MORSE INDEX OF HARMONIC MAPS INTO $H P^{n}$

XIAOLI CHAO

Abstract

In this paper, the index and the nullities of harmonic maps into $H P^{n}$ are calculated. MSC 2000. 58E20. Key words. Riemannian manifolds, Morse index, harmonic maps, $H P^{n}(c)$.

1. INTRODUCTION

It is well known that every non-constant harmonic map ϕ to or from S^{m} $(m \geq 3)$ is unstable, that is, $\operatorname{Ind}_{E}(\phi) \geq 1([9],[7])$. It's natural to study its unstability. The first step in this direction was given by A. El Soufi, where he obtained its lower bound ([2], [3], [4]). In addition, he also investigated the case when the target manifold is $C P^{n}$. Recently, this method has been successful used in the study of the Morse index of Yang-Mills connection over unit spheres by S. Nayatani and H. Urakawa [8]. In this paper, we will deal with the Morse index of harmonic map $\phi: S^{m} \rightarrow H P^{n}$.

Let (M, g) be an m-dimensional compact Riemannian manifold without boundary and (N, h) an n-dimensional Riemannian manifold. We denote by D and ∇ the Levi-Civita connection on (M, g) and (N, h), respectively. A smooth map $\phi:(M, g) \rightarrow(N, h)$ is said to be harmonic if it is a critical point of the energy $E(\phi)$ defined by

$$
\begin{aligned}
E(\phi) & =\int_{M} e(\phi) v_{g} \\
e(\phi) & =\frac{1}{2} \sum_{i=1}^{m} h\left(\mathrm{~d} \phi\left(e_{i}\right), \mathrm{d} \phi\left(e_{i}\right)\right),
\end{aligned}
$$

where $\mathrm{d} \phi$ is the differential of ϕ. Namely, for every vector field V along ϕ

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} E\left(\phi_{t}\right)=0
$$

Here $\phi_{t}: M \rightarrow N$ is an one parameter family of smooth maps with $\phi_{0}=\phi$ and

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} \phi_{t}(x)=V_{x} \in T_{\phi(x)} N
$$

for every point $x \in M$.
Research supported by Tian Yuan Foundation (No.10226001) and Science Foundation of Southeast University.

The first and second variation formulas of the energy $E(\phi)$ for a harmonic $\operatorname{map} \phi$ is given by

$$
\begin{gathered}
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\right|_{t=0} E\left(\phi_{t}\right)=-\int_{M}\langle\tau(\phi), V\rangle v_{g} \\
H_{\phi}(V)=\left.\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\right|_{t=0} E\left(\phi_{t}\right)=-\int_{M}\left\langle V, J_{\phi} V\right) v_{g}
\end{gathered}
$$

Here $\tau(\phi)=\operatorname{tr}_{g} \nabla^{\phi} \mathrm{d} \phi$ is tensor field of ϕ and J_{ϕ} is a differential operator (called the Jacobi operator) acting on the space $\Gamma(\phi)$ of sections of the induced bundle $\phi^{-1} T N$. The operator J_{ϕ} is of the form

$$
\begin{gathered}
J_{\phi} V=-\operatorname{tr}_{g} \nabla^{\phi} \nabla^{\phi} V-\operatorname{Ric}^{\phi}(V) \\
\operatorname{Ric}^{\phi}(V)=\operatorname{tr}_{g} R^{N}(\mathrm{~d} \phi, V) \mathrm{d} \phi
\end{gathered}
$$

The Morse index and nullity of ϕ are defined by

$$
\begin{gathered}
\operatorname{Ind}_{E}(\phi)=\sup \left\{\operatorname{dim} F: F \subset \Gamma(\phi) \text { and } H_{\phi} \text { is negative definite on } F\right\} \\
\operatorname{Nul}_{E}(\phi)=\operatorname{dim}\left(\operatorname{ker} H_{\phi}\right)
\end{gathered}
$$

Let $N_{-}(\phi) \quad\left(N_{0}(\phi)\right)$ be the number of negative (zero) eigenvalue of Jacobi operator J_{ϕ}. Then we have

$$
\operatorname{Ind}_{E}(\phi)=N_{-}\left(J_{\phi}\right), \quad \operatorname{Nul}_{E}(\phi)=N_{0}\left(J_{\phi}\right)
$$

For volume function $V(\phi)$, we can also define $\operatorname{Ind}_{V}(\phi)$ and $\operatorname{Nul}_{V}(\phi)$.
Lemma 1. Let $\phi:(M, g) \rightarrow H P^{n}$ be a harmonic map. Then for $\forall V \in \Gamma(\phi)$, we have

$$
J_{\phi}\left(J_{k} V\right)=J_{k} J_{\phi} V+\operatorname{tr}_{g}\left(\left\langle J_{k} V, \mathrm{~d} \phi\right\rangle \mathrm{d} \phi-\langle V, \mathrm{~d} \phi\rangle J_{k} \mathrm{~d} \phi\right)
$$

Here $\left\{J_{1}, J_{2}, J_{3}\right\}$ is a quaternionic Kahler structure of $H P^{n}$. In particular, if ϕ is weakly conformal, then we have

$$
J_{\phi}\left(J_{k} \mathrm{~d} \phi(X)\right)=J_{k} J_{\phi}(\mathrm{d} \phi(X))-\frac{|\mathrm{d} \phi|^{2}}{m}\left(J_{k} \mathrm{~d} \phi(X)\right)^{\perp}
$$

for any vector field $X \in \Gamma(M)$.
Proof. Since J_{k} commutes with ∇^{ϕ}, we have, for $\forall V \in \Gamma(\phi)$,

$$
\begin{aligned}
J_{\phi}\left(J_{k} V\right)-J_{k} J_{\phi} V & =-\operatorname{tr}_{g} \nabla^{\phi} \nabla^{\phi} J_{k} V-\operatorname{Ric}^{\phi}\left(J_{k} V\right) \\
& +J_{k}\left(\operatorname{tr}_{g} \nabla^{\phi} \nabla^{\phi} V+\operatorname{Ric}^{\phi}(V)\right) \\
& =J_{k} \operatorname{Ric}^{\phi}(V)-\operatorname{Ric}^{\phi}\left(J_{k} V\right)
\end{aligned}
$$

On the other hand, the curvature tensor of $H P^{n}$ is given by

$$
R(X, Y) X=\frac{1}{4}\left(|X|^{2} Y-\langle X, Y\rangle X-3 \sum_{i=1}^{3}\left\langle X, J_{i} Y\right\rangle J_{i} X\right)
$$

So we get

$$
\begin{aligned}
\operatorname{Ric}^{\phi}(V) & =\operatorname{tr}_{g} R(\mathrm{~d} \phi, V) \mathrm{d} \phi \\
& =\frac{1}{4}\left[|\mathrm{~d} \phi|^{2} V-\operatorname{tr}_{g}\left(\langle V, \mathrm{~d} \phi\rangle \mathrm{d} \phi+3 \sum_{i=1}^{3}\left\langle J_{i} V, \mathrm{~d} \phi\right\rangle J_{i} \mathrm{~d} \phi\right)\right]
\end{aligned}
$$

and

$$
\begin{aligned}
J_{k} \operatorname{Ric}^{\phi}(V)- & \operatorname{Ric}^{\phi}\left(J_{k} V\right) \\
= & \frac{1}{4} \operatorname{tr}_{g}\left(\left\langle J_{k} V, \mathrm{~d} \phi\right\rangle \mathrm{d} \phi+3 \sum_{i=1}^{3}\left\langle J_{i} J_{k} V, \mathrm{~d} \phi\right\rangle J_{i} \mathrm{~d} \phi\right. \\
& \left.\quad-\langle V, \mathrm{~d} \phi\rangle J_{k} \mathrm{~d} \phi-3 \sum_{i=1}^{3}\left\langle J_{i} V, \mathrm{~d} \phi\right\rangle J_{k} J_{i} \mathrm{~d} \phi\right) \\
= & \operatorname{tr}_{g}\left(\left\langle J_{k} V, \mathrm{~d} \phi\right\rangle \mathrm{d} \phi-\langle V, \mathrm{~d} \phi\rangle J_{k} \mathrm{~d} \phi\right), \quad k=1,2,3 .
\end{aligned}
$$

If ϕ is weakly conformal, we consider the set

$$
\Omega=\{x \in M: \mathrm{d} \phi(x) \neq 0\} .
$$

Let $\left\{e_{1}, \cdots, e_{m}\right\}$ be a local orthogonal frame field at $x \in \Omega$. Then the set $\left\{\sqrt{m}|\mathrm{~d} \phi|^{-1} \mathrm{~d} \phi\left(e_{i}\right)\right\}_{i=1}^{m}$ is an orthogonal frame field and

$$
\begin{aligned}
& \operatorname{tr}_{g}\left\langle J_{k} V, \mathrm{~d} \phi\right\rangle \mathrm{d} \phi=\sum_{i=1}^{3}\left\langle J_{k} V, \mathrm{~d} \phi\left(e_{i}\right)\right\rangle \mathrm{d} \phi\left(e_{i}\right)=\frac{|\mathrm{d} \phi|^{2}}{m}\left(J_{k} V\right)^{\perp}, \\
& \operatorname{tr}_{g}\langle V, \mathrm{~d} \phi\rangle J_{k} \mathrm{~d} \phi=J_{k} \sum_{i=1}^{3}\left\langle V, \mathrm{~d} \phi\left(e_{i}\right)\right\rangle \mathrm{d} \phi\left(e_{i}\right)=\frac{|\mathrm{d} \phi|^{2}}{m}\left(J_{k} V\right)^{\perp} .
\end{aligned}
$$

Setting $V=\mathrm{d} \phi(X)$ in above, we get

$$
J_{\phi}\left(J_{k} \mathrm{~d} \phi(X)\right)=J_{k} J_{\phi}(\mathrm{d} \phi(X))-\frac{|\mathrm{d} \phi|^{2}}{m}\left(J_{k} \mathrm{~d} \phi(X)\right)^{\perp},
$$

which finishes the proof of the lemma.
Lemma 2. [5] For all $X \in \Gamma(M)$, we have

$$
J_{\phi}(\mathrm{d} \phi(X))=\mathrm{d} \phi\left(J_{I} X\right)-2 \operatorname{tr}_{g} \nabla^{\phi} \mathrm{d} \phi(D . X, \cdot),
$$

where I is identical map on M.
Lemma 3. [3] If $\phi: M \rightarrow N$ is totally geodesic and homothetic, then we have

$$
\begin{aligned}
\operatorname{Ind}_{E}(\phi)-\operatorname{Ind}_{V}(\phi) & =\operatorname{Ind}_{E}(I), \\
\operatorname{Nul}_{E}(\phi)-\operatorname{Nul}_{V}(\phi) & =\operatorname{Nul}_{E}(I) .
\end{aligned}
$$

Now we consider the standard immersion $j_{m}: S^{m} \hookrightarrow H P^{m}$ (i.e., the composition of $R P^{m} \hookrightarrow C P^{m} \hookrightarrow H P^{m}$ and double cover $\left.S^{m} \rightarrow R P^{m}\right)$. In fact, j_{m} is a totally geodesic and totally real homothetic immersion.

Proposition 4. For the standard immersion $j_{m}: S^{m} \hookrightarrow H P^{m}$, we have

$$
\begin{aligned}
& \operatorname{Ind}_{E}\left(j_{m}\right)= \begin{cases}(m+1)(3 m+8) / 2, & m \geq 3 \\
18, & m=2\end{cases} \\
& \operatorname{Nul}_{E}\left(j_{m}\right)= \begin{cases}m(2 m+5), & m \geq 3 \\
36, & m=2\end{cases} \\
& \operatorname{Ind}_{V}\left(j_{m}\right)=3(m+1)(m+2) / 2 \\
& \operatorname{Nul}_{V}\left(j_{m}\right)= \begin{cases}3 m(m+3) / 2, & m \geq 3 \\
30, & m=2\end{cases}
\end{aligned}
$$

Proof. Since j_{m} is homothetic, totally geodesic and totally real, we have

$$
\Gamma^{\perp}\left(j_{m}\right)=\oplus_{k=1}^{3} J_{k} \Gamma^{\top}\left(j_{m}\right)
$$

and

$$
\operatorname{Ind}_{V}\left(j_{m}\right)=N_{-}\left(J_{j_{m}} \mid \Gamma^{\perp}\left(j_{m}\right)\right)=\sum_{k=1}^{3} N_{-}\left(J_{j_{m}} \mid J_{k} \Gamma^{\top}\left(j_{m}\right)\right)
$$

For $V=J_{k}\left(\mathrm{~d} j_{m}(X)\right) \in J_{k} \Gamma^{\top}\left(j_{m}\right)$, we have, from Lemma 1 and Lemma 2,

$$
\begin{aligned}
J_{j_{m}}\left(J_{k} \mathrm{~d} j_{m}(X)\right) & =J_{k}\left(J_{j_{m}} \mathrm{~d} j_{m}(X)\right)-4 J_{k} \mathrm{~d} j_{m}(X) \\
& =J_{k}\left(\mathrm{~d} j_{m}\left(J_{I} X\right)\right)-4 J_{k} \mathrm{~d} j_{m}(X) \\
& =J_{k} \mathrm{~d} j_{m}\left(J_{I} X-4 X\right)
\end{aligned}
$$

On the other hand, by $[3,(28)]$, we have

$$
J_{I} X=\triangle X-2(m-1) X
$$

where \triangle is Hodge-Laplace operator on S^{m}. So we obtain

$$
J_{j_{m}}\left(J_{k} \mathrm{~d} j_{m}(X)\right)=J_{k} \mathrm{~d} j_{m}(\triangle X-2(m-1) X), \quad k=1,2,3
$$

Then

$$
\begin{aligned}
& \operatorname{Ind}_{V}\left(j_{m}\right)=3 N_{-}(\triangle-2(m+1)) \\
& \operatorname{Nul}_{V}\left(j_{m}\right)=3 N_{0}(\triangle-2(m+1))
\end{aligned}
$$

From [3] or [6], we know that, for $m \geq 3$,

$$
\begin{array}{ll}
\lambda_{1}(\triangle)=m, & m\left(\lambda_{1}\right)=m+1 \\
\lambda_{2}(\triangle)=2(m-1), & m\left(\lambda_{2}\right)=m(m+1) / 2 \\
\lambda_{3}(\triangle)=2(m+1), & m\left(\lambda_{3}\right)=m(m+3) / 2
\end{array}
$$

and for $m=2$,

$$
\begin{array}{ll}
\lambda_{1}(\triangle)=2, & m\left(\lambda_{1}\right)=6 \\
\lambda_{2}(\triangle)=6, & m\left(\lambda_{2}\right)=10
\end{array}
$$

where $m(\lambda)$ denotes the multiplicity of λ. From this, we get

$$
\begin{aligned}
& \operatorname{Ind}_{V}\left(j_{m}\right)=3(m+1+m(m+1) / 2)=3(m+1)(m+2) / 2 \\
& \operatorname{Nul}_{V}\left(j_{m}\right)= \begin{cases}3 m(m+3) / 2, & m \geq 3 \\
30, & m=2\end{cases}
\end{aligned}
$$

Using Lemma 3 and the following equalities (see [3]),

$$
\begin{aligned}
& \operatorname{Ind}_{E}(I)= \begin{cases}m+1, & m \geq 3 \\
0, & m=2\end{cases} \\
& \operatorname{Nul}_{E}(I)
\end{aligned}=\left\{\begin{array}{ll}
m(m+1) / 2, & m \geq 3 \\
6, & m=2
\end{array}, ~ \$\right.
$$

we obtain

$$
\begin{aligned}
& \operatorname{Ind}_{E}\left(j_{m}\right)= \begin{cases}(m+1)(3 m+8) / 2, & m \geq 3 \\
18, & m=2\end{cases} \\
& \operatorname{Nul}_{E}\left(j_{m}\right)= \begin{cases}m(2 m+5), & m \geq 3 \\
36, & m=2\end{cases}
\end{aligned}
$$

2. MAIN THEOREMS AND THEIR PROOFS

TheOrem 5. For any harmonic totally real immersion $\phi: S^{m} \rightarrow H P^{n}$, ($m \geq 3$), we have

$$
\operatorname{Ind}_{E}(\phi) \geq \operatorname{Ind}_{E}\left(j_{m}\right)=(m+1)(3 m+8) / 2
$$

Proof. Consider the sets

$$
F_{1}=\left\{\mathrm{d} \phi(\bar{a}): \quad a \in R^{m+1}\right\}, \quad F_{2 k}=J_{k} \mathrm{~d} \phi(A), \quad F_{3 k}=J_{k} \mathrm{~d} \phi(K)
$$

where $A=\left\{\bar{a}: a \in R^{m+1}\right\}, \quad \bar{a}(x)=a-\langle a, x\rangle x$, and K is the space of Killing vector field. By [5,5.4] we have

$$
\begin{aligned}
J_{\phi}(\mathrm{d} \phi(\bar{a})) & =\frac{2-m}{|a|} \mathrm{d} \phi(\bar{a}), \quad \bar{a} \in A \\
H_{\phi}(\mathrm{d} \phi(\bar{a})) & =\frac{2-m}{|a|} \int_{S^{m}}|\mathrm{~d} \phi(\bar{a})|^{2} \mathrm{~d} v<0
\end{aligned}
$$

It's easy to know that, if $\mathrm{d} \phi(\bar{a})=0$ with $a \neq 0$, then ϕ is constant. So H_{ϕ} is negative definite on F_{1}. Similarly, from Lemma 1 , we have

$$
\begin{aligned}
J_{\phi}\left(J_{k} \mathrm{~d} \phi(\bar{b})\right) & =J_{k} J_{\phi}(\mathrm{d} \phi(\bar{a})) \\
& +\sum_{i=1}^{3}\left(\left\langle J_{k}(\mathrm{~d} \phi(\bar{b})), \mathrm{d} \phi\left(e_{i}\right)\right\rangle \mathrm{d} \phi\left(e_{i}\right)-\left\langle\mathrm{d} \phi(\bar{a}), \mathrm{d} \phi\left(e_{i}\right)\right\rangle J_{k} \mathrm{~d} \phi\left(e_{i}\right)\right) \\
& =\frac{2-m}{|b|} J_{k} \mathrm{~d} \phi(\bar{a})-\sum_{i=1}^{3}\left\langle\mathrm{~d} \phi(\bar{b}), \mathrm{d} \phi\left(e_{i}\right)\right\rangle J_{k} \mathrm{~d} \phi\left(e_{i}\right) \\
H_{\phi}\left(J_{k} \mathrm{~d} \phi(\bar{b})\right) & =\frac{2-m}{|b|} \int_{S^{m}}|\mathrm{~d} \phi(\bar{b})|^{2} \mathrm{~d} v-\sum_{i=1}^{3} \int_{S^{m}}\left\langle\mathrm{~d} \phi(\bar{b}), \mathrm{d} \phi\left(e_{i}\right)\right\rangle^{2} \mathrm{~d} v \leq 0 .
\end{aligned}
$$

By the same discussion as above, we know that H_{ϕ} is negative definite on $F_{2 k}$ $(k=1,2,3)$. For $X \in K$, by the same calculation, we have

$$
\begin{aligned}
& J_{\phi}\left(J_{k} \mathrm{~d} \phi(X)\right)=\cdots=-\sum_{i=1}^{3}\left\langle\mathrm{~d} \phi(X), \mathrm{d} \phi\left(e_{i}\right)\right\rangle J_{k} \mathrm{~d} \phi\left(e_{i}\right), \\
& H_{\phi}\left(J_{k} \mathrm{~d} \phi(X)\right)=-\sum_{i=1}^{3} \int_{S^{m}}\left\langle\mathrm{~d} \phi(X), \mathrm{d} \phi\left(e_{i}\right)\right\rangle^{2} \mathrm{~d} v \leq 0
\end{aligned}
$$

and

$$
H_{\phi}\left(J_{k} \mathrm{~d} \phi(X)\right)=0 \Longleftrightarrow \mathrm{~d} \phi(X)=0 \Longleftrightarrow X=0 .
$$

So H_{ϕ} is negative definite on $F_{3 k}(k=1,2,3)$. Since $\mathrm{d} \phi(A)$ and $\mathrm{d} \phi(K)$ are the eigenspace of J_{ϕ} with eigenvalue $2-m$ and 0 , respectively, and, ϕ is totally real, we know that H_{ϕ} is negative on

$$
F=\mathrm{d} \phi(A) \oplus \sum_{i=1}^{3}\left(J_{k} \mathrm{~d} \phi(A) \oplus J_{k} \mathrm{~d} \phi(K)\right),
$$

that is,

$$
\begin{aligned}
\operatorname{Ind}_{E}(\phi) & \geq \operatorname{dim} F=4(m+1)+3 m(m+1) / 2 \\
& =(m+1)(3 m+8) / 2=\operatorname{Ind}_{E}\left(j_{m}\right) .
\end{aligned}
$$

Here we use $\operatorname{dim} F_{1}=\operatorname{dim} \mathrm{d} \phi(A)=m+1$ (see [3]).
For the index of volume variation, we have analogous result.
Theorem 6. For any homothetic totally real minimal immersion

$$
\phi:(M, g) \rightarrow H P^{n},
$$

we have

$$
\operatorname{Ind}_{V}(\phi) \geq \operatorname{Ind}_{V}\left(j_{m}\right)=(m+1)(m+2) / 2
$$

From the following Lemma, we can obtain the proof of this theorem immediately.

Lemma 7. Let $\phi:(M, g) \rightarrow H P^{n}$ is a homothetic totally real minimal immersion. Then we have

$$
\min \left(\operatorname{Ind}_{E}(\phi), \operatorname{Ind}_{V}(\phi)\right) \geq 3\left(\operatorname{Ind}_{E}(I)+\operatorname{Nul}_{E}(I)\right),
$$

where I is identity map on M.
Proof. Let F be a set of $\Gamma(I)$ on which H_{I} is non-positive, that is, $H_{I}(X) \leq 0$ for all $X \in F)$. So we have $\operatorname{dim} F=\operatorname{Ind}_{E}(I)+\operatorname{Nul}_{E}(I)$ and for $\forall X \in F$, by Lemma 1 and Lemma 2,

$$
\begin{aligned}
\left\langle J_{\phi}\left(J_{k} \mathrm{~d} \phi(X)\right), J_{k} \mathrm{~d} \phi(X)\right\rangle & =\left\langle J_{k}\left(J_{\phi} \mathrm{d} \phi(X)\right)-\frac{|\mathrm{d} \phi|^{2}}{m}\left(J_{k} \mathrm{~d} \phi(X)\right)^{\perp}, J_{k} \mathrm{~d} \phi(X)\right\rangle \\
& =\left\langle J_{\phi} \mathrm{d} \phi(X), \mathrm{d} \phi(X)\right\rangle-\frac{|\mathrm{d} \phi|^{2}}{m}\left|\left(J_{k} \mathrm{~d} \phi(X)\right)^{\perp}\right|^{2} \\
& =\left\langle\mathrm{d} \phi\left(J_{I} X\right), \mathrm{d} \phi(X)\right\rangle-\frac{|\mathrm{d} \phi|^{2}}{m}\left|\left(J_{k} \mathrm{~d} \phi(X)\right)^{\perp}\right|^{2} \\
& =\frac{|\mathrm{d} \phi|^{2}}{m}\left(\left\langle J_{I} X, X\right\rangle-\left|J_{k} \mathrm{~d} \phi(X)\right|^{2}\right) ; \\
H_{\phi}\left(J_{k} \mathrm{~d} \phi(X)\right) & =\frac{|\mathrm{d} \phi|^{2}}{m}\left(H_{I}(X)-\int_{M}\left|J_{k} \mathrm{~d} \phi(X)\right|^{2} v_{g}\right) \\
& \leq-\frac{|\mathrm{d} \phi|^{2}}{m} \int_{M}\left|J_{k} \mathrm{~d} \phi(X)\right|^{2} v_{g}, \quad k=1,2,3 .
\end{aligned}
$$

By the definition, we get

$$
\operatorname{Ind}_{E}(\phi) \geq \sum_{k=1}^{3} \operatorname{dim} J_{k} \mathrm{~d} \phi(F)=3 \operatorname{dim} F=3\left(\operatorname{Ind}_{E}(I)+\operatorname{Nul}_{E}(I)\right)
$$

On the other hand, the second variation of volume function $V(\phi)$ along $V \in$ $\Gamma^{\perp}(\phi)$ is

$$
Q_{\phi}(V)=H_{\phi}(V)-2 \int_{M} \mid\left(\left.\nabla^{\phi} V\right|^{2} v_{g} \leq H_{\phi}(V)\right.
$$

It follows that $\operatorname{Ind}_{V}(\phi) \geq 3\left(\operatorname{Ind}_{E}(I)+\operatorname{Nul}_{E}(I)\right)$.
Finally, we have
Theorem 8. Let ϕ be a stable harmonic map from M to S^{2}. Then

$$
\operatorname{Nul}_{E}(\phi) \geq 10
$$

Proof. Let J be complex structure on S^{2} and g the Lie algebra of Killing vector fields of S^{2}. Then for all $X \in g$, we have $J_{\phi} X=0$ and $J_{\phi} J X=J J_{\phi} X=$ 0 (see [1]), that is, $H_{\phi}(J X, J X)=0, \forall X \in g$. Since Killing vector field of S^{2} correspond to the eigenspace w.r.t. eigenvalue $\lambda=6$ which dimension is 10 . We get $\operatorname{Nul}_{E}(\phi) \geq 10$.

REFERENCES

[1] Burns, D., Burstall, F., De Bartolomeis, P. and Rawnsley, J., Stability of harmonic maps of Kahler manifolds, J. Differential Geometry, 30 (1989), 579-594.
[2] El Soufi, A., Applications harmoniques, immersions minimales et transformations conformes de la sphere, Compositio Math., 85 (1993), 281-298.
[3] El Soufi, A., Indice de Morse des applications harmoniques de la sphere, Compositio Math., 95 (1995), 343-362.
[4] El Soufi, A. and Jeune, A., Indice de Morse des applications p-harmoniques, C. R. Acad. Sci., 315 (1992), 1189-1192.
[5] Eells, J. and Lemaire, L., A report on harmonic maps, Bull. London Math. Soc., 10 (1978), 1-68.
[6] Inasaki, I. and Katase, K., On the spectra of Laplace operator on $\wedge^{*}\left(S^{n}\right)$, Proc. Japan Acad., 55A (1979), 141-145.
[7] Leung, P.F., On the stability of harmonic maps, Lect. Notes in Math., 949 (1982), pp. 122-129.
[8] Nayatani, S. and Urakawa, H., Morse indices of Yang-Mils connections over the unit sphere, Compositio Math., 98 (1995), 177-192.
[9] Xin, Y., Some results on stable harmonic maps, Duke Math. J., 47 (1980), 609-613.
Received April 20, 2001
Department of Mathematics Nanjing Normal University
Nanjing, 210097, P.R. China
Department of Mathematics
Southeast University
Nanjing, 210096, P.R. China
E-mail: xlchao@seu.edu.cn

