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MORSE INDEX OF HARMONIC MAPS INTO HP n

XIAOLI CHAO

Abstract. In this paper, the index and the nullities of harmonic maps into HP n

are calculated.
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1. INTRODUCTION

It is well known that every non-constant harmonic map φ to or from Sm

(m ≥ 3) is unstable, that is, IndE(φ) ≥ 1 ([9], [7]). It’s natural to study its
unstability. The first step in this direction was given by A. El Soufi, where
he obtained its lower bound ([2], [3], [4]). In addition, he also investigated
the case when the target manifold is CPn. Recently, this method has been
successful used in the study of the Morse index of Yang-Mills connection over
unit spheres by S. Nayatani and H. Urakawa [8]. In this paper, we will deal
with the Morse index of harmonic map φ : Sm → HPn.

Let (M, g) be an m-dimensional compact Riemannian manifold without
boundary and (N,h) an n-dimensional Riemannian manifold. We denote by
D and 5 the Levi-Civita connection on (M, g) and (N,h), respectively. A
smooth map φ : (M, g) → (N,h) is said to be harmonic if it is a critical point
of the energy E(φ) defined by

E(φ) =
∫

M
e(φ)vg

e(φ) =
1
2

m∑
i=1

h(dφ(ei),dφ(ei)) ,

where dφ is the differential of φ. Namely, for every vector field V along φ

d
dt

∣∣∣
t=0

E(φt) = 0.

Here φt : M → N is an one parameter family of smooth maps with φ0 = φ
and

d
dt

∣∣∣
t=0

φt(x) = Vx ∈ Tφ(x)N

for every point x ∈ M .
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The first and second variation formulas of the energy E(φ) for a harmonic
map φ is given by

d
dt

∣∣∣
t=0

E(φt) = −
∫

M
〈τ(φ), V 〉vg ,

Hφ(V ) =
d2

dt2

∣∣∣
t=0

E(φt) = −
∫

M
〈V, JφV )vg .

Here τ(φ) = trg5φdφ is tensor field of φ and Jφ is a differential operator (called
the Jacobi operator) acting on the space Γ(φ) of sections of the induced bundle
φ−1TN. The operator Jφ is of the form

JφV = −trg 5φ 5φV − Ricφ(V ) ,

Ricφ(V ) = trgR
N (dφ, V )dφ.

The Morse index and nullity of φ are defined by

IndE(φ) = sup{dim F : F ⊂ Γ(φ) and Hφ is negative definite on F}

NulE(φ) = dim(ker Hφ).
Let N−(φ) (N0(φ)) be the number of negative (zero) eigenvalue of Jacobi
operator Jφ. Then we have

IndE(φ) = N−(Jφ), NulE(φ) = N0(Jφ)

For volume function V (φ), we can also define IndV (φ) and NulV (φ).

Lemma 1. Let φ : (M, g) → HPn be a harmonic map. Then for ∀V ∈ Γ(φ),
we have

Jφ(JkV ) = JkJφV + trg(〈JkV,dφ〉dφ− 〈V,dφ〉Jkdφ).

Here {J1, J2, J3} is a quaternionic Kahler structure of HPn. In particular, if
φ is weakly conformal, then we have

Jφ(Jkdφ(X)) = JkJφ(dφ(X))−
∣∣dφ
∣∣2

m
(Jkdφ(X))⊥

for any vector field X ∈ Γ(M).

Proof. Since Jk commutes with 5φ, we have, for ∀V ∈ Γ(φ),

Jφ(JkV )− JkJφV = −trg 5φ 5φJkV − Ricφ(JkV )

+ Jk(trg 5φ 5φV + Ricφ(V ))

= JkRicφ(V )− Ricφ(JkV ) .

On the other hand, the curvature tensor of HPn is given by

R(X, Y )X =
1
4

(∣∣X∣∣2Y − 〈X, Y 〉X − 3
3∑

i=1

〈X, JiY 〉JiX

)
.
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So we get

Ricφ(V ) = trgR(dφ, V )dφ

=
1
4

[∣∣dφ
∣∣2V − trg(〈V,dφ〉dφ + 3

3∑
i=1

〈JiV,dφ〉Jidφ)

]
and

JkRicφ(V )− Ricφ(JkV )

=
1
4
trg

(
〈JkV,dφ〉dφ + 3

3∑
i=1

〈JiJkV,dφ〉Jidφ

− 〈V,dφ〉Jkdφ− 3
3∑

i=1

〈JiV,dφ〉JkJidφ
)

= trg(〈JkV,dφ〉dφ− 〈V,dφ〉Jkdφ), k = 1, 2, 3.

If φ is weakly conformal, we consider the set

Ω = {x ∈ M : dφ(x) 6= 0}.
Let {e1, · · · , em} be a local orthogonal frame field at x ∈ Ω. Then the set
{
√

m
∣∣dφ
∣∣−1dφ(ei)}m

i=1 is an orthogonal frame field and

trg〈JkV,dφ〉dφ =
3∑

i=1

〈JkV,dφ(ei)〉dφ(ei) =

∣∣dφ
∣∣2

m
(JkV )⊥,

trg〈V,dφ〉Jkdφ = Jk

3∑
i=1

〈V,dφ(ei)〉dφ(ei) =

∣∣dφ
∣∣2

m
(JkV )⊥.

Setting V = dφ(X) in above, we get

Jφ(Jkdφ(X)) = JkJφ(dφ(X))−
∣∣dφ
∣∣2

m
(Jkdφ(X))⊥,

which finishes the proof of the lemma. �

Lemma 2. [5] For all X ∈ Γ(M), we have

Jφ(dφ(X)) = dφ(JIX)− 2trg 5φ dφ(D.X, ·) ,

where I is identical map on M .

Lemma 3. [3] If φ : M → N is totally geodesic and homothetic, then we
have

IndE(φ)− IndV (φ) = IndE(I),
NulE(φ)−NulV (φ) = NulE(I).

Now we consider the standard immersion jm : Sm ↪→ HPm (i.e., the com-
position of RPm ↪→ CPm ↪→ HPm and double cover Sm → RPm). In fact,
jm is a totally geodesic and totally real homothetic immersion.
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Proposition 4. For the standard immersion jm : Sm ↪→ HPm, we have

IndE(jm) =

{
(m + 1)(3m + 8)/2 , m ≥ 3
18 , m = 2

NulE(jm) =

{
m(2m + 5) , m ≥ 3
36 , m = 2

IndV (jm) = 3(m + 1)(m + 2)/2

NulV (jm) =

{
3m(m + 3)/2 , m ≥ 3
30 , m = 2

Proof. Since jm is homothetic, totally geodesic and totally real, we have

Γ⊥(jm) = ⊕3
k=1JkΓ>(jm)

and

IndV (jm) = N−(Jjm

∣∣∣Γ⊥(jm)) =
3∑

k=1

N−(Jjm

∣∣∣JkΓ>(jm))

For V = Jk(djm(X)) ∈ JkΓ>(jm), we have, from Lemma 1 and Lemma 2,

Jjm(Jkdjm(X)) = Jk(Jjmdjm(X))− 4Jkdjm(X)

= Jk(djm(JIX))− 4Jkdjm(X)

= Jkdjm(JIX − 4X).

On the other hand, by [3, (28)], we have

JIX = 4X − 2(m− 1)X,

where 4 is Hodge-Laplace operator on Sm. So we obtain

Jjm(Jkdjm(X)) = Jkdjm(4X − 2(m− 1)X), k = 1, 2, 3.

Then
IndV (jm) = 3N−(4− 2(m + 1)),

NulV (jm) = 3N0(4− 2(m + 1)).

From [3] or [6], we know that, for m ≥ 3,

λ1(4) = m , m(λ1) = m + 1

λ2(4) = 2(m− 1) , m(λ2) = m(m + 1)/2

λ3(4) = 2(m + 1) , m(λ3) = m(m + 3)/2

and for m = 2,

λ1(4) = 2 , m(λ1) = 6

λ2(4) = 6 , m(λ2) = 10,
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where m(λ) denotes the multiplicity of λ. From this, we get

IndV (jm) = 3(m + 1 + m(m + 1)/2) = 3(m + 1)(m + 2)/2

NulV (jm) =

{
3m(m + 3)/2 , m ≥ 3
30 , m = 2

Using Lemma 3 and the following equalities (see [3]),

IndE(I) =

{
m + 1 , m ≥ 3
0 , m = 2

NulE(I) =

{
m(m + 1)/2 , m ≥ 3
6 , m = 2 ,

we obtain

IndE(jm) =

{
(m + 1)(3m + 8)/2 , m ≥ 3
18 , m = 2

NulE(jm) =

{
m(2m + 5) , m ≥ 3
36 , m = 2 .

2. MAIN THEOREMS AND THEIR PROOFS

Theorem 5. For any harmonic totally real immersion φ : Sm → HPn,
(m ≥ 3), we have

IndE(φ) ≥ IndE(jm) = (m + 1)(3m + 8)/2.

Proof. Consider the sets

F1 = {dφ(a) : a ∈ Rm+1}, F2k = Jkdφ(A), F3k = Jkdφ(K),

where A = {a : a ∈ Rm+1}, a(x) = a− 〈a, x〉x, and K is the space of Killing
vector field. By [5, 5.4] we have

Jφ(dφ(a)) =
2−m∣∣a∣∣ dφ(a), a ∈ A

Hφ(dφ(a)) =
2−m∣∣a∣∣

∫
Sm

∣∣dφ(a)
∣∣2dv < 0
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It’s easy to know that, if dφ(a) = 0 with a 6= 0, then φ is constant. So Hφ is
negative definite on F1. Similarly, from Lemma 1, we have

Jφ(Jkdφ(b)) = JkJφ(dφ(a))

+
3∑

i=1

(〈Jk(dφ(b)),dφ(ei)〉dφ(ei)− 〈dφ(a),dφ(ei)〉Jkdφ(ei))

=
2−m∣∣b∣∣ Jkdφ(a)−

3∑
i=1

〈dφ(b),dφ(ei)〉Jkdφ(ei)

Hφ(Jkdφ(b)) =
2−m∣∣b∣∣

∫
Sm

∣∣dφ(b)
∣∣2dv −

3∑
i=1

∫
Sm

〈dφ(b),dφ(ei)〉2dv ≤ 0.

By the same discussion as above, we know that Hφ is negative definite on F2k

(k = 1, 2, 3). For X ∈ K, by the same calculation, we have

Jφ(Jkdφ(X)) = · · · = −
3∑

i=1

〈dφ(X),dφ(ei)〉Jkdφ(ei),

Hφ(Jkdφ(X)) = −
3∑

i=1

∫
Sm

〈dφ(X),dφ(ei)〉2dv ≤ 0

and
Hφ(Jkdφ(X)) = 0 ⇐⇒ dφ(X) = 0 ⇐⇒ X = 0.

So Hφ is negative definite on F3k (k = 1, 2, 3). Since dφ(A) and dφ(K) are the
eigenspace of Jφ with eigenvalue 2 −m and 0, respectively, and, φ is totally
real, we know that Hφ is negative on

F = dφ(A)⊕
3∑

i=1

(Jkdφ(A)⊕ Jkdφ(K)),

that is,
IndE(φ) ≥ dim F = 4(m + 1) + 3m(m + 1)/2

= (m + 1)(3m + 8)/2 = IndE(jm).

Here we use dim F1 = dim dφ(A) = m + 1 (see [3]). �

For the index of volume variation, we have analogous result.

Theorem 6. For any homothetic totally real minimal immersion

φ : (M, g) → HPn,

we have
IndV (φ) ≥ IndV (jm) = (m + 1)(m + 2)/2.

From the following Lemma, we can obtain the proof of this theorem imme-
diately.
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Lemma 7. Let φ : (M, g) → HPn is a homothetic totally real minimal im-
mersion. Then we have

min(IndE(φ), IndV (φ)) ≥ 3(IndE(I) + NulE(I)),

where I is identity map on M .

Proof. Let F be a set of Γ(I) on which HI is non-positive, that is, HI(X) ≤ 0
for all X ∈ F ). So we have dim F = IndE(I) + NulE(I) and for ∀X ∈ F , by
Lemma 1 and Lemma 2,

〈Jφ(Jkdφ(X)), Jkdφ(X)〉 = 〈Jk(Jφdφ(X))−
∣∣dφ
∣∣2

m
(Jkdφ(X))⊥, Jkdφ(X)〉

= 〈Jφdφ(X),dφ(X)〉 −
∣∣dφ
∣∣2

m

∣∣(Jkdφ(X))⊥
∣∣2

= 〈dφ(JIX),dφ(X)〉 −
∣∣dφ
∣∣2

m

∣∣(Jkdφ(X))⊥
∣∣2

=

∣∣dφ
∣∣2

m
(〈JIX, X〉 −

∣∣Jkdφ(X)
∣∣2);

Hφ(Jkdφ(X)) =

∣∣dφ
∣∣2

m

(
HI(X)−

∫
M

∣∣Jkdφ(X)
∣∣2vg

)
≤ −

∣∣dφ
∣∣2

m

∫
M

∣∣Jkdφ(X)
∣∣2vg, k = 1, 2, 3 .

By the definition, we get

IndE(φ) ≥
3∑

k=1

dim Jkdφ(F ) = 3 dim F = 3(IndE(I) + NulE(I)).

On the other hand, the second variation of volume function V (φ) along V ∈
Γ⊥(φ) is

Qφ(V ) = Hφ(V )− 2
∫

M

∣∣(5φV
∣∣2vg ≤ Hφ(V )

It follows that IndV (φ) ≥ 3(IndE(I) + NulE(I)). �

Finally, we have

Theorem 8. Let φ be a stable harmonic map from M to S2. Then

NulE(φ) ≥ 10.

Proof. Let J be complex structure on S2 and g the Lie algebra of Killing
vector fields of S2. Then for all X ∈ g, we have JφX = 0 and JφJX = JJφX =
0 (see [1]), that is, Hφ(JX, JX) = 0,∀X ∈ g. Since Killing vector field of S2

correspond to the eigenspace w.r.t. eigenvalue λ = 6 which dimension is 10.
We get NulE(φ) ≥ 10. �
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