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IRREGULAR FORCED ALMOST PERIODIC SOLUTIONS
OF ORDINARY LINEAR DIFFERENTIAL SYSTEMS

ALEXANDR DEMENCHUK

Abstract. Let A be an almost periodic (n× n)-matrix and let ϕ be an almost
periodic vector. Suppose that mod (A)∩mod (ϕ) = {0}. We say that the almost
periodic solution x of the system

ẋ = A(t)x + ϕ(t), t ∈ R, x ∈ Rn,

is irregular with respect to mod (A) (or partially irregular) if (mod (x)+mod (ϕ))∩
mod (A) = {0}, and irregular forced if at the same time mod (x) ⊆ mod (ϕ). We
prove that an irregular with respect to mod (A) almost periodic solution is irreg-
ular forced in non-critical and some critical cases. The necessary and sufficient
conditions for existence of irregular forced solutions are obtained.
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most periodic solutions.

1. INTRODUCTION

Let D be a compact subset of Rn and let Rk×m be the linear space of
all matrices with k rows and m columns (k and m are positive integers).
By AP (Rk×m) we denote the linear space of all almost periodic functions
h : R → Rk×m. By AP (D,Rk×m) we denote the linear space of all continuous
functions h : R × D → Rk×m such that each h ∈ AP (D,Rk×m) is almost
periodic in t ∈ R uniformly for x ∈ D. By mod (h) we denote a frequency
module of h ∈ AP (Rk×m) (or h ∈ AP (D,Rk×m). Consider the almost periodic
ordinary differential system

(1) ẋ = f(t, x), t ∈ R, x ∈ D,

where f ∈ AP (D,Rn×1). The existence problem for almost periodic solutions
to (1) is a significant problem both for qualitative theory of ordinary differ-
ential equations and for its applications to vibration theory (see [1], [19]).
Many authors have investigated this problem, see e.g. [2], [3], [11], [13], [14],
[16], [20]. Most of them have considered only the regular solutions x, i.e. the
solutions with mod (x) = mod (f). However, there can be various relations be-
tween mod (x) and mod (f). In [15], J. Kurzweil and O. Veivoda have obtained
the necessary existence conditions for almost periodic solutions x to (1) such
that mod (x) ∩mod (f) = {0}. We say that such solutions are irregular. The
analogous problem for periodic systems was studied by H. Massera [18]. In [4],
[5], [10], [12] irregular periodic, quasiperiodic, and almost periodic solutions
are considered.
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In [6] we have shown that some classes of quasiperiodic systems admit
quasiperiodic solutions with some of the right part base frequencies. For the
system (1) with

f(t, x) = F (t, x) +G(t, x), t ∈ R, x ∈ D, mod (F ) ∩mod (G) = {0},
the existence criteria for almost periodic solutions x such that (mod (x) +
mod (G))∩mod (F ) = {0} are given in [7]. Such solutions are called partially
irregular. In [8] we have obtained the existence conditions for almost peri-
odic partially irregular solutions of system (1) with f(t, x) ≡ F (t, t, x), where
F (t1, t2, x) is almost periodic in tj (j = 1, 2) uniformly for the rest of the
arguments.

In this paper we consider the linear system

(2) ẋ = A(t)x+ ϕ(t), t ∈ R, x ∈ Rn,

where A ∈ AP (Rn×n), ϕ ∈ AP (Rn×1), and

(3) mod (A) ∩mod (ϕ) = {0}.
The almost periodic solutions x to (2) such that mod (x) = mod (ϕ) are in-
vestigated in [4]. In [9] we have considered quasiperiodic system (2) with ϕ in
the form of a trigonometric polynomial.

The aim of this paper is to establish the existence conditions for almost
periodic irregular with respect to mod (A) solutions of linear system (2) in
non-critical and some critical cases. To this end we apply the results of [18]
to linear systems.

2. PRELIMINARIES

Definition 1. Let f ∈ AP (D,Rn×1).
a) A real number γ is called a Fourier exponent (or frequency) of f , if

lim
T→∞

1
T

T∫
0

f(t, x) exp (−iγt)dt 6≡ 0 for x ∈ D.

b) The set Γ of all Fourier exponents of f is called the frequency set of this
function.

c) The frequency module mod (f) of f is the smallest additive group of real
numbers that contains all Fourier exponents of this function.

Definition 2. Let f ∈ AP (D,Rn×1) be a right side of (1) and mod (f) is
splitted into direct sum of two submoduli M1, M2 (j = 1, 2), i.e. mod (f) =
M1 ⊕M2.

a) An almost periodic solution x of the system (1) is called irregular with
respect to submodule M2 (or partially irregular) if (mod (x)+M1)∩M2 = {0}.

b) An irregular with respect to submodule M2 almost periodic solution x of
the system (1) is called weakly M2-irregular (or weakly irregular) if mod(x) ⊆
M1.
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c) Any weakly mod (A)-irregular almost periodic solution x of the linear
system (2) is called irregular forced.

In what follows we shall show a construction of transformation reducing a
functional matrix to a special block form. If P is a real (n×n)-matrix function
defined on R then by rankcol P we denote the column rank of P , i.e. rankcol P
is the maximal number of linearly independent columns of P.

Lemma 1. Let P be a real (n×n)-matrix function defined on R. If rankcol P =
n − k, 0 < k < n, then there exists a constant nonsingular (n × n)-matrix
Q such that the first k columns of PQ are zero and remaining columns are
linearly independent.

Proof. If P = (P1, . . . , Pn), where P1, . . . , Pn are the columns of P, and
rankcol P < n then we have a1P1 + . . . + anPn = 0 for some real numbers
a1, . . . , an for which a2

1 + . . .+a2
n > 0. It follows that there exists j (1 ≤ j ≤ n)

such that aj 6= 0. This yields

ajPj = −a1P1 − . . . aj−1Pj−1 − aj+1Pj+1 − . . .− anPn.

Take the constant (n× n)-matrix S1 which arises from the unit matrix En

of order n by the replacement of its j-th column by the column (a1, . . . , an)T.
Evidently, detS1 = aj 6= 0.

Further, we take the constant (n× n)-matrix T1 which arises from the unit
matrix En by the exchange of its first and j-th columns. We have detT1 =
±1 6= 0. Evidently, the first column of P (1) = PQ1 (Q1 = S1T1) is zero. It is
clear that rankcol P = rankcol P

(1) because detQ1 = ±aj 6= 0.
If k = 1 then there is nothing to do. If k > 1 and P

(1)
1 , . . . , P

(1)
n are

the columns of P (1) then with regard to P
(1)
1 = 0 there exist real numbers

b2, . . . , bn, not all zero, such that b2P
(1)
2 + . . . + bnP

(1)
n = 0. We may assume

that br 6= 0 for some 2 ≤ r ≤ n. Then

brP
(1)
r = −b2P (1)

2 − . . .− br−1P
(1)
r−1 − br+1P

(1)
r+1 − . . .− bnP

(1)
n .

Now we construct the constant (n × n)-matrix S2 which arises from En by
the replacement of its r-th column by the column (0, b2, . . . , bn)T. We have
detS2 = br 6= 0. Further, we take the constant (n × n)-matrix T2 which
arises from En by the exchange of its second and r-th columns. Obviously,
detT2 6= 0. The first two columns of P (2) = P (1)Q2 (Q2 = S2T2) are zero.
Evidently, rankcol P = rankcol P

(2) because detQ2 6= 0.
If k > 2 then we continue by the analogous way. So that we obtain the

matrix Q = S1T1 · · ·SkTk such that first k columns of PQ are zero and the
remaining columns are linearly independent. �

3. THEOREMS

In this section we obtain the existence conditions for almost periodic irreg-
ular with respect to mod(A) solutions of system (2). We suppose that (3)
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holds. Let x be an almost periodic solution to (2) and (mod (x) + mod (ϕ)) ∩
mod (A) = {0}. It is clear that x 6= 0. By [7], the solution x satisfies the system

(4) ẋ = Âx+ ϕ(t), [A(t)− Â]x = 0, t ∈ R, Â = lim
T→∞

1
T

∫ T

0
A(t)dt.

Denote Ã = A− Â. Since mod (x)∩mod (Ã) = {0} and x 6= 0, it follows from
Ã(t)x = 0, t ∈ R, and [7] that

(5) 0 < rankcol Ã = r < n.

By Lemma 1 there exists a constant nonsingular (n×n)-matrix Q such that
the first s (s = n − r) columns of ÃQ are zero and the remaining r columns
are linearly independent. Then substitution

(6) x = Qy

reduces system (4) to the form

(7) ẏ = By + ψ(t), B̃(t)y = 0, t ∈ R,

where B = Q−1ÂQ, ψ = Q−1ϕ, and B̃ = ÃQ. The last r columns of B̃ are
linearly independent and from this and from B̃y = 0 follows that the last r
components of y are zero. Clearly, system (7) has almost periodic solution
y = S−1x such that mod (y) = mod (x). Therefore, y = (ỹT, 0, . . . , 0)T, ỹ =
(y1, . . . , ys)T. Consequently, system (7) take the form

˙̃y = Bs,sỹ + ψ(1)(t), Bn−s,sỹ + ψ(2)(t) = 0, t ∈ R,

(8) ỹ = (y1, . . . , ys)T, ys+1 = . . . = yn = 0,

where Bs,s and Bn−s,s are the upper left (s× s)-block and the lower left ((n−
s)×s)-block ofB respectively and ψ(1) = (ψ1, . . . , ψs)T; ψ(2) = (ψs+1, . . . , ψn)T,
i.e.

B =
(

Bs,s Bs,n−s

Bn−s,s Bn−s,n−s

)
, ψ =

(
ψ(1)

ψ(2)

)
.

Consider the system

(9) ˙̃y = Bs,sỹ + ψ(1)(t), t ∈ R.

By the above, system (9) has the almost periodic solution ỹ = Q
(−1)
s,n x, where

Q
(−1)
s,n is the upper (s×n)-block ofQ−1. Since y = Q−1x and y = (ỹT, 0, . . . , 0)T,

we have mod (ỹ) = mod (x). Note that ỹ is also a solution of the second system
in (8). This implies that ỹ satisfies the identity

(10) Bn−s,sỹ(t) + ψ(2)(t) ≡ 0, t ∈ R.

Hence, if system (2) has an irregular with respect to mod (A) almost periodic
solution x, then conditions (5), (10) hold, where ỹ is the almost periodic
solution to (9) with the same frequency properties as x.
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Let us show that the opposite assertion also holds. Indeed, if (5) is valid,
then by Lemma 1 there exists constant nonsingular (n × n)-matrix Q such
that transformation (6) reduces system (2) to (7). Since the last r columns
of B̃ are linearly independent, it follows from [7] that ys+1 = . . . = yn = 0.
Therefore, system (7) is reduced to system (8). System (8) has the almost
periodic solution ỹ, (mod (ỹ) + mod (ϕ)) ∩ mod (A) = {0} by assumption.
Now the identity (10) provides the existence of the almost periodic solution ỹ
to system (8), and from (6) we get

(11) x = Q(ỹT, 0, . . . , 0)T.

It is clear that (11) is a solution to (4) and mod (x) = mod (ỹ). By [7], (11) is
a solution of system (2) as well.

Thus, we have proved

Theorem 1. Suppose that A ∈ AP (Rn×n) and ϕ ∈ AP (Rn×1) and that (3)
holds. The system (2) has the irregular with respect to mod (A) almost periodic
solution (11) if and only if

1) rankcol Ã = r (0 < r < n);
2) the system (8) has the almost periodic solution ỹ such that (mod (ỹ) +

mod (ϕ)) ∩mod (A) = {0};
3) the identity (10) is valid.

Thus, the problem of existence of an almost periodic partially irregular
solutions to (2) is equivalent to a similar problem for system (8).

Now assume that all eigenvalues λ1(Bss), . . . , λs(Bss) of Bss have nonzero
real parts

(12) Reλj(Bss) 6= 0 (j = 1, s).

Theorem 2. Suppose that the conditions (3), (12) hold and the system (2)
has an almost periodic irregular with respect to mod (A) solution x; then this
solution is irregular forced.

Proof. Let x be an almost periodic solution of system (2) and (mod (x) +
mod (ϕ)) ∩mod (A) = {0}. By Theorem 1, system (9) has an almost periodic
solution ỹ such that mod (ỹ) = mod (x). It follows from (12) and [11, p. 91]
that mod (ỹ) ⊆ mod (ψ(1)). Since mod (ψ(1)) ⊆ mod (ϕ), we obtain mod (ỹ) ⊆
mod (ϕ). This means that mod (x) ⊆ mod (ϕ), i.e. the solution x is irregular
forced. �

It should be stressed that Theorem 2 is not valid in critical case when some
of Reλj(Bss) is zero. However, some critical cases can be considered in similar
way. Let λj (Bss) = αj + iβj (i2 = −1; j = 1, s). Suppose that

αl = 0, βl ∈ mod (ϕ) (l = 1, p; p ≤ n), αq 6= 0 (q = p+ 1, s);

(13) βk 6= βm for all k 6= m, k,m = {1, . . . , p}.
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Then the conjugate system

(14) ż = −BT
ssz, z ∈ Rs

has p linearly independent quasiperiodic solutions

(15) z(1), . . . , z(p), mod (z(j)) ⊆ mod (ϕ) (j = 1, p).

Theorem 3. Suppose that A ∈ AP (Rn×n), ϕ ∈ AP (Rn×1) and that (s×s)-
matrix Bss has the eigenvalues for which (13) is valid.

1) If system (2) has an almost periodic irregular with respect to mod (A)
solution x, then this solution is irregular forced.

2) System (2) has an irregular forced almost periodic solution if and only if
(5), (10), and

(16) sup
−∞<t<+∞

∣∣∣∣∣∣
t∫

t0

s∑
k=1

z
(j)
k (τ)ψ(j)

k (τ)dτ

∣∣∣∣∣∣ < +∞ (j = 1, p)

hold.

Proof. Let x be a partially irregular almost periodic solution of system (2).
Then by Theorem 1 inequality (5) is true and system (9) has an almost periodic
solution ỹ such that mod (ỹ) = mod (x). It follows from [17, Theorem 2] that
estimate (16) holds. Note that ỹ satisfies (8) as well. Therefore identity (10)
is valid. Since αk = 0, βk ∈ mod (ϕ) (k = 1, p), and mod (ψ(1)) ⊆ mod (ϕ),
we have mod (ỹ) ⊆ mod (ϕ). Hence, mod (x) ⊆ mod (ϕ), i.e. the solution x is
irregular forced.

Conversely, assume that the conditions of Theorem 3 hold. It follows from
(5) and Lemma 1 that there exists the matrix Q such that the transformation
(6) reduces system (4) to the form (7). Since the last n − s columns of B̃
are linearly independent, we obtain ys+1 = . . . = yn = 0. Thus, system (7)
is reduced to (8). Note that Bss has the eigenvalues (13) by assumption.
Consequently, (15) are the solutions to (14). By [17, Theorem 2], (13), and
(16), system (9) has the almost periodic solution ỹ and mod (ỹ) ⊆ mod (ψ(1)) ⊆
mod (ϕ). It follows from (10) and (8) that y = (ỹT, 0, . . . , 0)T satisfies (7). By
(6), we obtain the almost periodic solution x = Qy of system (4). By [7], x
is a solution of system (2) as well. Since mod (x) = mod (ỹ), we see that the
solution x is irregular forced. �

Corollary 1. The system (2) has an almost periodic irregular with respect
to mod(A) solution x if and only if x satisfies the following conditions

ẋ = A(t0)x+ ϕ(t), [A(t)−A(t0)]x = 0, t ∈ R,

for any t0 ∈ R.
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4. AN EXAMPLE

Let a1, a2, and ϕ1 be scalar real almost periodic nonzero functions such
that

lim
T→∞

1
T

T∫
0

aj(t)dt = αj (j = 1, 2), sup
−∞<t<+∞

∣∣∣∣∣∣
t∫

t0

ϕ1(τ)dτ

∣∣∣∣∣∣ < +∞.

Suppose that mod (a) ∩ mod (ϕ1) = {0}, where a = (a1, a2)T. Consider the
system

ẋ = −a1(t)x+ a1(t)y + ϕ1(t),

(17) ẏ = (1− a1(t)− a2(t))x+ (a1(t) + a2(t))y + ϕ1(t)− ϕ2(t), t, x, y ∈ R,

where ϕ2(t) =
t∫

t0

ϕ1(τ)dτ. It follows from [16, p. 83] that ϕ2(t) is almost

periodic. Note that mod (ϕ1) = mod (ϕ2). We have

A(t) =
(

−a1(t) a1(t)
1− a1(t)− a2(t) a1(t) + a2(t)

)
, Â =

(
−α1 α1

1− α1 − α2 α1 + α2

)
and rankcol Ã = 1 < 2 (Ã = A− Â). By Lemma 1 there exists a nonsingular
matrix Q such that

Ã(t)Q =
(

0 a1(t)− α1

0 a1(t)− α1 + a2(t)− α2

)
, Q =

(
1 0
1 1

)
.

It follows from Theorem 1 and Theorem 3 that system (17) has an irregular
forced almost periodic solution. It is easy to see that the solution x = ϕ2, y =
ϕ2 is a solution with the required properties.
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