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MULTI-VALUED MAPPINGS ON METRIC SPACES

LJUBOMIR B. ĆIRIĆ and JEONG S. UME

Abstract. We consider a multi-valued mapping F of a complete metric space
(X, d) into the class B(X) of nonempty, bounded subsets of X. For A, B in
B(X) we define δ(A, B) = sup{d(a, b) : a ∈ A, b ∈ B}.

It is proved that if F satisfies the contractive type condition δ(Fx, Fy) ≤
max{ϕ1(d(x, y)), ϕ2(δ(x, Fx)), ϕ3(δ(y, Fy)), ϕ4(δ(x, Fy)), ϕ5(δ(y, Fx))} for all
x, y ∈ X, where ϕj : [0, +∞) → [0, +∞), j ∈ {1, 2, 3, 4, 5}, are real functions
satisfying: (a) ϕj(t) < t for t > 0, (b) lim

s→t+
ϕj(s) < t for t > 0, (c) ϕj are

nondecreasing and (d) lim
t→+∞

(t− ϕj(t)) = +∞, then there exists a unique point

z in X such that Fz = {z}. This result is a generalization of known results
in this area and include, as special cases some theorems of Fisher, Khan and

Kubiaczyk, Reich, Ćirić and Rhoades and Watson.
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1. INTRODUCTION

In the fixed point theory for multi-valued mappings some theorems require
that the range of each point to be compact, other bounded. In some cases the
contractive conditions involve the Hausdorff metric induced by the metric d,
in others the diameter of sets. Such is the case in this paper. The contractive
condition considered here is a substantial generalization of the contractive
conditions studied by Reich [9], Ćirić [1] and Fisher [5], as well as of the
contractive definitions considered by Khan and Kubiaczyk [6] and by Rhoades
and Watson [10].

Throughout the paper (X, d) denotes a complete metric space and B(X) is
the set of all nonempty, bounded subsets of X. For A, B in B(X) the function
δ(A,B) is defined by

δ(A,B) = sup{d(a, b) : a ∈ A, b ∈ B}.

For δ({a}, B), δ(A, {b}) and δ({a}, {b}) we write δ(a,B), δ(A, b) and d(a, b),
respectively. It follows easily from the definition that δ(B,A) = δ(A,B) ≥ 0
and δ(A,C) ≤ δ(A,B) + δ(B,C) for all A, B, C in B(X). For any subsets A,
B of X the distance between A and B is defined by

D(A,B) = inf{d(a, b) : a ∈ A, b ∈ B}.

For D({a}, B) we write D(a,B).
A multi-valued mapping F on a set X has a fixed point x ∈ X if x ∈ Fx.

If Fx = {x}, then x is called a stationary point (or a strict fixed point) of F .
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In [1] Ćirić defined and considered a mapping F : X → B(X) which satisfies
the following contractive condition

δ(Fx, Fy) ≤ cmax{d(x, y), δ(x, Fx), δ(y, Fy), D(x, Fy), D(y, Fx)}(1)

for all x, y in X, where 0 ≤ c < 1.
Generalizing Theorem 2 in Ćirić [1], Fisher [5] proved the following theorem.

THEOREM 1.1. (Fisher [5, Theorem 2]). Let F be a mapping of (X, d) into
B(X) satisfying the inequality

δ(Fx, Fy) ≤ cmax{d(x, y), δ(x, Fx), δ(y, Fy), δ(x, Fy), δ(y, Fx)}(2)

for all x, y in X, where 0 ≤ c < 1. If F also maps B(X) into itself, that is
F (A) = Ua∈AFa ∈ B(X) for each A ∈ B(X), then F has a unique fixed point
z in X and further F (z) = {z}.

The added condition in Theorem 1.1, namely that F (A) is bounded is strong
and also may be difficult to test. So it is of interest to delete it. Using an ad-
dapted method we shall prove a fixed point theorem without such hypotheses,
even if F satisfies substantial more general contractive condition than (2).

We need the following Lemma of Matkowski [7] and Singh and Meade [11].

LEMMA 1.1. Let ϕ : [0,+∞) → [0,+∞) be a right continuous real function
satisfying ϕ(t) < t for t > 0. Then

lim
n→∞

ϕn(t) = 0 for t > 0,

where ϕn is the n-th iteration of ϕ.

2. MAIN RESULT

Throughout the paper by Φ we denote the collection of functions ϕ :
[0,+∞) → [0,+∞) which have the following properties:

(a) ϕ(t) < t for all t > 0,
(b) lim

s→t+
ϕ(s) < t for all t > 0,

(c) ϕ(t) is nondecreasing,
(d) lim

t→+∞
(t− ϕ(t)) = +∞.

LEMMA 2.1. If ϕ1, ϕ2 ∈ Φ then there is a ϕ ∈ Φ such that

ϕ1(t), ϕ2(t) ≤ ϕ(t) for all t > 0.

Proof. Define ϕ : [0,+∞) → [0,+∞) by ϕ(t) = max{ϕ1(t), ϕ2(t)}. Then
from Lemma in [2] it follows that ϕ has properties (a), (b) and (c). To show
that ϕ satisfies (d), let E > 0 be arbitrary. Since ϕ1 and ϕ2 satisfy (d), there
exist ∆j = ∆j(E) > 0, j ∈ {1, 2}, such that

t− ϕ1(t) > E for all t > ∆1, t− ϕ2(t) > E for all t > ∆2.
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Set ∆ = max{∆1,∆2}. Then for all t > ∆ we have

t− ϕ(t) = t−max{ϕ1(t), ϕ2(t)} = min{(t− ϕ1(t)), (t− ϕ2(t))} > E.

Thus ϕ also possess the property (d). The proof of Lemma is complete. �

Now we shall prove the following result:

THEOREM 2.1. Let (X, d) be a complete metric space and let F : X → B(X)
be a multi-valued mapping satisfying

δ(Fx, Fy) ≤ max{ϕ1(d(x, y)), ϕ2(δ(x, Fx)), ϕ3(δ(y, Fy)),(3)
ϕ4(δ(x, Fy)), ϕ5(δ(y, Fx))}

for all x, y in X, where ϕj ∈ Φ, j ∈ {1, 2, 3, 4, 5}. Then F has a unique
stationary point in X.

Proof. Let x0 in X be arbitrary. Define a sequence {xn} in X as follows.
Since now Fx0 is defined, pick x1 in Fx0. Now Fx1 is defined and let x2

be any fixed point in Fx1. Then we have that Fx2 is well defined and let
x3 in Fx2 be arbitrary. Continuing in this manner we inductively define two
sequences: {xn} in X and {Fxn} in B(X) such that

xn ∈ Fxn−1 (n = 1, 2, . . .),(4)

where xn is arbitrary fixed point in Fxn−1, nothing else.
We shall show that

sup{δ(xr, Fxs) : xr ∈ {xn}, Fxs ∈ {Fxn}} < +∞,(5)

where ϕ ∈ Φ is such that

ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t), ϕ5(t) ≤ ϕ(t) for all t > 0.(6)

Such ϕ exists from an extended version of Lemma 2.1.
First we prove that for any fixed positive integer n we have

max{δ(xr, Fxs) : r, s = 0, 1, . . . , n} = δ(x0, Fxk)(7)

for some k = k(n) ≤ n. Suppose the contrary. Then there is p ≥ 1 such that

δ(xp, Fxk) = max{δ(xr, Fxs) : 0 ≤ r, s ≤ n}.(8)

We may assume that δ(xp, Fxk) > 0 for each n, since otherwise Fx0 = {x0}
and we have finished the proof.

From (3), as xp ∈ Fxp−1, we have

δ(xp, Fxk) ≤ δ(Fxp−1, Fxk)

≤ max{ϕ1(d(xp−1, xk)), ϕ2(δ(xp−1, Fxp−1)), ϕ3(δ(xk, Fxk)),

ϕ4(δ(xp−1, Fxk)), ϕ5(δ(xk, Fxp−1))}.
(9)

From this and (6) we have

δ(xp, Fxk) ≤max{ϕ(d(xp−1, xk)), ϕ(δ(xp−1, Fxp−1)),

ϕ(δ(xk, Fxk)), ϕ(δ(xp−1, Fxk)), ϕ(δ(xk, Fxp−1))}.
(10)
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Since ϕ is nondecreasing, from (10) and (8) we get δ(xp, Fxk) ≤ ϕ(δ(xp, Fxk)).
Hence, by (a) we have δ(xp, Fxk) < δ(xp, Fxk), a contradiction. Therefore,
xp must be x0. Thus we proved (7).

For any positive integer n set

tn = δ(x0, Fxk),(11)

where k = k(n) is chosen such that (7) holds. Since by the triangle inequality

tn = δ(x0, Fxk) ≤ δ(x0, Fx0) + δ(Fx0, Fxk),

from (3), (6) and (11) we obtain tn ≤ δ(x0, Fx0) + max{ϕ(d(x0, xk)),
ϕ(δ(x0, Fx0)), ϕ(δ(xk, Fxk)), ϕ(δ(x0, Fxk)), ϕ(δ(xk, Fx0))} ≤ δ(x0, Fx0) +
ϕ(tn). Hence we get

tn − ϕ(tn) ≤ δ(x0, Fx0).(12)

From definition of tn (see (7)), it follows that {tn} is nondecreasing sequence.
Therefore, lim

n→∞
tn exists. If we suppose that lim

n→∞
tn = +∞, then the right-

hand side of (12) is bounded, but from hypothesis (d) for ϕ, the left-hand side
is unbounded, which is a contradiction. Therefore, we proved (5).

Now we shall show that {xn} is a Cauchy sequence. Let ε > 0 be arbitrary.
Set

L = sup{δ(xr, Fxs) : r, s ≥ 0}.

From (5), L is finite number and by Lemma 1.1 there is a positive integer N
such that

ϕN (L) < ε.(13)

From (3) and (7) it follows that for n ≥ m ≥ N we have, as xm ∈ Fxm−1,

δ(xm, Fxn) ≤ δ(Fxm−1, Fxn)) ≤ ϕ(δ(xm−1, Fxk)),(14)

where m− 1 ≤ k ≤ n. Since by the same arguments

δ(xm−1, Fxk) ≤ δ(Fxm−2, Fxk) ≤ ϕ(δ(xm−2, Fxp)),

where m− 2 ≤ p ≤ k, by (14) we get

δ(xm, Fxn) ≤ ϕ2(δ(xm−2, Fxp)); m− 2 ≤ p ≤ k ≤ n.

Proceeding in this manner, we obtain

δ(xm, Fxn) ≤ ϕm(δ(x0, Fxq)); 0 ≤ q ≤ n.(15)

Since ϕ is nondecreasing and xn+1 ∈ Fxn, by (15) and (13) we have

(16) d(xm, xn+1) ≤ δ(xm, Fxn) ≤ ϕm(δ(x0, Fxq)) ≤ ϕm(L) ≤ ϕN (L) < ε.

From (16) we conclude that {xn} is a Cauchy sequence. Also from (16) we
conclude that a sequence of reals {δ(xn, Fxn)} tends to zero when n tends to
infinity.
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Since X is complete, {xn} converges to some point, say z in X. Suppose,
by way of contradiction, that δ(z, Fz) > 0. Using the triangle inequality and
(6), from (3) we have
δ(z, Fz) ≤ d(z, xn+1) + δ(Fxn, F z) ≤ d(z, xn+1)

+ max{ϕ(d(xn, z)), ϕ(δ(xn, Fxn)), ϕ(δ(z, Fz)), ϕ(δ(xn, F z)), ϕ(δ(z, Fxn))}.
Hence, as ϕ is nondecreasing, by the triangle inequality we get

δ(z, Fz) ≤ d(z, xn+1) + ϕ(d(xn, z) + δ(xn, Fxn) + δ(z, Fz)).(17)

Since δ(xn, Fxn) → 0 and d(z, xn) → 0 as n →∞ we have that

[δ(z, Fz) + d(z, xn) + δ(xn, Fxn)] → δ(z, Fz)(18)

when n tends to infinity. Taking the limit of both sides in (14) when n tends
to infinity, by (18) and from (b) we have

δ(z, Fz) ≤ lim
n→∞

ϕ[δ(z, Fz) + d(z, xn) + δ(xn, Fxn)] < δ(z, Fz),

a contradiction. Therefore, δ(z, Fz) = 0. Hence Fz = {z}. The uniqueness of
a strict fixed (stationary) point is implied by (3). The proof of the theorem is
complete. �

REMARK 2.1. Theorem 2.1. with ϕj(t) = c · t, 0 < c < 1, j = 1, 2, 3, 4, 5,
is a generalization of the corresponding theorems of Reich [9], Ćirić [1] and
Fisher [5]. Theorem 2.1. is also a generalization of Theorem 1 in Khan and
Kubiaczyk [6] and Theorem 2 in Rhoades and Watson [9].

REMARK 2.2. The following example shows that the contractive condition
(3) is substantial more general then the condition (2), even if (X, d) is compact
and convex Euclidean space.

EXAMPLE. Let X = [0, 1
2 ] be the closed interval with usual metric and let

F : X → B(X) and ϕ : [0,+∞) → [0,+∞) be mappings defined as follows:

Fx = [x− x2, x− x3] for all 0 ≤ x ≤ 1
2
,

ϕ(t) = t− t3, if 0 ≤ t ≤ 1
2
, ϕ(t) =

3
4
t, if t >

1
2
,

respectively. Let x, y in X be arbitrary. Without loss of generality we may
suppose that x ≤ y. Then we have

δ(Fx, Fy) = y − y3 − x + x2,

M(x, y) = max{d(x, y), δ(x, Fx), δ(y, Fy), δ(x, Fy), δ(y, Fx)} = δ(y, Fx),
δ(y, Fx) = y − x(1− x).

Since ϕ is increasing, from (3), with ϕ1 = ϕ2 = ϕ3 = ϕ4 = ϕ5 = ϕ we have,
as x(1− x) ≥ 0 implies that −y ≤ −(y − x(1− x)),

δ(Fx, Fy) = y − y3 − x + x2 = (y − x(1− x))− y3

≤ (y − x(1− x))− (y − x(1− x))3 = ϕ(δ(y, Fx)).
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Thus, F satisfies (3) and we can apply our Theorem 2.1. On the other hand, for
any fixed c; 0 < c < 1, we have, for x = 0 and each y ∈ X with 0 < y <

√
1− c,

δ(F0, Fy) = (1− y2)y > c · y = cδ(y, F0) = c ·M(0, y).

Therefore, F does not satisfy (2).
Note that further generalization of Theorem 2.1 in light of result in [3–4],

[8] and [6, Theorem 3] may be of interest.
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[2] Ćirić, Lj. B., Common fixed points of nonlinear contractions, Acta Math. Hungar., 80
(1998), 31–38.
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