THEORY OF SUPERORDINATIONS FOR SEVERAL COMPLEX VARIABLES

VERONICA NECHITA

Abstract. Let D be any set of \mathbb{C}^n , let p be holomorphic in the unit ball B^n and let $\varphi : \mathbb{C}^n \times \mathbb{C}^n \times B^n \to \mathbb{C}^n$. In this article we consider the problem of determining properties of functions p that satisfy the superordination

 $D \subset \left\{\varphi\left(p\left(\zeta\right), \left[\left(Dp\left(\zeta\right)\right)^*\right]^{-1}\left(\zeta\right); \zeta\right) : \zeta \in B^n\right\}.$

MSC 2000. 30C65. Key words. Holomorphic maps, superordination.

1. INTRODUCTION

Let Ω be any set in the complex plane, let p be analytic in the unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$ and let $\psi : \mathbb{C}^3 \times U \to \mathbb{C}$. The theory of differential subordinations in the complex plane is by now a classical problem in geometric function theory and deals with the problem of finding properties for functions p that satisfy the subordination

$$\left\{\psi\left(p\left(z\right),zp'\left(z\right),z^{2}p''\left(z\right);z\right):z\in U\right\}\subset\Omega.$$

Recently, S.S. Miller and P.T. Mocanu [6] considered the dual problem, that of determining properties for the functions p that satisfy the superordination

$$\Omega \subset \left\{\psi\left(p\left(z\right), zp'\left(z\right), z^{2}p''\left(z\right); z\right) : z \in U\right\}.$$

Let D be any set of \mathbb{C}^n , let p be holomorphic in the unit ball B^n and let $\varphi : \mathbb{C}^n \times \mathbb{C}^n \times \mathbb{B}^n \to \mathbb{C}^n$. In the last years there was a constant effort to extend the results from the complex plane to several complex variables. One of the generalizations is due to P. Curt [1] and deals with differential subordinations of the form

$$\left\{\varphi\left(p\left(\zeta\right),\left[\left(Dp\left(\zeta\right)\right)^{*}\right]^{-1}\left(\zeta\right);\zeta\right):\zeta\in B^{n}\right\}\subset D.$$

In this article we consider the problem of determining properties of functions p that satisfy the superordination

$$D \subset \left\{\varphi\left(p\left(\zeta\right), \left[\left(Dp\left(\zeta\right)\right)^*\right]^{-1}\left(\zeta\right); \zeta\right) : \zeta \in B^n\right\}.$$

2. PRELIMINARIES

We denote by \mathbb{C}^n the Euclidean space of *n* complex variables with the standard inner product

$$\langle z, w \rangle = \sum_{j=1}^{n} z_j \overline{w_j}, \, z, w \in \mathbb{C}^n,$$

and the norm $||z|| = \langle z, z \rangle^{1/2}$, $z \in \mathbb{C}^n$. Vectors and matrices marked with the symbols ' and * denote the transposed and transposed conjugate vector and matrix respectively.

The open set $\{z \in \mathbb{C}^n : ||z|| < r\}$ is denoted by B_r^n , while the unit ball is abbreviated by $B_1^n = B^n$. The class of holomorphic mappings $f : B^n \to \mathbb{C}^n$ is denoted by $\mathcal{H}(B^n)$.

A mapping $f \in \mathcal{H}(B^n)$ is called locally biholomorphic on B^n if its Fréchét derivative Df(z), as an element of $\mathcal{L}(\mathbb{C}^n, \mathbb{C}^n)$, is nonsingular at each point $z \in B^n$. A mapping $f \in \mathcal{H}(B^n)$ is called biholomorphic if the inverse mapping is holomorphic on $f(B^n)$. If $D^2f(z)$ represents the Fréchét derivative of the second order of $f \in \mathcal{H}(B^n)$ at the point z, then $D^2f(z)$ is a continuous bilinear operator from $\mathbb{C}^n \times \mathbb{C}^n$ into \mathbb{C}^n , while its restriction $D^2f(z)(u, \cdot)$ to $u \times \mathbb{C}^n$ belongs to $\mathcal{L}(\mathbb{C}^n, \mathbb{C}^n)$.

Let f and g be members of $\mathcal{H}(B^n)$. The mapping f is said to be subordinate to g, or the mapping g is said to be superordinate to f, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a mapping $w \in \mathcal{H}(B^n)$, with w(0) = 0 and ||w(z)|| < 1, and such that f(z) = g(w(z)).

From this definition we see that if $f \prec g$, then f(0) = g(0) and $f(B^n) \subseteq g(B^n)$. If in addition g is biholomorphic, then $f \prec g$ if and only if f(0) = g(0) and $f(B^n) \subseteq g(B^n)$.

By using an extended version of the Schwarz Lemma it is easy to prove that if $f \prec g$, then $f(B_r^n) \subset g(B_r^n)$, for all 0 < r < 1.

In this paper we will use a reformulation of [1, Lemma 2] from the theory of differential subordinations of several complex variables.

LEMMA 1. Let $p \in \mathcal{H}(\overline{B^n})$ be a biholomorphic mapping, $q \in \mathcal{H}(B^n)$ locally biholomorphic on B^n , with q(0) = p(0). If p is not superordinated to q, then there exist t > 1 and points $z_0 \in B^n$, $\zeta_0 \in \overline{B^n}$, with $\|\zeta_0\| = 1$ for which

(i) $q(z_0) = p(\zeta_0);$

(ii)
$$t \left[\left(Dq \left(z_0 \right) \right)^* \right]^{-1} (z_0) = \left[\left(Dp \left(\zeta_0 \right) \right)^* \right]^{-1} (\zeta_0);$$

(iii) the inequality

$$t[||u||^{2} - \operatorname{Re}\langle [Dq(z_{0})]^{-1} D^{2}q(z_{0})(u, u), z_{0}\rangle] \\\geq ||w||^{2} - \operatorname{Re}\langle [Dp(\zeta_{0})]^{-1} D^{2}p(\zeta_{0})(w, w), \zeta_{0}\rangle$$

holds for all $u \in \mathbb{C}^n \setminus \{0\}$ with $\operatorname{Re}\langle u, z_0 \rangle = 0$, where $w = [Dp(\zeta_0)]^{-1} Dp(\zeta_0) u$.

3. ADMISSIBLE FUNCTIONS AND A FUNDAMENTAL RESULT

We next define the class of admissible mappings.

DEFINITION 1. Let D be a set in \mathbb{C}^n and $q \in \mathcal{H}(B^n)$ a locally biholomorphic mapping on B^n . The class of admissible mappings $\Phi[D,q]$ consists of those functions $\varphi : \mathbb{C}^n \times \mathbb{C}^n \times \mathbb{B}^n \to \mathbb{C}^n$ that satisfy

$$\varphi\left(x,y;\zeta\right)\in D,$$

whenever $x = q(z), y = t [(Dq(z))^*]^{-1}(z), z \in B^n, \zeta \in \overline{B^n}, ||\zeta|| = 1$ and t > 1.

The next theorem is a foundation result in the theory of differential superordinations for functions of several variables. The proof is very short because of the use of Lemma 1 and the very special conditions in the definition of the class of admissible functions $\Phi[D, q]$.

THEOREM 1. Let D be a set in \mathbb{C}^n , $q \in \mathcal{H}(B^n)$ a locally biholomorphic mapping on B^n and $\varphi \in \Phi[D,q]$. If $p \in \mathcal{H}(\overline{B^n})$ is a biholomorphic mapping on $\overline{B^n}$ such that p(0) = q(0) and $\varphi\left(p(\zeta), \left[(Dp(\zeta))^*\right]^{-1}(\zeta); \zeta\right)$ is injective on $\overline{B^n}$, then

(1)
$$D \subset \left\{ \varphi \left(p\left(\zeta\right), \left[\left(Dp\left(\zeta\right)\right)^* \right]^{-1}\left(\zeta\right); \zeta \right) : \zeta \in B^n \right\} \right\}$$

implies $q \prec p$.

Proof. Assume $q \neq p$. By Lemma 1, there exist two points $z_0 \in B^n$, $\zeta_0 \in \overline{B^n}$, with $\|\zeta_0\| = 1$ and an t > 1 that satisfy the conditions (i)-(iii) of Lemma 1. Using these conditions with $x = p(\zeta_0), y = [(Dp(\zeta_0))^*]^{-1}(\zeta_0)$ and $\zeta = \zeta_0$ in Definition 1 we obtain

$$\varphi(p(\zeta_0), [(Dp(\zeta_0))^*]^{-1}(\zeta_0), \zeta_0) \in D.$$

Since this contradicts (1) we must have $q \prec p$.

4. EXAMPLES

If we choose q(z) = Mz (M > 0) for all $z \in B^n$ in Definition 1 and Theorem 1, we obtain:

COROLLARY 1. Let D be a set in \mathbb{C}^n and $\varphi : \mathbb{C}^n \times \mathbb{C}^n \times B^n \to \mathbb{C}^n$ such that $\varphi\left(Mz, \frac{t}{M}z; \zeta\right) \in D$, for $z \in B^n$, $\zeta \in \overline{B^n}$, $\|\zeta\| = 1$ and t > 1. If $p \in \mathcal{H}(\overline{B^n})$ is a biholomorphic mapping on $\overline{B^n}$ such that p(0) = 0 and $\varphi\left(p(\zeta), [(Dp(\zeta))^*]^{-1}(\zeta); \zeta\right)$ is injective on $\overline{B^n}$, then (2) $D \subset \left\{\varphi\left(p(\zeta), [(Dp(\zeta))^*]^{-1}(\zeta); \zeta\right) : \zeta \in B^n\right\}$

implies $B_M^n \subseteq p(B^n)$.

COROLLARY 2. Let M be a real and positive number and $\lambda \geq 0$. If $p \in \mathcal{H}(\overline{B^n})$ is a biholomorphic mapping on $\overline{B^n}$ such that p(0) = 0 and $p(\zeta) - \lambda [(Dp(\zeta))^*]^{-1}(\zeta)$ is injective on $\overline{B^n}$, then

$$B_{M}^{n} \subset \left\{ p\left(\zeta\right) - \lambda \left[\left(Dp\left(\zeta\right)\right)^{*} \right]^{-1} \left(\zeta\right) : \zeta \in B^{n} \right\} \right\}$$

implies $B_M^n \subseteq p(B^n)$.

EXAMPLE 1. Let M be a positive real number, $\lambda \in (0, 1)$, let B^2 be the unit ball of \mathbb{C}^2 and $p \in \mathcal{H}(\overline{B^2})$ the biholomorphic mapping given by

$$p\left(\zeta\right)=\zeta.$$

The function $p(\zeta) - \lambda \left[(Dp(\zeta))^* \right]^{-1}(\zeta) = (1-\lambda) \zeta$ is injective on $\overline{B^2}$.

EXAMPLE 2. Let M be a real and positive number, $\lambda > 0$ and let p_1, p_2 be complex univalent functions defined in the disk $U_R = \{z \in \mathbb{C} : |z| < R\}, R > 1$, such that

$$\left[\left|p_{i}'(z)\right|^{2}-\lambda\right]\operatorname{Re}p_{i}'(z)>\lambda\left|z\right|\left|p_{i}''(z)\right|, \text{ for } i=1,2 \text{ and all } z\in U_{R}.$$

We define $p: B^2 \to \mathbb{C}^2$, $p(\zeta) = (p_1(\zeta_1), p_2(\zeta_2))'$. Since p satisfies the conditions of the Corollary 2, from the inclusion

$$B_{M}^{2} \subset \left\{ p\left(\zeta\right) - \lambda \left[\left(Dp\left(\zeta\right)\right)^{*} \right]^{-1}\left(\zeta\right) : \zeta \in B^{2} \right\},\right.$$

it implies $B_M^2 \subseteq p(B^2)$.

REFERENCES

- CURT, P., First and second differential subordinations in several complex variables, Studia Univ. Babeş-Bolyai, Mathematica, 40 (1995), no. 4, 33–43.
- [2] CURT, P. and VARGA, CS., Jack, Miller and Mocanu lemma for holomorphic mappings in Cⁿ, Stud. Cerc. Mat., 49 (1997), nos. 1–2, 39–45.
- [3] KOHR, G., On some partial differential subordinations for holomorphic mappings in Cⁿ, Libertas Matematica, XV (1995), 129–142.
- [4] KOHR, G. and LICZBERSKI, P., Univalent Mappings of Several Complex Variables, Cluj University Press, 1998.
- [5] MILLER, S.S. and MOCANU, P.T., Differential Subordinations, Theory and Applications, Marcel Dekker, Inc., New-York, Basel, 1999.
- [6] MILLER, S.S. and MOCANU, P.T., Subordinants of differential superordinations, to appear.

Received July 18, 2002

Faculty of Mathematics and Comp. Science "Babeş-Bolyai" University Str. M. Kogălniceanu 1 RO-400084 Cluj-Napoca, România E-mail: vero@math.ubbcluj.ro

4