}^{1} \frac{2}{y} \mathrm{~d} y \leq \int_{y}^{1} \frac{\partial}{\partial y}[\ln |f(x+\mathrm{i} y)|] \mathrm{d} y \leq \int_{y}^{1} \frac{2}{y} \mathrm{~d} y .
$$

Thus we obtain

$$
\begin{equation*}
\frac{1}{y^{2}} \leq\left|\frac{f(x+\mathrm{i} y)}{f(x+\mathrm{i})}\right| \leq y^{2}, \text { for all } x \in \mathbb{R} \text { and } y \in(0,1) \tag{9}
\end{equation*}
$$

If $y \in(1, \infty)$ then

$$
-\int_{1}^{y} \frac{2}{y} \mathrm{~d} y \leq \int_{1}^{y} \frac{\partial}{\partial y}[\ln |f(x+\mathrm{i} y)|] \mathrm{d} y \leq \int_{1}^{y} \frac{2}{y} \mathrm{~d} y
$$

and therefore

$$
\begin{equation*}
\frac{1}{y^{2}} \leq\left|\frac{f(x+\mathrm{i} y)}{f(x+\mathrm{i})}\right| \leq y^{2}, \text { for all } x \in \mathbb{R} \text { and } y \geq 1 \tag{10}
\end{equation*}
$$

Inequalities (7) follow from (9) and (10).
In the same way, from (2) and (6) we obtain

$$
\left|\frac{\partial}{\partial x}[\ln |f(x+\mathrm{i} y)|]\right| \leq \frac{2}{y}
$$

and then

$$
\mathrm{e}^{-2 \frac{|x|}{y}} \leq\left|\frac{f(x+\mathrm{i} y)}{f(i y)}\right| \leq \mathrm{e}^{2 \frac{|x|}{y}}, \text { for all } x \in \mathbb{R} \text { and } y>0 .
$$

If $y=1$ in these last inequalities, then we have (8).
Remark 1. In Theorem 3, inequalities (7) and (8) are sharp. The extremal function is $f(z)=z^{2}, z \in D$.

From inequalities (7) and (8) we obtain the next corollary.
Corollary 1. If $f \in H(D)$ is an univalent function in D such that $f(z) \neq$ 0 , for all $z \in D$, then

$$
m(y) \mathrm{e}^{-2|x|} \leq\left|\frac{f(z)}{f(\mathrm{i})}\right| \leq M(y) \mathrm{e}^{2|x|}
$$

for all $z=x+\mathrm{i} y \in D$, where

$$
m(y)=\min \left\{y^{2}, \frac{1}{y^{2}}\right\} \quad \text { and } \quad M(y)=\max \left\{y^{2}, \frac{1}{y^{2}}\right\}
$$

REFERENCES

[1] Pascu, N.N., On univalent functions in a half-plane, to appear.

Received February 5, 2002

> "Transilvania" University Faculty of Mathematics
> Str. Iuliu Maniu 50 RO-2200 Braşov, Romania

