GENERALIZED RD-PURE-INJECTIVITY AND RD-FLATNESS

IULIU CRIVEI

Abstract. Let *R* be an associative ring with non-zero identity and let *V* be a non-empty subset of *R*. We shall consider a family Ω_0 of left *R*-modules of the form R/Rr, where $r \in V$. If *R* is commutative, we shall determine the structure of Ω_0 -pure-injective *R*-modules. We shall also study Ω_0 -flat modules.

MSC 2000. 16D80.

Key words. Ω -pure-injective module, Ω -flat module.

1. INTRODUCTION

In this paper we denote by R an associative ring with non-zero identity and all R-modules are unital. By Mod-R we denote the category of right Rmodules. By a homomorphism we understand an R-homomorphism. For the sake of brevity, we shall omit the writing of the homomorphisms induced by the functors Hom_R and tensor product.

Let Ω be a class of left *R*-modules and let

(1)
$$0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0$$

be a short exact sequence of right *R*-modules, where *f* and *g* are homomorphisms. If the tensor product $f \otimes_R \mathbb{1}_D : A \otimes_R D \to B \otimes_R D$ is a monomorphism for every $D \in \Omega$, it is said that the sequence (1) is Ω -pure [4]. If *A* is a submodule of *B*, *f* is the inclusion monomorphism and the sequence (1) is Ω -pure, then *A* is said to be an Ω -pure submodule of *B*.

A right *R*-module *M* is called projective with respect to the sequence (1) (or with respect to the epimorphism *g*) if the natural homomorphism $Hom_R(M, B) \to Hom_R(M, C)$ is surjective. A right *R*-module is called injective with respect to the sequence (1) (or with respect to the monomorphism *f*) if the natural homomorphism $Hom_R(B, M) \to Hom_R(A, M)$ is surjective. A right *R*-module *E* is said to be Ω -pure-injective if *E* is injective with respect to every Ω -pure short exact sequence of right *R*-modules.

A right *R*-module *C* is called Ω -flat if every short exact sequence (1) is Ω -pure [4].

The injective hull of an *R*-module *A* is denoted by E(A). We denote by $(M_i)_{i \in I}$ the family of all distinct right ideals of *R* and $S_i = R/M_i$ for every $i \in I$.

If R is a commutative ring, K is an ideal of R, A is an R-module and $r \in R$, then we denote $Ann_A K = \{a \in A \mid ra = 0, \forall r \in K\}$ and $Ann_A r = Ann_A(Rr)$. Let $V \subseteq R$ be a non-empty set. In this paper we shall consider the family of left *R*-modules

$$\Omega_0 = \{ R/Rr \mid r \in V \} \,.$$

If V = R, then an Ω_0 -pure exact sequence (1) is called *RD*-pure [5]. Notice that if the exact sequence (1) is *RD*-pure, then it is Ω_0 -pure.

In [2] we characterized Ω_0 -pure short exact sequences and we determined the structure of Ω_0 -pure-projective modules.

In the present paper, for a commutative ring R, we shall determine the structure of Ω_0 -pure-injective R-modules. We shall also characterize Ω_0 -flat modules and study the class of Ω_0 -flat modules.

2. Ω_0 -purity and Ω_0 -pure-injectivity

We shall recall three results which will be used later in the paper.

THEOREM 2.1. [4, Proposition 2.3] Let T be a set of right R-modules which contains a family of cogenerators for Mod-R and let $p^{-1}(T)$ be the class of all short exact sequences in Mod-R with the property that every R-module in T is injective with respect to them. Then:

(i) For every right R-module L there exists a short exact sequence

$$0 \longrightarrow N \longrightarrow M \longrightarrow L \longrightarrow 0$$

in $p^{-1}(T)$ with $M \in T$.

(ii) Every right R-module which is injective with respect to each sequence in $p^{-1}(T)$ is a direct summand of a direct product of R-modules in T.

LEMMA 2.2. [6, Lemma 7.16] Consider the commutative diagram with exact rows in Mod-R

The following statements are equivalent:

(i) There exists $\alpha : M_3 \to N_2$ with $g_2 \alpha = \varphi_3$;

(ii) There exists $\beta: M_2 \to N_1$ with $\beta f_1 = \varphi_1$.

THEOREM 2.3. [1, Theorem 7] Let R be commutative, let A be an R-module and let K be an ideal of R. Then there exists an isomorphism of R-modules $\alpha : Hom_R(R/K, A) \to Ann_AK$, that is defined by $\alpha(f) = f(u)$, where $f \in Hom_R(R/K, A)$ and R/K is generated by u.

The proof of the following result is the same as for the case of injective R-modules [3, Proposition 2.2].

LEMMA 2.4. Let $(D_j)_{j\in J}$ be a family of right *R*-modules. Then the direct product $\prod_{j\in J} D_j$ is Ω_0 -pure-injective if and only if D_j is Ω_0 -pure-injective for every $j \in J$.

Till the end of the present section, the ring R is assumed to be commutative.

THEOREM 2.5. Let G be an injective R-module. Then $Hom_R(R/Rr, G)$ is an Ω_0 -pure-injective module for every $r \in V$.

Proof. Suppose that the exact sequence (1) is Ω_0 -pure and let $r \in V$. Then the sequence

$$(2) 0 \longrightarrow A \otimes_R R/Rr \longrightarrow B \otimes_R R/Rr \longrightarrow C \otimes_R R/Rr \longrightarrow 0$$

of R-modules is exact. Since G is injective, the sequence

$$0 \longrightarrow Hom_R(C \otimes_R R/Rr, G) \longrightarrow Hom_R(B \otimes_R R/Rr, G)$$

$$(3) \longrightarrow Hom_R(A \otimes_R R/Rr, G) \longrightarrow 0$$

of *R*-modules is exact. Using the isomorphism

$$Hom_R(N \otimes_R M, D) \cong Hom_R(N, Hom_R(M, D)),$$

where M, N, D are *R*-modules, we obtain the exact sequence:

$$0 \longrightarrow Hom_R(C, Hom_R(R/Rr, G)) \longrightarrow Hom_R(B, Hom_R(R/Rr, G))$$

(4)
$$\longrightarrow Hom_R(A, Hom_R(R/Rr, G)) \longrightarrow 0$$

Hence $Hom_R(R/Rr, G)$ is Ω_0 -pure-injective.

THEOREM 2.6. Let G be a cogenerator for Mod-R and let $Hom_R(R/Rr, G)$ be injective with respect to the exact sequence (1) for every $r \in V$. Then the exact sequence (1) is Ω_0 -pure.

Proof. Let $r \in V$. Since $Hom_R(R/Rr, G)$ is injective with respect to the exact sequence (1), we obtain the exact sequence (4). Hence the sequence (3) is exact. But then the sequence (2) is exact, because G is a cogenerator. It follows that the sequence (1) is Ω_0 -pure.

COROLLARY 2.7. Let G be an injective cogenerator for Mod-R. Then the exact sequence (1) is Ω_0 -pure if and only if $Hom_R(R/Rr, G)$ is injective with respect to the exact sequence (1) for every $r \in V$.

COROLLARY 2.8. The exact sequence (1) is Ω_0 -pure if and only if the *R*-module $Hom_R(R/Rr, E(S))$ is injective with respect to the exact sequence (1) for every $r \in V$ and for every simple *R*-module *S*.

Proof. It is known that $\prod_{i \in I} E(S_i)$ is an injective cogenerator for Mod-R. Since S is a simple R-module, there exists $i \in I$ such that $S \cong S_i$. For every $r \in V$ we have the isomorphism:

$$Hom_R(R/Rr, \prod_{i \in I} E(S_i)) \cong \prod_{i \in I} Hom_R(R/Rr, E(S_i)).$$

49

т	<u>a</u> .	•
	Criv	e 1

Now the result follows by Lemma 2.4 and Corollary 2.7 if we take $G = \prod_{i \in I} E(S_i)$.

THEOREM 2.9. The exact sequence (1) is Ω_0 -pure if and only if $Ann_{E(S)}r$ is injective with respect to the exact sequence (1) for every simple R-module S and every $r \in V \cap M$, where M is a maximal ideal of R such that $S \cong R/M$.

Proof. Let S be a simple R-module such that $S \cong R/M$, where M is a maximal ideal of R. Let $r \in V$. By Theorem 2.3, we have an isomorphism

 $Hom_R(R/Rr, E(S)) \cong Ann_{E(S)}r$.

Let $r \notin M$. Suppose that $Ann_{E(S)}r \neq 0$. Then there exists $0 \neq a \in Ann_{E(S)}r$. Hence ra = 0. Since $a \in E(S)$, there exists $t \in R$ such that $0 \neq ta \in S$. Then r(ta) = 0. Since S is simple, it is generated by ta, hence $Ann_{R/M}r = R/M$. It follows that r(1 + M) = M, i.e., $r \in M$, which is a contradiction. Therefore, $Ann_{E(S)}r = 0$, which is an injective R-module.

Now let $r \in M$. Then $S \subseteq Ann_{E(S)}r$, hence $Ann_{E(S)}r \neq 0$.

The result follows by Corollary 2.8.

Now, by Theorems 2.1 and 2.9 we obtain the following two corollaries.

COROLLARY 2.10. For every R-module A, there exists an Ω_0 -pure short exact sequence of R-modules

$$0 \longrightarrow A \longrightarrow M \longrightarrow N \longrightarrow 0$$

where M is Ω_0 -pure-injective.

We are also able to establish the structure of Ω_0 -pure-injective modules.

COROLLARY 2.11. Every Ω_0 -pure-injective R-module is a direct summand of a direct product of R-modules of the form $Ann_{E(S)}r$, where S is a simple R-module and $r \in V \cap M$ for some maximal ideal M of R such that $S \cong R/M$.

3. Ω_0 -FLAT MODULES

We begin the section with a technical result that will be useful for the characterization of Ω_0 -flat modules.

LEMMA 3.1. Consider the short exact sequence (1). Let E be a right R-module which is injective with respect to f and let $h : E \to D$ be an epimorphism of right R-modules. If A and C are projective with respect to h, then B is projective with respect to h.

Proof. Let $u: B \to D$ be a homomorphism. Since A is projective with respect to h, there exists a homomorphism $v: A \to E$ such that uf = hv.

Thus we obtain a commutative diagram with exact rows:

Since E is injective with respect to f, there exists a homomorphism $w: B \to E$ such that wf = v. Then hwf = hv = uf and furthermore (hw - u)f = 0. Hence there exists a homomorphism $\alpha: C \to D$ such that $\alpha g = hw - u$. But C is projective with respect to h, so that there exists a homomorphism $\beta: C \to E$ such that $h\beta = \alpha$. Now consider the homomorphism $\gamma: B \to E$ defined by $\gamma = w - \beta g$. We have $h\gamma = hw - h\beta g = hw - \alpha g = u$. Therefore, B is projective with respect to h.

In what follows, the ring R is assumed to be commutative.

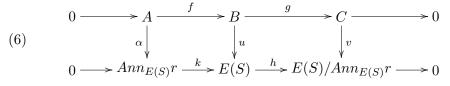
THEOREM 3.2. The following statements are equivalent:

- (i) The exact sequence (1) is Ω_0 -pure.
- (ii) For every commutative diagram of R-modules

(5)
$$\begin{array}{c} B \xrightarrow{g} C \\ u \downarrow & \downarrow v \\ E(S) \xrightarrow{h} E(S) / Ann_{E(S)} r \end{array}$$

where $S \cong R/M$ for some maximal ideal M of R, $r \in V \cap M$, h is the natural projection and u, v are homomorphisms, there exists a homomorphism $w: C \to E(S)$ such that hw = v.

Proof. (i) \implies (ii) Suppose that the exact sequence (1) is Ω_0 -pure and consider the diagram (5). Let $k : Ann_{E(S)}r \to E(S)$ be the inclusion homomorphism. Then there exists a homomorphism $\alpha : A \to Ann_{E(S)}r$ such that the following diagram with exact rows is commutative:



By Theorem 2.9 $Ann_{E(S)}r$ is Ω_0 -pure-injective, hence there exists a homomorphism $\beta: B \to Ann_{E(S)}r$ such that $\beta f = \alpha$. Now by Lemma 2.2, there exists a homomorphism $w: C \to E(S)$ such that hw = v.

(ii) \implies (i) Suppose that (ii) holds. Let $S \cong R/M$ for some maximal ideal M of R, let $r \in V \cap M$ and let $\alpha : A \to Ann_{E(S)}r$ be a homomorphism. By the injectivity of E(S), there exists a homomorphism $u : B \to E(S)$ such that $uf = k\alpha$, where $k : Ann_{E(S)}r \to E(S)$ is the inclusion homomorphism. Then

we can construct a commutative diagram of *R*-modules with exact rows (6), where $v : C \to E(S)/Ann_{E(S)}r$ is a homomorphism. Hence there exists a homomorphism $w : C \to E(S)$ such that hw = v. By Lemma 2.2, there exists a homomorphism $\beta : B \to Ann_{E(S)}r$ such that $\beta f = \alpha$. Now by Theorem 2.9, the exact sequence (1) is Ω_0 -pure.

THEOREM 3.3. Let C be an R-module. The following statements are equivalent:

(i) C is Ω_0 -flat.

(ii) For every simple R-module $S \cong R/M$, where M is a maximal ideal of R, and for every $r \in V \cap M$, C is projective with respect to the natural projection $h: E(S) \to E(S)/Ann_{E(S)}r$.

Proof. (i) \Longrightarrow (ii) Suppose that C is Ω_0 -flat. Let $v : C \to E(S)/Ann_{E(S)}r$ be a homomorphism, where $S \cong R/M$ for some maximal ideal M of R and $r \in V \cap M$. Consider an exact sequence (1) with B projective. Then there exists a homomorphism $u : B \to E(S)$ such that hu = vg, i.e., the diagram (5) is commutative. Since the exact sequence (1) is Ω_0 -pure, it follows by Theorem 3.2 that there exists a homomorphism $w : C \to E(S)$ such that hw = v, i.e., C is projective with respect to h.

(ii) \implies (i) Suppose that (ii) holds. Consider the exact sequence (1) and the commutative diagram (5). Since C is projective with respect to h, there exists a homomorphism $w : C \to E(S)$ such that hw = v. By Theorem 3.2, the exact sequence (1) is Ω_0 -pure. Hence C is Ω_0 -flat.

Denote by \mathcal{A} the class of Ω_0 -flat *R*-modules.

COROLLARY 3.4. The class \mathcal{A} is closed under direct sums and direct summands.

THEOREM 3.5. Consider the exact sequence (1). Then:

(i) The class \mathcal{A} is closed under extensions.

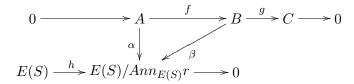
(ii) If $B \in \mathcal{A}$ and the exact sequence (1) is Ω_0 -pure, then $C \in \mathcal{A}$.

(iii) If R is a hereditary ring and $B \in \mathcal{A}$, then $A \in \mathcal{A}$.

Proof. Let $S \cong R/M$ for some maximal ideal M of R, let $r \in V \cap M$ and let $h: E(S) \to E(S)/Ann_{E(S)}r$ be the natural projection.

(i) Let $A, C \in \mathcal{A}$. By Theorem 3.3, A, C are projective with respect to h. Since E(S) is injective, it follows by Lemma 3.1 that B is projective with respect to h. Now by Theorem 3.3, B is Ω_0 -flat, i.e., $B \in \mathcal{A}$.

(ii) Let $B \in \mathcal{A}$ and assume that the exact sequence (1) is Ω_0 -pure. Also, let $v : C \to E(S)/Ann_{E(S)}r$ be a homomorphism. Since B is Ω_0 -flat, it follows by Theorem 3.3 that there exists a homomorphism $u : B \to E(S)$ such that vg = hu. Thus we obtain a commutative diagram of R-modules (5). But the exact sequence (1) is Ω_0 -pure, hence by Theorem 3.2 there exists a homomorphism $w : C \to E(S)$ such that hw = v. Therefore, C is projective with respect to h. Now by Theorem 3.3, C is Ω_0 -flat, i.e., $C \in \mathcal{A}$. (iii) Let R be hereditary, let $B \in \mathcal{A}$ and let $\alpha : A \to E(S)/Ann_{E(S)}r$ be a homomorphism. Then $E(S)/Ann_{E(S)}r$ is injective, hence there exists a homomorphism $\beta : B \to E(S)/Ann_{E(S)}r$ such that $\beta f = \alpha$. We obtain a commutative diagram of R-modules with exact rows



By Theorem 3.3, there exists a homomorphism $\gamma : B \to E(S)$ such that $h\gamma = \beta$, because B is Ω_0 -flat. Hence $h\gamma f = \beta f = \alpha$. Therefore, A is projective with respect to h. Now, by Theorem 3.3, $A \in \mathcal{A}$.

REFERENCES

- [1] CRIVEI, I., *c-pure-injective modules*, Mathematica (Cluj), **17** (40) (1975), no. 2, 167–172.
- [2] CRIVEI, I., On some Ω-pure exact sequences of modules, Studia Univ. "Babeş-Bolyai", Mathematica, 47 (2002), no. 3, 63–70.
- [3] SHARPE, D.W. and VÁMOS, P., Injective modules, Cambridge Univ. Press, 1972.
- [4] STENSTRÖM, B., Pure submodules, Ark. Math., 7 (1967), 151–171.
- [5] WARFIELD, R.B.JR., Purity and algebraic compactness for modules, Pacific J. Math., 28 (1969), 699–719.
- [6] WISBAUER, R., Foundations of module and ring theory, Gordon and Breach, Reading, 1991.

Received January 10, 2003

Department of Mathematics Technical University R0-400020 Cluj-Napoca, Romania Str. C. Daicoviciu 15 E-mail: crivei@math.utcluj.ro