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GENERALIZED RD-PURE-INJECTIVITY AND RD-FLATNESS

IULIU CRIVEI

Abstract. Let R be an associative ring with non-zero identity and let V be a
non-empty subset of R. We shall consider a family Ω0 of left R-modules of the
form R/Rr, where r ∈ V . If R is commutative, we shall determine the structure
of Ω0-pure-injective R-modules. We shall also study Ω0-flat modules.
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1. INTRODUCTION

In this paper we denote by R an associative ring with non-zero identity
and all R-modules are unital. By Mod-R we denote the category of right R-
modules. By a homomorphism we understand an R-homomorphism. For the
sake of brevity, we shall omit the writing of the homomorphisms induced by
the functors HomR and tensor product.

Let Ω be a class of left R-modules and let

(1) 0 −→ A
f−→ B

g−→ C −→ 0

be a short exact sequence of right R-modules, where f and g are homomor-
phisms. If the tensor product f⊗R1D : A⊗RD → B⊗RD is a monomorphism
for every D ∈ Ω, it is said that the sequence (1) is Ω-pure [4]. If A is a sub-
module of B, f is the inclusion monomorphism and the sequence (1) is Ω-pure,
then A is said to be an Ω-pure submodule of B.

A right R-module M is called projective with respect to the sequence
(1) (or with respect to the epimorphism g) if the natural homomorphism
HomR(M,B) → HomR(M,C) is surjective. A right R-module is called injec-
tive with respect to the sequence (1) (or with respect to the monomorphism
f) if the natural homomorphism HomR(B,M) → HomR(A,M) is surjective.
A right R-module E is said to be Ω-pure-injective if E is injective with respect
to every Ω-pure short exact sequence of right R-modules.

A right R-module C is called Ω-flat if every short exact sequence (1) is
Ω-pure [4].

The injective hull of an R-module A is denoted by E(A). We denote by
(Mi)i∈I the family of all distinct right ideals of R and Si = R/Mi for every
i ∈ I.

If R is a commutative ring, K is an ideal of R, A is an R-module and r ∈ R,
then we denote AnnAK = {a ∈ A | ra = 0 ,∀r ∈ K} and AnnAr = AnnA(Rr).
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Let V ⊆ R be a non-empty set. In this paper we shall consider the family
of left R-modules

Ω0 = {R/Rr | r ∈ V } .

If V = R, then an Ω0-pure exact sequence (1) is called RD-pure [5]. Notice
that if the exact sequence (1) is RD-pure, then it is Ω0-pure.

In [2] we characterized Ω0-pure short exact sequences and we determined
the structure of Ω0-pure-projective modules.

In the present paper, for a commutative ring R, we shall determine the
structure of Ω0-pure-injective R-modules. We shall also characterize Ω0-flat
modules and study the class of Ω0-flat modules.

2. Ω0-PURITY AND Ω0-PURE-INJECTIVITY

We shall recall three results which will be used later in the paper.

Theorem 2.1. [4, Proposition 2.3] Let T be a set of right R-modules which
contains a family of cogenerators for Mod-R and let p−1(T ) be the class of all
short exact sequences in Mod-R with the property that every R-module in T is
injective with respect to them. Then:

(i) For every right R-module L there exists a short exact sequence

0 −→ N −→ M −→ L −→ 0

in p−1(T ) with M ∈ T .
(ii) Every right R-module which is injective with respect to each sequence in

p−1(T ) is a direct summand of a direct product of R-modules in T .

Lemma 2.2. [6, Lemma 7.16] Consider the commutative diagram with exact
rows in Mod-R

M1
f1 //

ϕ1

��

M2
f2 //

ϕ2

��

M3
//

ϕ3

��

0

0 // N1
g1 // N2

g2 // N3

The following statements are equivalent:
(i) There exists α : M3 → N2 with g2α = ϕ3;
(ii) There exists β : M2 → N1 with βf1 = ϕ1.

Theorem 2.3. [1, Theorem 7] Let R be commutative, let A be an R-module
and let K be an ideal of R. Then there exists an isomorphism of R-modules
α : HomR(R/K, A) → AnnAK, that is defined by α(f) = f(u), where f ∈
HomR(R/K, A) and R/K is generated by u.

The proof of the following result is the same as for the case of injective
R-modules [3, Proposition 2.2].
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Lemma 2.4. Let (Dj)j∈J be a family of right R-modules. Then the direct
product

∏
j∈J Dj is Ω0-pure-injective if and only if Dj is Ω0-pure-injective for

every j ∈ J .

Till the end of the present section, the ring R is assumed to be commutative.

Theorem 2.5. Let G be an injective R-module. Then HomR(R/Rr, G) is
an Ω0-pure-injective module for every r ∈ V .

Proof. Suppose that the exact sequence (1) is Ω0-pure and let r ∈ V . Then
the sequence

(2) 0 −→ A⊗R R/Rr −→ B ⊗R R/Rr −→ C ⊗R R/Rr −→ 0

of R-modules is exact. Since G is injective, the sequence

0 −→ HomR(C ⊗R R/Rr, G) −→ HomR(B ⊗R R/Rr, G)

(3) −→ HomR(A⊗R R/Rr, G) −→ 0

of R-modules is exact. Using the isomorphism

HomR(N ⊗R M,D) ∼= HomR(N,HomR(M,D)) ,

where M,N,D are R-modules, we obtain the exact sequence:

0 −→ HomR(C,HomR(R/Rr, G)) −→ HomR(B,HomR(R/Rr, G))

(4) −→ HomR(A,HomR(R/Rr, G)) −→ 0

Hence HomR(R/Rr, G) is Ω0-pure-injective. �

Theorem 2.6. Let G be a cogenerator for Mod-R and let HomR(R/Rr, G)
be injective with respect to the exact sequence (1) for every r ∈ V . Then the
exact sequence (1) is Ω0-pure.

Proof. Let r ∈ V . Since HomR(R/Rr, G) is injective with respect to the
exact sequence (1), we obtain the exact sequence (4). Hence the sequence (3)
is exact. But then the sequence (2) is exact, because G is a cogenerator. It
follows that the sequence (1) is Ω0-pure. �

Corollary 2.7. Let G be an injective cogenerator for Mod-R. Then the
exact sequence (1) is Ω0-pure if and only if HomR(R/Rr, G) is injective with
respect to the exact sequence (1) for every r ∈ V .

Corollary 2.8. The exact sequence (1) is Ω0-pure if and only if the R-
module HomR(R/Rr, E(S)) is injective with respect to the exact sequence (1)
for every r ∈ V and for every simple R-module S.

Proof. It is known that
∏

i∈I E(Si) is an injective cogenerator for Mod-R.
Since S is a simple R-module, there exists i ∈ I such that S ∼= Si. For every
r ∈ V we have the isomorphism:

HomR(R/Rr,
∏
i∈I

E(Si)) ∼=
∏
i∈I

HomR(R/Rr, E(Si)) .
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Now the result follows by Lemma 2.4 and Corollary 2.7 if we take G =∏
i∈I E(Si). �

Theorem 2.9. The exact sequence (1) is Ω0-pure if and only if AnnE(S)r
is injective with respect to the exact sequence (1) for every simple R-module S
and every r ∈ V ∩M , where M is a maximal ideal of R such that S ∼= R/M .

Proof. Let S be a simple R-module such that S ∼= R/M , where M is a
maximal ideal of R. Let r ∈ V . By Theorem 2.3, we have an isomorphism

HomR(R/Rr, E(S)) ∼= AnnE(S)r .

Let r /∈ M . Suppose that AnnE(S)r 6= 0. Then there exists 0 6= a ∈
AnnE(S)r. Hence ra = 0. Since a ∈ E(S), there exists t ∈ R such that
0 6= ta ∈ S. Then r(ta) = 0. Since S is simple, it is generated by ta, hence
AnnR/Mr = R/M . It follows that r(1 + M) = M , i.e., r ∈ M , which is a
contradiction. Therefore, AnnE(S)r = 0, which is an injective R-module.

Now let r ∈ M . Then S ⊆ AnnE(S)r, hence AnnE(S)r 6= 0.
The result follows by Corollary 2.8. �

Now, by Theorems 2.1 and 2.9 we obtain the following two corollaries.

Corollary 2.10. For every R-module A, there exists an Ω0-pure short
exact sequence of R-modules

0 −→ A −→ M −→ N −→ 0

where M is Ω0-pure-injective.

We are also able to establish the structure of Ω0-pure-injective modules.

Corollary 2.11. Every Ω0-pure-injective R-module is a direct summand
of a direct product of R-modules of the form AnnE(S)r, where S is a simple
R-module and r ∈ V ∩M for some maximal ideal M of R such that S ∼= R/M .

3. Ω0-FLAT MODULES

We begin the section with a technical result that will be useful for the
characterization of Ω0-flat modules.

Lemma 3.1. Consider the short exact sequence (1). Let E be a right R-
module which is injective with respect to f and let h : E → D be an epimor-
phism of right R-modules. If A and C are projective with respect to h, then B
is projective with respect to h.

Proof. Let u : B → D be a homomorphism. Since A is projective with
respect to h, there exists a homomorphism v : A → E such that uf = hv.
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Thus we obtain a commutative diagram with exact rows:

0 // A
f //

v

��

B
g //

u

��

C // 0

E
h // D // 0

Since E is injective with respect to f , there exists a homomorphism w : B → E
such that wf = v. Then hwf = hv = uf and furthermore (hw − u)f = 0.
Hence there exists a homomorphism α : C → D such that αg = hw − u.
But C is projective with respect to h, so that there exists a homomorphism
β : C → E such that hβ = α. Now consider the homomorphism γ : B → E
defined by γ = w − βg. We have hγ = hw − hβg = hw − αg = u. Therefore,
B is projective with respect to h. �

In what follows, the ring R is assumed to be commutative.

Theorem 3.2. The following statements are equivalent:
(i) The exact sequence (1) is Ω0-pure.
(ii) For every commutative diagram of R-modules

(5)

B
g //

u
��

C

v
��

E(S) h // E(S)/AnnE(S)r

where S ∼= R/M for some maximal ideal M of R, r ∈ V ∩ M , h is the
natural projection and u, v are homomorphisms, there exists a homomorphism
w : C → E(S) such that hw = v.

Proof. (i) =⇒ (ii) Suppose that the exact sequence (1) is Ω0-pure and
consider the diagram (5). Let k : AnnE(S)r → E(S) be the inclusion homo-
morphism. Then there exists a homomorphism α : A → AnnE(S)r such that
the following diagram with exact rows is commutative:

(6)

0 // A
f //

α
��

B
g //

u
��

C //

v
��

0

0 // AnnE(S)r
k // E(S) h // E(S)/AnnE(S)r // 0

By Theorem 2.9 AnnE(S)r is Ω0-pure-injective, hence there exists a homomor-
phism β : B → AnnE(S)r such that βf = α. Now by Lemma 2.2, there exists
a homomorphism w : C → E(S) such that hw = v.

(ii) =⇒ (i) Suppose that (ii) holds. Let S ∼= R/M for some maximal ideal
M of R, let r ∈ V ∩M and let α : A → AnnE(S)r be a homomorphism. By
the injectivity of E(S), there exists a homomorphism u : B → E(S) such that
uf = kα, where k : AnnE(S)r → E(S) is the inclusion homomorphism. Then
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we can construct a commutative diagram of R-modules with exact rows (6),
where v : C → E(S)/AnnE(S)r is a homomorphism. Hence there exists a
homomorphism w : C → E(S) such that hw = v. By Lemma 2.2, there exists
a homomorphism β : B → AnnE(S)r such that βf = α. Now by Theorem 2.9,
the exact sequence (1) is Ω0-pure. �

Theorem 3.3. Let C be an R-module. The following statements are equiv-
alent:

(i) C is Ω0-flat.
(ii) For every simple R-module S ∼= R/M , where M is a maximal ideal of R,

and for every r ∈ V ∩M , C is projective with respect to the natural projection
h : E(S) → E(S)/AnnE(S)r.

Proof. (i) =⇒ (ii) Suppose that C is Ω0-flat. Let v : C → E(S)/AnnE(S)r
be a homomorphism, where S ∼= R/M for some maximal ideal M of R and
r ∈ V ∩ M . Consider an exact sequence (1) with B projective. Then there
exists a homomorphism u : B → E(S) such that hu = vg, i.e., the diagram (5)
is commutative. Since the exact sequence (1) is Ω0-pure, it follows by Theorem
3.2 that there exists a homomorphism w : C → E(S) such that hw = v, i.e.,
C is projective with respect to h.

(ii) =⇒ (i) Suppose that (ii) holds. Consider the exact sequence (1) and
the commutative diagram (5). Since C is projective with respect to h, there
exists a homomorphism w : C → E(S) such that hw = v. By Theorem 3.2,
the exact sequence (1) is Ω0-pure. Hence C is Ω0-flat. �

Denote by A the class of Ω0-flat R-modules.

Corollary 3.4. The class A is closed under direct sums and direct sum-
mands.

Theorem 3.5. Consider the exact sequence (1). Then:
(i) The class A is closed under extensions.
(ii) If B ∈ A and the exact sequence (1) is Ω0-pure, then C ∈ A.
(iii) If R is a hereditary ring and B ∈ A, then A ∈ A.

Proof. Let S ∼= R/M for some maximal ideal M of R, let r ∈ V ∩M and
let h : E(S) → E(S)/AnnE(S)r be the natural projection.

(i) Let A,C ∈ A. By Theorem 3.3, A,C are projective with respect to
h. Since E(S) is injective, it follows by Lemma 3.1 that B is projective with
respect to h. Now by Theorem 3.3, B is Ω0-flat, i.e., B ∈ A.

(ii) Let B ∈ A and assume that the exact sequence (1) is Ω0-pure. Also,
let v : C → E(S)/AnnE(S)r be a homomorphism. Since B is Ω0-flat, it
follows by Theorem 3.3 that there exists a homomorphism u : B → E(S) such
that vg = hu. Thus we obtain a commutative diagram of R-modules (5).
But the exact sequence (1) is Ω0-pure, hence by Theorem 3.2 there exists a
homomorphism w : C → E(S) such that hw = v. Therefore, C is projective
with respect to h. Now by Theorem 3.3, C is Ω0-flat, i.e., C ∈ A.
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(iii) Let R be hereditary, let B ∈ A and let α : A → E(S)/AnnE(S)r
be a homomorphism. Then E(S)/AnnE(S)r is injective, hence there exists a
homomorphism β : B → E(S)/AnnE(S)r such that βf = α. We obtain a
commutative diagram of R-modules with exact rows

0 // A
f //

α
��

B
g //

βxxqqqqqqqqqqqq C // 0

E(S) h // E(S)/AnnE(S)r // 0

By Theorem 3.3, there exists a homomorphism γ : B → E(S) such that
hγ = β, because B is Ω0-flat. Hence hγf = βf = α. Therefore, A is projective
with respect to h. Now, by Theorem 3.3, A ∈ A. �
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