THEORY OF SUPERORDINATIONS FOR SEVERAL COMPLEX VARIABLES

VERONICA NECHITA

Abstract

Let D be any set of \mathbb{C}^{n}, let p be holomorphic in the unit ball B^{n} and let $\varphi: \mathbb{C}^{n} \times \mathbb{C}^{n} \times B^{n} \rightarrow \mathbb{C}^{n}$. In this article we consider the problem of determining properties of functions p that satisfy the superordination $$
D \subset\left\{\varphi\left(p(\zeta),\left[(D p(\zeta))^{*}\right]^{-1}(\zeta) ; \zeta\right): \zeta \in B^{n}\right\}
$$

MSC 2000. 30C65. Key words. Holomorphic maps, superordination.

1. INTRODUCTION

Let Ω be any set in the complex plane, let p be analytic in the unit disk $U=\{z \in \mathbb{C}:|z|<1\}$ and let $\psi: \mathbb{C}^{3} \times U \rightarrow \mathbb{C}$. The theory of differential subordinations in the complex plane is by now a classical problem in geometric function theory and deals with the problem of finding properties for functions p that satisfy the subordination

$$
\left\{\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right): z \in U\right\} \subset \Omega .
$$

Recently, S.S. Miller and P.T. Mocanu [6] considered the dual problem, that of determining properties for the functions p that satisfy the superordination

$$
\Omega \subset\left\{\psi\left(p(z), z p^{\prime}(z), z^{2} p^{\prime \prime}(z) ; z\right): z \in U\right\} .
$$

Let D be any set of \mathbb{C}^{n}, let p be holomorphic in the unit ball B^{n} and let $\varphi: \mathbb{C}^{n} \times \mathbb{C}^{n} \times B^{n} \rightarrow \mathbb{C}^{n}$. In the last years there was a constant effort to extend the results from the complex plane to several complex variables. One of the generalizations is due to P . Curt [1] and deals with differential subordinations of the form

$$
\left\{\varphi\left(p(\zeta),\left[(D p(\zeta))^{*}\right]^{-1}(\zeta) ; \zeta\right): \zeta \in B^{n}\right\} \subset D .
$$

In this article we consider the problem of determining properties of functions p that satisfy the superordination

$$
D \subset\left\{\varphi\left(p(\zeta),\left[(D p(\zeta))^{*}\right]^{-1}(\zeta) ; \zeta\right): \zeta \in B^{n}\right\} .
$$

2. PRELIMINARIES

We denote by \mathbb{C}^{n} the Euclidean space of n complex variables with the standard inner product

$$
\langle z, w\rangle=\sum_{j=1}^{n} z_{j} \overline{w_{j}}, z, w \in \mathbb{C}^{n}
$$

and the norm $\|z\|=\langle z, z\rangle^{1 / 2}, z \in \mathbb{C}^{n}$. Vectors and matrices marked with the symbols ' and ${ }^{*}$ denote the transposed and transposed conjugate vector and matrix respectively.

The open set $\left\{z \in \mathbb{C}^{n}:\|z\|<r\right\}$ is denoted by B_{r}^{n}, while the unit ball is abbreviated by $B_{1}^{n}=B^{n}$. The class of holomorphic mappings $f: B^{n} \rightarrow \mathbb{C}^{n}$ is denoted by $\mathcal{H}\left(B^{n}\right)$.

A mapping $f \in \mathcal{H}\left(B^{n}\right)$ is called locally biholomorphic on B^{n} if its Fréchét derivative $D f(z)$, as an element of $\mathcal{L}\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$, is nonsingular at each point $z \in B^{n}$. A mapping $f \in \mathcal{H}\left(B^{n}\right)$ is called biholomorphic if the inverse mapping is holomorphic on $f\left(B^{n}\right)$. If $D^{2} f(z)$ represents the Fréchét derivative of the second order of $f \in \mathcal{H}\left(B^{n}\right)$ at the point z, then $D^{2} f(z)$ is a continuous bilinear operator from $\mathbb{C}^{n} \times \mathbb{C}^{n}$ into \mathbb{C}^{n}, while its restriction $D^{2} f(z)(u, \cdot)$ to $u \times \mathbb{C}^{n}$ belongs to $\mathcal{L}\left(\mathbb{C}^{n}, \mathbb{C}^{n}\right)$.

Let f and g be members of $\mathcal{H}\left(B^{n}\right)$. The mapping f is said to be subordinate to g, or the mapping g is said to be superordinate to f, written $f \prec g$ or $f(z) \prec g(z)$, if there exists a mapping $w \in \mathcal{H}\left(B^{n}\right)$, with $w(0)=0$ and $\|w(z)\|<1$, and such that $f(z)=g(w(z))$.

From this definition we see that if $f \prec g$, then $f(0)=g(0)$ and $f\left(B^{n}\right) \subseteq$ $g\left(B^{n}\right)$. If in addition g is biholomorphic, then $f \prec g$ if and only if $f(0)=g(0)$ and $f\left(B^{n}\right) \subseteq g\left(B^{n}\right)$.

By using an extended version of the Schwarz Lemma it is easy to prove that if $f \prec g$, then $f\left(B_{r}^{n}\right) \subset g\left(B_{r}^{n}\right)$, for all $0<r<1$.

In this paper we will use a reformulation of [1, Lemma 2] from the theory of differential subordinations of several complex variables.

Lemma 1. Let $p \in \mathcal{H}\left(\overline{B^{n}}\right)$ be a biholomorphic mapping, $q \in \mathcal{H}\left(B^{n}\right)$ locally biholomorphic on B^{n}, with $q(0)=p(0)$. If p is not superordinated to q, then there exist $t>1$ and points $z_{0} \in B^{n}, \zeta_{0} \in \overline{B^{n}}$, with $\left\|\zeta_{0}\right\|=1$ for which
(i) $\quad q\left(z_{0}\right)=p\left(\zeta_{0}\right)$;
(ii) $t\left[\left(D q\left(z_{0}\right)\right)^{*}\right]^{-1}\left(z_{0}\right)=\left[\left(D p\left(\zeta_{0}\right)\right)^{*}\right]^{-1}\left(\zeta_{0}\right)$;
(iii) the inequality

$$
\begin{aligned}
t\left[\|u\|^{2}-\operatorname{Re}\langle \right. & {\left.\left.\left[D q\left(z_{0}\right)\right]^{-1} D^{2} q\left(z_{0}\right)(u, u), z_{0}\right\rangle\right] } \\
& \geq\|w\|^{2}-\operatorname{Re}\left\langle\left[D p\left(\zeta_{0}\right)\right]^{-1} D^{2} p\left(\zeta_{0}\right)(w, w), \zeta_{0}\right\rangle,
\end{aligned}
$$

holds for all $u \in \mathbb{C}^{n} \backslash\{0\}$ with $\operatorname{Re}\left\langle u, z_{0}\right\rangle=0$, where $w=\left[D p\left(\zeta_{0}\right)\right]^{-1} D p\left(\zeta_{0}\right) u$.

3. ADMISSIBLE FUNCTIONS AND A FUNDAMENTAL RESULT

We next define the class of admissible mappings.
Definition 1. Let D be a set in \mathbb{C}^{n} and $q \in \mathcal{H}\left(B^{n}\right)$ a locally biholomorphic mapping on B^{n}. The class of admissible mappings $\Phi[D, q]$ consists of those functions $\varphi: \mathbb{C}^{n} \times \mathbb{C}^{n} \times B^{n} \rightarrow \mathbb{C}^{n}$ that satisfy

$$
\varphi(x, y ; \zeta) \in D
$$

whenever $x=q(z), y=t\left[(D q(z))^{*}\right]^{-1}(z), z \in B^{n}, \zeta \in \overline{B^{n}},\|\zeta\|=1$ and $t>1$.

The next theorem is a foundation result in the theory of differential superordinations for functions of several variables. The proof is very short because of the use of Lemma 1 and the very special conditions in the definition of the class of admissible functions $\Phi[D, q]$.

Theorem 1. Let D be a set in $\mathbb{C}^{n}, q \in \mathcal{H}\left(B^{n}\right)$ a locally biholomorphic mapping on B^{n} and $\varphi \in \Phi[D, q]$. If $p \in \mathcal{H}\left(\overline{B^{n}}\right)$ is a biholomorphic mapping on $\overline{B^{n}}$ such that $p(0)=q(0)$ and $\varphi\left(p(\zeta),\left[(D p(\zeta))^{*}\right]^{-1}(\zeta) ; \zeta\right)$ is injective on $\overline{B^{n}}$, then

$$
\begin{equation*}
D \subset\left\{\varphi\left(p(\zeta),\left[(D p(\zeta))^{*}\right]^{-1}(\zeta) ; \zeta\right): \zeta \in B^{n}\right\} \tag{1}
\end{equation*}
$$

implies $q \prec p$.
Proof. Assume $q \nprec p$. By Lemma 1, there exist two points $z_{0} \in B^{n}, \zeta_{0} \in \overline{B^{n}}$, with $\left\|\zeta_{0}\right\|=1$ and an $t>1$ that satisfy the conditions (i)-(iii) of Lemma 1 . Using these conditions with $x=p\left(\zeta_{0}\right), y=\left[\left(D p\left(\zeta_{0}\right)\right)^{*}\right]^{-1}\left(\zeta_{0}\right)$ and $\zeta=\zeta_{0}$ in Definition 1 we obtain

$$
\varphi\left(p\left(\zeta_{0}\right),\left[\left(D p\left(\zeta_{0}\right)\right)^{*}\right]^{-1}\left(\zeta_{0}\right), \zeta_{0}\right) \in D
$$

Since this contradicts (1) we must have $q \prec p$.

4. EXAMPLES

If we choose $q(z)=M z(M>0)$ for all $z \in B^{n}$ in Definition 1 and Theorem 1, we obtain:

Corollary 1. Let D be a set in \mathbb{C}^{n} and $\varphi: \mathbb{C}^{n} \times \mathbb{C}^{n} \times B^{n} \rightarrow \mathbb{C}^{n}$ such that $\varphi\left(M z, \frac{t}{M} z ; \zeta\right) \in D$, for $z \in B^{n}, \zeta \in \overline{B^{n}},\|\zeta\|=1$ and $t>1$.

If $p \in \mathcal{H}\left(\overline{B^{n}}\right)$ is a biholomorphic mapping on $\overline{B^{n}}$ such that $p(0)=0$ and $\varphi\left(p(\zeta),\left[(D p(\zeta))^{*}\right]^{-1}(\zeta) ; \zeta\right)$ is injective on $\overline{B^{n}}$, then

$$
\begin{equation*}
D \subset\left\{\varphi\left(p(\zeta),\left[(D p(\zeta))^{*}\right]^{-1}(\zeta) ; \zeta\right): \zeta \in B^{n}\right\} \tag{2}
\end{equation*}
$$

implies $B_{M}^{n} \subseteq p\left(B^{n}\right)$.

Corollary 2. Let M be a real and positive number and $\lambda \geq 0$. If $p \in$ $\mathcal{H}\left(\overline{B^{n}}\right)$ is a biholomorphic mapping on $\overline{B^{n}}$ such that $p(0)=0$ and $p(\zeta)-$ $\lambda\left[(D p(\zeta))^{*}\right]^{-1}(\zeta)$ is injective on $\overline{B^{n}}$, then

$$
B_{M}^{n} \subset\left\{p(\zeta)-\lambda\left[(D p(\zeta))^{*}\right]^{-1}(\zeta): \zeta \in B^{n}\right\}
$$

implies $B_{M}^{n} \subseteq p\left(B^{n}\right)$.
Example 1. Let M be a positive real number, $\lambda \in(0,1)$, let B^{2} be the unit ball of \mathbb{C}^{2} and $p \in \mathcal{H}\left(\overline{B^{2}}\right)$ the biholomorphic mapping given by

$$
p(\zeta)=\zeta .
$$

The function $p(\zeta)-\lambda\left[(D p(\zeta))^{*}\right]^{-1}(\zeta)=(1-\lambda) \zeta$ is injective on $\overline{B^{2}}$.
Example 2. Let M be a real and positive number, $\lambda>0$ and let p_{1}, p_{2} be complex univalent functions defined in the disk $U_{R}=\{z \in \mathbb{C}:|z|<R\}$, $R>1$, such that

$$
\left[\left|p_{i}^{\prime}(z)\right|^{2}-\lambda\right] \operatorname{Re} p_{i}^{\prime}(z)>\lambda|z|\left|p_{i}^{\prime \prime}(z)\right|, \text { for } i=1,2 \text { and all } z \in U_{R} \text {. }
$$

We define $p: B^{2} \rightarrow \mathbb{C}^{2}, p(\zeta)=\left(p_{1}\left(\zeta_{1}\right), p_{2}\left(\zeta_{2}\right)\right)^{\prime}$. Since p satisfies the conditions of the Corollary 2, from the inclusion

$$
B_{M}^{2} \subset\left\{p(\zeta)-\lambda\left[(D p(\zeta))^{*}\right]^{-1}(\zeta): \zeta \in B^{2}\right\}
$$

it implies $B_{M}^{2} \subseteq p\left(B^{2}\right)$.

REFERENCES

[1] Curt, P., First and second differential subordinations in several complex variables, Studia Univ. Babeş-Bolyai, Mathematica, 40 (1995), no. 4, 33-43.
[2] Curt, P. and Varga, Cs., Jack, Miller and Mocanu lemma for holomorphic mappings in \mathbb{C}^{n}, Stud. Cerc. Mat., 49 (1997), nos. 1-2, 39-45.
[3] Kohr, G., On some partial differential subordinations for holomorphic mappings in \mathbb{C}^{n}, Libertas Matematica, XV (1995), 129-142.
[4] Kohr, G. and Liczberski, P., Univalent Mappings of Several Complex Variables, Cluj University Press, 1998.
[5] Miller, S.S. and Mocanu, P.T., Differential Subordinations, Theory and Applications, Marcel Dekker, Inc., New-York, Basel, 1999.
[6] Miller, S.S. and Mocanu, P.T., Subordinants of differential superordinations, to appear.

Received July 18, 2002
Faculty of Mathematics and Comp. Science
"Babes-Bolyai" University
Str. M. Kogălniceanu 1
RO-400084 Cluj-Napoca, România
E-mail: vero@math.ubbcluj.ro

