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ON THE MODULAR INTEGRALS

UGUR S. KIRMACI and M. EMIN OZDEMIR

Abstract. Let f be an entire modular integral on I'(1) of weight k. We inves-
tigate necessary and sufficient conditions for f(7™) to be a modular integral on
I'(1) of weight mk. We deduce some relations among the Mellin transforms of
functions f(7), f(r™) and f(7™/m’,x). We rewrite without proof some theo-
rems from [4] and [5] for the function f(7™) and the subgroup I'%(N).
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1. INTRODUCTION

We shall use H to denote the upper half-plane, and I'(1) for the modular
group; 7 is a complex variable in H. Let N > 1 be an integer and put

FO(N):{<‘C‘ Z)eI‘(l):CEO (modN)}.

Let U = G 1), V= <(1) _01>, and Let I'°(IV) be the subgroup defined by

b= 0 (mod N). In fact VTo(N)V~t = T%(N). Let w(N) be the inversion
0 -—1/VN

JN 0 ) Note

that w(N) ¢ I'(1) if N > 1. Let I§(N) = (I'o(IV); w(N)), that is, I'§ (V) is the

larger group obtained by extending I'o(N) by the inversion w(N). We define

LY(N) = (L%(N);w(N)) (see [1] and [5]).

defined by w(N) : 7 +— —1/NT; as a matrix, w(N) = <

2. MELLIN TRANSFORMS OF MODULAR INTEGRALS ON F(l)

Let f be an entire modular integral (entire MI for short) on I'(1) of weight
k, with multiplier system (MS for short) v. That is to say:
(i) f satisfies the conditions

1) Frt =), D) = o(V)f() +a(r);

(ii) f is holomorphic in H;
(iii) f has a Fourier expansion of the form

(2) f7) =3 age?min,
n=0

where k € 27 and ¢(7) is a rational period function (RPF).
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It follows from these three conditions that a, = O(n?), n — 400 for some
v > 0, and this in turn guarantees the absolute convergence of the Dirichlet
series > 7, apn~* in the half-plane Res > 1 + . This series arises naturally
from term-by-term integration when one forms the Mellin transform

3) By(5) = [ (¢in) oY = (2m) () Y e
n=1

of f(r) — ap. Note that ®¢(s), like the Dirichlet series, is holomorphic in
Res > 1+ . The classic work of Hecke [1], [2] shows that if f is an entire
modular form (that is, if ¢ = 0 in (1)), then ®¢(s) has certain desirable
properties, the most striking among them being the functional equation

Dp(k— 5) = (~1)* 7 (s).

The Mellin transform of an entire MI in I'(1) with RPF ¢ has precisely the
same functional equation as does the Mellin transform of an entire modular
form on T'(1).

In addition to ®¢(s) we consider the “twisted” functions, introduced by
Weil

Frx) = anx(n)e®™™"
n=1

() orte0) = (52) TS oo

related, respectively, to f and ®;. Here, x is a primitive character modulo m’ €
Z*, (m',N) = 1. Note that ®¢(a, x) is the Mellin transform of f(7/m/, x) (see

[4])-

THEOREM 1. If f(7) is an entire MI on I'(1) of weight k, with MS v, and
if f(r7') = f(7)f(7') for all 7,7" € H, then f(7™) is an entire MI on I'(1) of
weight mk, with MS v for all m € Z* and 7™ € H.

Proof. Let f(7) be an entire MI on I'(1) of weight k, with MS v. That
is, f is holomorphic in H and satisfies equations (1). Also, f has a Fourier
expansion of the form (2). Since f(77") = f(7)f(7'), we obtain

e +0)™) =" +1) =)= ")
and
TTR(=1/TT) = o (V) (™) + (™).
Also f(7™) has the Fourier expansion of the form
(5) f(§) = Z ane®™ for £ =1,
n=0
f(7™) is holomorphic in H for 7™ € H. Hence, f(7™) is an entire MI on I'(1)
of weight mk, with MS wv. g
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As in [6], any RPF on I'(1) with poles in @ has the form
(6) g7 = ar ™ —S<1<K.
THEOREM 2. Let f and f(7™) be as in Theorem 1. The Mellin transform
of the function f(7™) is
1.s_ _ _
(7) ) = —im 5(2m) S/mF(s/m)Zann s/m
formeZ*, 7™ e H. We also have
®(mk — s) = (—1)™/2(s).
Proof. From the Fourier expansion (5) and by the definition of Mellin trans-
form, we have, for ¢ = (iy)™

o(s) = /0 " (F(Gy)™) — ao) e

oo
Z /OO ane%rinﬁys%
—1 /0 Y

n—

= /°° uf u\/m 1 s du
= Z anpe (T) —1m —.
—Jo ™ m U
Here, we used the change of variable iy = (iﬁ)l/ ™. Thus, we obtain
1.s_ _ _
d(s) = im 5(2m) /™ (s /m) Zann s/m,
Also, it is easy to verify that ®(mk — s) = (—1)™*/2®(s). O

THEOREM 3. Suppose f is an entire MI in I'(1). Let ®¢ be the Mellin
transform of f(7) — ao, defined by (3). Let ® be the Mellin transform of
f(T™) — ag, defined by (7). Then we have

1

B(s) = —im P .
(s) = — s(s/m)

Proof. This follows easily from the equations (3) and (7). O

THEOREM 4. The Mellin transform of f(7"/m/, x) is

1 2 s/m —s/m
(8) (s,X) = —in > (m')/"D(s/m) Y anx(mn~*
form € Z*, v € H. We also have
1.s

(9) ®(s,x) = —im " ®@y(s/m, x).

Proof. (8) is proved by the change of variable iy = (i%)l/m, using the

Mellin transform. The functional equation (9) follows easily from the equations
(4) and (8). O
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In [4] Knopp proved some generalizations of Hecke’s celebrated correspon-
dence. Let f(7) and f(7") be as in Theorem 1. We now rewrite without proof
some theorems from [4] for the function f(7"") as follows.

THEOREM 5. (see [4, Theorem 1]) Suppose that f(7™) is an entire MI on
I'(1) with RPF of the form (6) for 7™ € H. Let ® be the Mellin transform
of f(r™) — ap, defined by (7). Then ® can be continued analytically to a
function meromorphic in the entire s-plane, with at most simple poles at the
finite number of integer values of s/m.

THEOREM 6. (see [4, Theorem 2]) Suppose that f(7™) is an entire MI
on T'(1) for 7™ € H. Then ® can be continued analytically to a function
meromorphic in the entire s-plane, with at most simple poles at integer values
of s/m. Furthermore, ® satisfies a functional equation

®(mk — s) = (=1)™/2®(s) + R(s),

where R(s) is a finite complex linear combination, summed over the integers
j and r, of terms of the form

(—1/a;) (B(s,r — s)e ™/2ai — (=1)™ 2 B(mk — 5,7 — mk + s)e” ™/ 2a"F~#),
Here, B is the beta function and «; are the poles of the RPF ¢ in the set

P={Rer™ >0, Im7™ <0}U{Re7 =0, 1<Im7™ <0}.

3. GENERALIZATION TO I')(NV)

Suppose that in H the function f is holomorphic and satisfies the transfor-
mation formula

(10) fIT=f+qr, TeTN); flw(N) =Cf + qu,

where ¢, q,, are rational functions and C' is a complex number. Assume further
that f has the expansion (2) at co. Then we call f an entire MI on I'Y(N) of
weight k.

In [7] Weil developed an important generalization to I'§(N) of the Hecke
correspondence. In [4] and [5] Knopp follows the organization of [7], adapting
to modular integrals on I'§ (V) the arguments that Weil developed for modular
forms on I'j(N). As in Theorem 1, suppose that f is an entire MI on T'9(NN)
such that f(r7") = f(7)f(7'), for all 7,7/ € H. Then f(7™) is an entire MI
on I'Y(N) of weight mk. We now rewrite without proof some theorems from
[4] and [5] for the function f(7™) and the group I'?(N) as follows.

THEOREM 7. (see [5]) Suppose f(t™) is an entire MI on TY(N), of weight
mk, fork € Z,m € ZT, 7™ € H. Let x be a primitive Dirichlet character mod-
ulom/, (m',N) =1. Then ®(s) and ®(s, x) have meromorphic continuations
to the entire s-plane, with at most simple poles at integer values of s/m lying
in a left half-plane and they are bounded in every “lacunary” vertical strip

{s=0+it:o1 <o <oyt >ty >0}.
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Furthermore,
(—1)™ /2N 5 ®(mk — s) = CB(s) + R(s)

and

(—1)™/2(Nin) 5@ (mk — 5,%) = C%x(—f\f)@(&X) T R(s.).

where R(s) is a finite linear combination of terms having the form
(VN)75(I(r = 5)I'(s)(VNai)* ™"
— C(=1)™ 72D (r — mk + $)T'(mk — s)(vV/Nai)™ 57,
with r € Z* and o a complex number such that Ima < 0, and R(a,x) is a
finite linear combination of terms having the form
(VN)*m" ' g(R)(X(Na)I'(r — 5)I'(s)(VNm'ai)* ™"
— (—1)™*2C, (—a)T(r — mk + s)(mk — s)(VNm/ ai)™ =577,

Here, a € 7 is such that 1 < a < m/, (a,m') = 1 and g(x) is the Gaussian

gb) = > xla)em ™,

a mod m/

THEOREM 8. (see [4, Theorem 3]) Let 7™ be an entire MI on T'Q(N) of
weight mk < 0, such that the RPF’s qr, q, of (10) are polynomials of degree
< —mk, for 7™ € H. Suppose that x is a primitive Dirichlet character modulo
m’ with (m’,N) = 1.

Then ®(s) and ®(s,x) have analytic continuations to the entire s-plane
with at most finitely many simple poles at nonpositive, integer values of s/m.
Furthermore

N =5®(mk — s) = C(—1)/23(s)

and
(Nim) 5 =0 (mk — 5,%) = C LD 5 N)(=1)™2@(s, x).
9(x)
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